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1 Introduction

Missing data is a perennial problem in social science data. Respondents do not
answer every question, countries do not collect statistics in every year and, most
unfortunately, researchers do not always have the resources to collect every piece of
available data. Most statistical analysis methods, however, assume the absence of
missing data. Amelia II allows users to impute (“fill in”or rectangularize) incomplete
data sets so that analyses which require complete observations can appropriately
use all the information present in a dataset with missingness, and avoid the biases,
inefficiencies, and incorrect uncertainty estimates that can result from dropping all
partially observed observations from the analysis.

Amelia II performs multiple imputation, a general-purpose approach to data with
missing values. Multiple imputation has been shown to reduce bias and increase ef-
ficiency compared to listwise deletion. Furthermore, ad-hoc methods of imputation,
such as mean imputation, can lead to serious biases in variances and covariances.
Unfortunately, creating multiple imputations can be a burdensome process due to
technical nature of algorithms involved. Ameliaprovides users with a simple way to
create an imputation model, implement it, and check its fit using diagnostics.

The Amelia II program goes several significant steps beyond the capabilities of
the first version of Amelia (Honaker, Joseph, King, Scheve and Singh., 1998-2002).
For one, the bootstrap-based EMB algorithm included in Amelia II can impute
many more variables, with many more observations, in much less time. The great
simplicity and power of the EMB algorithm made it possible to write Amelia II so
that it virtually never crashes — which to our knowledge makes it unique among
all existing multiple imputation software — and is much faster than the alternatives
too. Amelia II also has features to make valid and much more accurate imputations
for cross-sectional, time-series, and time-series-cross-section data, and allows the
incorporation of observation and data-matrix-cell level prior information. In addition
to all of this, Amelia II provides many diagnostic functions that help users check the
validity of their imputation model. This software implements the ideas developed in
?.

2 What Amelia Does

Multiple imputation involves imputing m values for each missing cell in your data
matrix and creating m “completed” data sets. (Across these completed data sets,
the observed values are the same, but the missing values are filled in with different
imputations that reflect the uncertainty about the missing data.) After imputation
with Amelia II’s EMB algorithm, you can apply whatever statistical method you
would have used if there had been no missing values in each of the m data sets, and
use a simple procedure, described below, to combine the results1. Under normal
circumstances, you only need to impute once and can then analyze the m imputed
data sets as many times and for as many purposes as you wish. The advantage of

1(You can combine the results automatically by doing your data analyses within Zelig for R, or
within Clarify for Stata; see http://gking.harvard.edu/stats.shtml.
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Amelia II is that it combines the comparative speed and ease-of-use of our algorithm
with the power of multiple imputation, to let you focus on your substantive research
questions rather than spending time developing complex application-specific models
for nonresponse in each new data set. Unless the rate of missingness is very high,
m = 5 (the program default) is probably adequate.

2.1 Assumptions

The imputation model in Amelia II assumes that the complete data (that is, both
observed and unobserved) are multivariate normal. If we denote the (n× k) dataset
as D (with observed part Dobs and unobserved part Dmis), then this assumption is

D ∼ Nk(µ, Σ), (1)

which states that D has a multivariate normal distribution with mean vector µ and
covariance matrix Σ. The multivariate normal distribution is often a crude approx-
imation to the true distribution of the data, yet there is evidence that this model
works as well as other, more complicated models even in the face of categorical or
mixed data (see Schafer, 1997; Schafer and Olsen, 1998). Furthermore, transforma-
tions of the data can often make this normality assumption more plausible (see 5.3
for more information on how to implement this in Amelia).

The essential problem of imputation is that we only observe Dobs, not all of
D. In order to gain traction, we need to make the usual assumption in multiple
imputation that the data are missing at random (MAR). This assumption means
that the pattern of missingness only depends on the observed data Dobs, not the
unobserved data Dmis. Let M to be the missingness matrix, with cells mij = 1 if
dij ∈ Dmis and mij = 0 otherwise. Put simply, M is a matrix that indicates whether
or not a cell is missing in the data. With this, we can define the MAR assumption
as

p(M |D) = p(M |Dobs). (2)

Note that MAR includes the case when missing values are created randomly by, say,
coin flips, but it also includes many more sophisticated missingness models. When
missingness is not dependent on the data at all, we say that the data are missing
completely at random (MCAR). Amelia requires both the multivariate normality
and the MAR assumption (or the simpler special case of MCAR). Note that the
MAR assumption can be made more plausible by including more information into
the imputation model.

2.2 Algorithm

In multiple imputation, we are concerned with the complete-data parameters, θ =
(µ, Σ). When writing down a model of the data, it is clear that our observed data is
actually Dobs and M , the missingness matrix. Thus, the likelihood of our observed
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data is p(Dobs, M |θ). Using the MAR assumption2, we can break this up,

p(Dobs, M |θ) = p(M |Dobs)p(Dobs|θ). (3)

As we only care about inference on the complete data parameters, we can write the
likelihood as

L(θ|Dobs) ∝ p(Dobs|θ), (4)

which we can rewrite using the law of iterated expectations as

p(Dobs|θ) =

∫
p(D|θ)dDmis. (5)

With this likelihood and a flat prior on θ, we can see that the posterior is

p(θ|Dobs) ∝ p(Dobs|θ) =

∫
p(D|θ)dDmis. (6)

The main computational difficulty in the analysis of incomplete data is taking draws
from this posterior. The EM algorithm (Dempster, Laird and Rubin, 1977) is a
simple computational approach to finding the mode of the posterior. Our EMB al-
gorithm combines the classic EM algorithm with a bootstrap approach to take draws
from this posterior. For each draw, we bootstrap the data to simulate estimation
uncertainty and then run the EM algorithm to find the mode of the posterior for the
bootstrapped data, which gives us fundamental uncertainty too (see ? for details of
the EMB algorithm).

Once we have draws of the posterior of the complete-data parameters, we make
imputations by drawing values of Dmis from its distribution conditional on Dobs and
the draws of θ, which is a linear regression with parameters that can be calculated
directly from θ.

2.3 Analysis

In order to combine the results across m data sets, first decide on the quantity
of interest to compute, such as univariate mean, regression coefficient, predicted
probability, or first difference. Then, the easiest way is to draw 1/m simulations of q
from each of the m data sets, combine them into one set of m simulations, and then
to use the standard simulation-based methods of interpretation common for single
data sets (King, Tomz and Wittenberg, 2000).

Alternatively, you can combine directly and use as the multiple imputation esti-
mate of this parameter, q̄, the average of the m separate estimates, qj (j = 1, . . . ,m):

q̄ =
1

m

m∑
j=1

qj. (7)

2There is an additional assumption hidden here that M does not depend on the complete-data
parameters.
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The variance of the point estimate is the average of the estimated variances from
within each completed data set, plus the sample variance in the point estimates
across the data sets (multiplied by a factor that corrects for the bias because m <
∞). Let SE(qj)

2 denote the estimated variance (squared standard error) of qj from
the data set j, and S2

q = Σm
j=1(qj − q̄)2/(m − 1) be the sample variance across the

m point estimates. The standard error of the multiple imputation point estimate is
the square root of

SE(q)2 =
1

m

m∑
j=1

SE(qj)
2 + S2

q (1 + 1/m). (8)

3 Versions of Amelia

Two versions of Amelia II are available, each with its own advantages and drawbacks,
but both of which use the same underyling code. First, Amelia II exists as a package
for the R statistical software package. Users can utilize their knowledge of the R
language to run Amelia II at the command line or to create scripts that will run
Amelia II and preserve the commands for future use. Alternatively, you may prefer
AmeliaView, where a interactive Graphical User Interface (GUI) allows you to set
options and run Amelia without any knowledge of the R programming language.

Both versions of Amelia II are available on the Windows, Mac OS X, and Linux
platforms and Amelia II for R runs in any environment that R can. All versions of
Amelia require the R software, which is freely available at http://www.r-project.
org/.

4 Installation and Updates

Before installing Amelia II, you must have installed R version 2.1.0 or higher, which
is freely available at http://www.r-project.org/.

To install the Amelia package on any platform, simply type the following at the
R command prompt,

> install.packages("Amelia")

and R will automatically install the package to your system from CRAN. If you wish
to use the most current beta version of Amelia feel free to install the test version,

> install.packages("Amelia", repos = "http://gking.harvard.edu")

In order to keep your copy of Amelia completely up to date, you should use the
command

> update.packages()
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4.1 Windows — AmeliaView

To install a standalone version of AmeliaView in the Windows environment, simply
download the installer setup.exe from http://gking.harvard.edu/amelia/ and
run it. The installer will ask you to choose a location to install Amelia II. If you
have installed R with the default options, Amelia II will automatically find the
location of R. If the installer cannot find R, it will ask you to locate the directory
of the most current version of R. Make sure you choose the directory name that
includes the version number of R (e.g. C:/Program Files/R/R-2.9.0) and contains a
subdirectory named bin. The installer will also put shortcuts on your Desktop and
Start Menu.

Even users familiar with the R language may find it useful to utilize AmeliaView
to set options on variables, change arguments, or run diagnostics. From the com-
mand line, AmeliaView can be brought up with the call:

> library(Amelia)

> AmeliaView()

4.2 Linux (local installation)

Installing Amelia on a Linux system is slightly more complicated due to user per-
missions. If you are running R with root access, you can simply run the above
installation procedure. If you do not have root access, you can install Amelia to a
local library. First, create a local directory to house the packages,

w4:mblackwell [~]: mkdir ~/myrlibrary

and then, in an R session, install the package directing R to this location:

> install.packages("Amelia", lib = "~/myrlibrary")

Once this is complete you need to edit or create your R profile. Locate or create
~/.Rprofile in your home directory and add this line:

.libPath("~/myrlibrary")

This will add your local library to the list of library paths that R searches in when
you load libraries.

Linux users can use AmeliaView in the same way as Windows users of Amelia
for R. From the command line, AmeliaView can be brought up with the call:

> AmeliaView()

5 A User’s Guide

5.1 Data and Initial Results

We now demonstrate how to use Amelia using data from Milner and Kubota (2005)
which studies the effect of democracy on trade policy. For the purposes of this user’s
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guide, we will use a subset restricted to nine developing countries in Asia from
1980 to 19993. This dataset includes 9 variables: year (year), country (country),
average tariff rates (tariff), Polity IV score4 (polity), total population (pop),
gross domestic product per capita (gdp.pc), gross international reserves (intresmi),
a dummy variable for if the country had signed an IMF agreement in that year
(signed), a measure of financial openness (fivop), and a measure of US hegemony5

(usheg). These variables correspond to the variables used in the analysis model of
Milner and Kubota (2005) in table 2.

We first load the Amelia and the data:

> require(Amelia)

##

## Amelia II: Multiple Imputation

## (Version 1.2-14, built: 2009-11-16)

## Copyright (C) 2005-2009 James Honaker, Gary King and Matthew Blackwell

## Refer to http://gking.harvard.edu/amelia/ for more information

##

> data(freetrade)

We can check the summary statistics of the data to see that there is missingness
on many of the variables:

> summary(freetrade)

year country tariff polity

Min. :1981 Length:171 Min. : 7.1 Min. :-8.00

1st Qu.:1985 Class :character 1st Qu.: 16.3 1st Qu.:-2.00

Median :1990 Mode :character Median : 25.2 Median : 5.00

Mean :1990 Mean : 31.7 Mean : 2.91

3rd Qu.:1995 3rd Qu.: 40.8 3rd Qu.: 8.00

Max. :1999 Max. :100.0 Max. : 9.00

NA's : 58.0 NA's : 2.00

pop gdp.pc intresmi signed

Min. :1.41e+07 Min. : 150 Min. : 0.904 Min. :0.000

1st Qu.:1.97e+07 1st Qu.: 420 1st Qu.: 2.223 1st Qu.:0.000

Median :5.28e+07 Median : 814 Median : 3.182 Median :0.000

Mean :1.50e+08 Mean : 1867 Mean : 3.375 Mean :0.155

3rd Qu.:1.21e+08 3rd Qu.: 2463 3rd Qu.: 4.406 3rd Qu.:0.000

Max. :9.98e+08 Max. :12086 Max. : 7.935 Max. :1.000

NA's :13.000 NA's :3.000

3We have artificially added some missingness to these data for presentational purposes. You
can access the original data at http://www.princeton.edu/~hmilner/Research.htm

4The Polity score is a number between -10 and 10 indicating how democratic a country is. A
fully autocratic country would be a -10 while a fully democratic country would be 1 10.

5This measure of US hegemony is the US imports and exports as a percent of the world total
imports and exports.
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fiveop usheg

Min. :12.3 Min. :0.256

1st Qu.:12.5 1st Qu.:0.262

Median :12.6 Median :0.276

Mean :12.7 Mean :0.276

3rd Qu.:13.2 3rd Qu.:0.289

Max. :13.2 Max. :0.308

NA's :18.0

In the presence of missing data, most statistical packages use listwise deletion,
which removes any row that contains a missing value from the analysis. Using the
base model of Milner and Kubota (2005) table 2, we run a simple linear model in R,
which uses listwise deletion:

> summary(lm(tariff ~ polity + pop + gdp.pc + year + country,

+ data = freetrade))

Call:

lm(formula = tariff ~ polity + pop + gdp.pc + year + country,

data = freetrade)

Residuals:

Min 1Q Median 3Q Max

-30.7640 -3.2595 0.0868 2.5983 18.3097

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.97e+03 4.02e+02 4.91 3.6e-06

polity -1.37e-01 1.82e-01 -0.75 0.45

pop -2.02e-07 2.54e-08 -7.95 3.2e-12

gdp.pc 6.10e-04 7.44e-04 0.82 0.41

year -8.71e-01 2.08e-01 -4.18 6.4e-05

countryIndonesia -1.82e+02 1.86e+01 -9.82 3.0e-16

countryKorea -2.20e+02 2.08e+01 -10.61 < 2e-16

countryMalaysia -2.25e+02 2.17e+01 -10.34 < 2e-16

countryNepal -2.16e+02 2.25e+01 -9.63 7.7e-16

countryPakistan -1.55e+02 1.98e+01 -7.84 5.6e-12

countryPhilippines -2.04e+02 2.09e+01 -9.77 3.7e-16

countrySriLanka -2.09e+02 2.21e+01 -9.46 1.8e-15

countryThailand -1.96e+02 2.10e+01 -9.36 3.0e-15

Residual standard error: 6.22 on 98 degrees of freedom

(60 observations deleted due to missingness)

Multiple R-squared: 0.925, Adjusted R-squared: 0.915

F-statistic: 100 on 12 and 98 DF, p-value: <2e-16

Note that 60 of the 171 original observations are deleted due to missingness. Most
of these observations, however, have information in them and multiple imputation
will help us retrieve that information and make better inferences.
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5.2 Multiple Imputation

When performing multiple imputation, the first step is to identify the variables to
include in the model. It is crucial to include at least as much information as in the
analysis model. That is, any variable that will be in the analysis model should also
be in the imputation model. In fact, it is often useful to add more information.
Since imputation is predictive, any variables that would increase predictive power
should be included in the model, even if including them in the analysis model would
produce bias (such as for post-treatment variables). In our case, we include all the
variables in freetrade in the imputation model, even though we our analysis model
focuses on polity, pop and gdp.pc6.

To create multiple imputations in Amelia, we can simply run

> a.out <- amelia(freetrade, m = 5, ts = "year", cs = "country")

-- Imputation 1 --

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-- Imputation 2 --

1 2 3 4 5 6 7 8 9 10 11 12 13 14

-- Imputation 3 --

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-- Imputation 4 --

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21

-- Imputation 5 --

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

> a.out

Amelia output with 5 imputed datasets.

Return code: 1

Message: Normal EM convergence.

Chain Lengths:

--------------

Imputation 1: 16

6Note that this specification does not utilize time or spatial data yet. The ts and cs arguments
only have force when we also include polytime or intercs, discussed in section 5.5
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Histogram of a.out$imputations[[3]]$tariff
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Figure 1: Histogram of the tariff variable from the 3rd imputated dataset.

Imputation 2: 14

Imputation 3: 15

Imputation 4: 21

Imputation 5: 17

The output gives some information about how the algorithm ran. Each of the
imputed datasets is now in the list a.out$imputations. Thus, we could plot a
histogram of the tariff variable from the 3rd imputation,

> hist(a.out$imputations[[3]]$tariff, col = "grey", border = "white")

5.2.1 Saving imputed datasets

If you need to save your imputed datasets, you can either save the output from
amelia,

> save(a.out, file = "imputations.RData")

In addition, you can save each of the imputed datasets to its own file using the
write.amelia command,
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> write.amelia(obj=a.out, file.stem = "outdata")

This will create one comma-separated value file for each imputed dataset in the
following manner:

outdata1.csv

outdata2.csv

outdata3.csv

outdata4.csv

outdata5.csv

The write.amelia function can also save files in tab-delimited and Stata (.dta) file
formats. For instance, to save Stata files, simply change the format argument to
"dta",

> write.amelia(obj=a.out, file.stem = "outdata", format = "dta")

5.2.2 Combining Multiple Amelia Runs

The EMB algorithm is what computer scientists call embarrassingly parallel, meaning
that it is simple to separate each imputation into parallel processes. With Amelia it
is simple to run subsets of the imputations on different machines and then combine
them after the imputation for use in analysis model. This allows for a huge increase
in the speed of the algorithm.

For instance, suppose that we wanted to add another ten imputated datasets to
my first call to amelia. First, run the function to get these additional imputations,

> a.out.more <- amelia(freetrade, m = 10, ts = "year",

+ cs = "country", p2s = 0)

> a.out.more

Amelia output with 10 imputed datasets.

Return code: 1

Message: Normal EM convergence.

Chain Lengths:

--------------

Imputation 1: 15

Imputation 2: 13

Imputation 3: 11

Imputation 4: 21

Imputation 5: 13

Imputation 6: 14

Imputation 7: 11

Imputation 8: 10

Imputation 9: 12

Imputation 10: 10

then combine this output with our original output using the ameliabind function,
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> a.out.more <- ameliabind(a.out, a.out.more)

> a.out.more

Amelia output with 15 imputed datasets.

Return code: 1

Message: Normal EM convergence

Chain Lengths:

--------------

Imputation 1: 16

Imputation 2: 14

Imputation 3: 15

Imputation 4: 21

Imputation 5: 17

Imputation 6: 15

Imputation 7: 13

Imputation 8: 11

Imputation 9: 21

Imputation 10: 13

Imputation 11: 14

Imputation 12: 11

Imputation 13: 10

Imputation 14: 12

Imputation 15: 10

This function binds the two outputs into the same output so that you can pass
the combined imputations easily to analysis models and diagnostics. Note that
a.out.more now has a total of 15 imputations.

A simple way to execute a parallel processing scheme with Amelia would be to
run amelia with m set to 1 on m different machines, save each output using the
save function, load them all on the same R session using load command and then
combine them using ameliabind. In order to do this, however, make sure to name
each of the outputs a different name so that they do not overwrite each other when
loading into the same R session.

5.2.3 Screen Output

Screen output can be adjusted with the “print to screen” argument, p2s. At a value
of 0, no screen printing will occur. This may be useful in large jobs or simulations
where a very large number of imputation models may be required. The default value
of 1, lists each bootstrap, and displays the number of iterations required to reach
convergence in that bootstrapped dataset. The value of 2 gives more thorough screen
output, including, at each iteration, the number of parameters that have significantly
changed since the last iteration. This may be useful when the EM chain length is
very long, as it can provide an intuition for many parameters still need to converge
in the EM chain, and a sense of the time remaining. However, it is worth noting that
the last several parameters can often take a significant fraction of the total number
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of iterations to converge. Setting p2s to 2 will also generate information on how
EM algorithm is behaving, such as a ! when the current estimated complete data
covariance matrix is not invertible and a * when the likelihood has not monotonically
increased in that step. Having many of these two symbols in the screen output is
an indication of a problematic imputation model7.

An example of the output when p2s is 2 would be

> amelia(freetrade, m = 1, ts = "year", cs = "country",

+ p2s = 2)

amelia starting

beginning prep functions

Variables used: tariff polity pop gdp.pc intresmi signed fiveop usheg

running bootstrap

-- Imputation 1 --

setting up EM chain indicies

1(44) 2(35) 3(26) 4(23) 5(18) 6(15) 7(15) 8(12) 9(10)10(7)

11(5)12(2)13(0)

saving and cleaning

Amelia output with 1 imputed datasets.

Return code: 1

Message: Normal EM convergence.

Chain Lengths:

--------------

Imputation 1: 13

5.3 Imputation-improving Transformations

Social science data commonly includes variables that fail to fit to a multivariate
normal distribution. Indeed, numerous models have been introduced specifically to
deal with the problems they present. As it turns out, much evidence in the literature
(discussed in King et al. 2001) indicates that the multivariate normal model used
in Amelia usually works well for the imputation stage even when discrete or non-
normal variables are included and when the analysis stage involves these limited
dependent variable models. Nevertheless, Amelia includes some limited capacity to
deal directly with ordinal and nominal variables and to variables that require other
transformations. In general nominal and log transform variables should be declared
to Amelia, whereas ordinal (including dichotomous) variables often need not be, as

7Problems of non-invertible matrices often mean that current guess for the covariance matrix is
singular. This is a sign that there may be two highly correlated variables in the model. One way
to resolve is to use a ridge prior (see 5.6.1)
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described below. (For harder cases, see (Schafer, 1997), for specialized MCMC-based
imputation models for discrete variables.)

Although these transformations are taken internally on these variables to better
fit the data to the multivariate normal assumptions of the imputation model, all the
imputations that are created will be returned in the original untransformed form of
the data. If the user has already performed transformations on their data (such as
by taking a log or square root prior to feeding the data to amelia) these do not need
to be declared, as that would result in the transformation occurring doubly in the
imputation model. The fully imputed data sets that are returned will always be in
the form of the original data that is passed to the amelia routine.

5.3.1 Ordinal

In much statistical research, researchers treat independent ordinal (including di-
chotomous) variables as if they were really continuous. If the analysis model to be
employed is of this type, then nothing extra is required of the of the imputation
model. Users are advised to allow Amelia to impute non-integer values for any
missing data, and to use these non-integer values in their analysis. Sometimes this
makes sense, and sometimes this defies intuition. One particular imputation of 2.35
for a missing value on a seven point scale carries the intuition that the respondent
is between a 2 and a 3 and most probably would have responded 2 had the data
been observed. This is easier to accept than an imputation of 0.79 for a dichotomous
variable where a zero represents a male and a one represents a female respondent.
However, in both cases the non-integer imputations carry more information about
the underlying distribution than would be carried if we were to force the imputa-
tions to be integers. Thus whenever the analysis model permits, missing ordinal
observations should be allowed to take on continuously valued imputations.

In the freetrade data, one such ordinal variable is polity which ranges from
-10 (full autocracy) to 10 (full democracy). If we tabulate this variable from one of
the imputed datasets,

> table(a.out$imputations[[3]]$polity)

-8 -7 -6

1 22 4

-5 -4 -3.85761223879231

7 3 1

-2 -1 2

9 1 7

3 4 5

7 15 26

6 6.36461808491675 7

13 1 5

8 9

36 13
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we can see that there is one imputation between -4 and -3 and one imputation
between 6 and 7. Again, the interpretation of these values is rather straightforward
even if they are not strictly in the coding of the original Polity data.

Often, however, analysis models require some variables to be strictly ordinal,
as for example the dependent variable must be in a logistical or Poisson regression.
Imputations for variables set as ordinal are created by taking the continuously valued
imputation and using an appropriately scaled version of this as the probability of
success in a binomial distribution. The draw from this binomial distribution is then
translated back into one of the ordinal categories.

For our data we can simply add polity to the ords argument:

> a.out1 <- amelia(freetrade, m = 5, ts = "year", cs = "country",

+ ords = "polity", p2s = 0)

> table(a.out1$imputations[[3]]$polity)

-8 -7 -6 -5 -4 -2 -1 2 3 4 5 6 7 8 9

1 22 4 8 3 9 1 7 7 15 27 13 5 36 13

Now, we can see that all of the imputations fall into one of the original polity
categories.

5.3.2 Nominal

Nominal variables8 must be treated quite differently than ordinal variables. Any
multinomial variables in the data set (such as religion coded 1 for Catholic, 2 for
Jewish, and 3 for Protestant) must be specified to Amelia. In our freetrade dataset,
we have signed which is 1 if a country signed an IMF agreement in that year and 0
if it did not. Of course, our first imputation did not limit the imputations to these
two categories

> table(a.out1$imputations[[3]]$signed)

0 0.00497669216850177 0.0650017766328816

142 1 1

0.184594066476458 1

1 26

In order to fix this for a p-category multinomial variable,Amelia will determine p
(as long as your data contain at least one value in each category), and substitute p−1
binary variables to specify each possible category. These new p− 1 variables will be
treated as the other variables in the multivariate normal imputation method chosen,
and receive continuous imputations. These continuously valued imputations will
then be appropriately scaled into probabilities for each of the p possible categories,
and one of these categories will be drawn, where upon the original p-category multi-
nomial variable will be reconstructed and returned to the user. Thus all imputations
will be appropriately multinomial.

For our data we can simply add signed to the noms argument:

8Dichotomous (two category) variables are a special case of nominal variables. For these vari-
ables, the nominal and ordinal methods of transformation in Amelia agree.
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Figure 2: Histogram of tariff and log(tariff).

> a.out2 <- amelia(freetrade, m = 5, ts = "year", cs = "country",

+ noms = "signed", p2s = 0)

> table(a.out2$imputations[[3]]$signed)

0 1

144 27

Note that Amelia can only fit imputations into categories that exist in the original
data. Thus, if there was a third category of signed, say 2, that corresponded to a
different kind of IMF agreement, but it never occurred in the original data, Amelia
could not match imputations to it.

Since Amelia properly treats a p-category multinomial variable as p−1 variables,
one should understand the number of parameters that are quickly accumulating if
many multinomial variables are being used. If the square of the number of real and
constructed variables is large relative to the number of observations, it is useful to
use a ridge prior as in section 5.6.1.

5.3.3 Natural Log

If one of your variables is heavily skewed or has outliers that may alter the imputation
in an unwanted way, you can use a natural logarithm transformation of that variable
in order to normalize its distribution. This transformed distribution helps Amelia
to avoid imputing values that depend too heavily on outlying data points. Log
transformations are common in expenditure and economic variables where we have
strong beliefs that the marginal relationship between two variables decreases as we
move across the range.

For instance, figure 2 show the tariff variable clearly has positive (or, right)
skew while its natural log transformation has a roughly normal distribution.
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5.3.4 Square Root

Event count data is often heavily skewed and has nonlinear relationships with other
variables. One common transformation to tailor the linear model to count data is
to take the square roots of the counts. This is a transformation that can be set as
an option in Amelia.

5.3.5 Logistic

Proportional data is sharply bounded between 0 and 1. A logistic transformation
is one possible option in Amelia to make the distribution symmetric and relatively
unbounded.

5.4 Identification Variables

Datasets often contain identification variables, such as country names, respondent
numbers, or other identification numbers, codes or abbreviations. Sometimes these
are text and sometimes these are numeric. Often it is not appropriate to include
these variables in the imputation model, but it is useful to have them remain in the
imputed datasets (However, there are models that would include the ID variables in
the imputation model, such as fixed effects model for data with repeated observations
of the same countries). Identification variables which are not to be included in the
imputation model can be identified with the argument idvars. These variables will
not be used in the imputation model, but will be kept in the imputed datasets.

If the year and country contained no information except labels, we could omit
them from the imputation:

> amelia(freetrade, idvars = c("year", "country"))

Note that Amelia will return with an error if your dataset contains a factor or
character variable that is not marked as a nominal or identification variable. Thus,
if we were to omit the factor country from the cs or idvars arguments, we would
receive an error:

> a.out2 <- amelia(freetrade, idvars = c("year"))

Amelia Error Code: 38

The variable(s) country are "characters". You may have wanted to set this as a ID variable, nominal or the cross sectional variable. Please either remove it from the data or set it as an ID variable.

In order to conserve memory, it is wise to remove unnecessary variables from a
data set before loading it into Amelia. The only variables you should include in
your data when running Amelia are variables you will use in the analysis stage and
those variables that will help in the imputation model. While it may be tempting
to simply mark unneeded variables as IDs, it only serves to waste memory and slow
down the imputation procedure.
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5.5 Time Series, or Time Series Cross Sectional Data

Many variables that are recorded over time within a cross-sectional unit are observed
to vary smoothly over time. In such cases, knowing the observed values of obser-
vations close in time to any missing value may enormously aid the imputation of
that value. However, the exact pattern may vary over time within any cross-section.
There may be periods of growth, stability, or decline; in each of which the observed
values would be used in a different fashion to impute missing values. Also, these
patterns may vary enormously across different cross-sections, or may exist in some
and not others. Amelia can build a general model of patterns within variables across
time by creating a sequence of polynomials of the time index. If, for example, tariffs
vary smoothly over time, then we make the modeling assumption that there exists
some polynomial that describes the economy in cross-sectional unit i at time t as:

tariffti = β0 + β1t + β1t
2 + β1t

3 . . . (9)

And thus if we include enough higher order terms of time then the pattern between
observed values of the tariff rate can be estimated. Amelia will create polynomials
of time up to the user defined k-th order, (k ≤ 3).

We can implement this with the ts and polytime arguments. If we thought that
a second-order polynomial would help predict we could run

> a.out2 <- amelia(freetrade, ts = "year", cs = "country",

+ polytime = 2)

With this input, Amelia will add covariates to the model that correspond to time
and its polynomials. These covariates will help better predict the missing values.

If cross-sectional units are specified these polynomials can be interacted with the
cross-section unit to allow the patterns over time to vary between cross-sectional
units. Unless you strongly believe all units have the same patterns over time in all
variables (including the same constant term), this is a reasonable setting. When k
is set to 0, this interaction simply results in a model of fixed effects where every unit
has a uniquely estimated constant term. Amelia does not smooth the observed data,
and only uses this functional form, or one you choose, with all the other variables
in the analysis and the uncertainty of the prediction, to impute the missing values.

The above code would predict the same trend in a variable for each country. It
is clear, however, that each country will have a different time series for tariff rates,
for instance. Some countries may start higher than other or possibly some countries
dropped dramatically while other remained fairly constant over time. In order to
capture this in the style above, we can set intercs to TRUE:

> a.out.time <- amelia(freetrade, ts = "year", cs = "country",

+ polytime = 2, intercs = TRUE, p2s = 2)

Note that attempting to use polytime without the ts argument, or intercs

without the cs argument will result in an error.
Using the tscsPlot function (discussed below), we can see in figure 3 that we

have a much better prediction about the missing values when incorporating time
than when we omit it:
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Figure 3: The increase in predictive power when using polynomials of time. The
panels shows mean imputations with 95% bands (in red) and observed data point
(in black). The left panel shows an imputation without using time and the right
panel includes polynomials of time.

> tscsPlot(a.out, cs = "Malaysia", main = "Malaysia (no time settings)",

+ var = "tariff", ylim = c(-10, 60))

> tscsPlot(a.out.time, cs = "Malaysia", main = "Malaysia (with time settings)",

+ var = "tariff", ylim = c(-10, 60))

5.5.1 Lags and Leads

An alternative way of handling time-series information is to include lags and leads of
certain variables into the imputation model. Lags are variables that take the value
of another variable in the previous time period while leads take the value of another
variable in the next time period. Many analysis models use lagged variables to deal
with issues of endogeneity, thus using leads may seems strange. It is important to
remember, however, that imputation models are predictive, not causal. Thus, since
both past and future values of a variable are likely correlated with the present value,
both lags and leads should improve the model.

If we wanted to include lags and leads of tariffs, for instance, we would simply
pass this to the lags and leads arguments:

> a.out2 <- amelia(freetrade, ts = "year", cs = "country",

+ lags = "tariff", leads = "tariff")

5.6 Including Prior Information

Amelia has a number of methods of setting priors within the imputation model.
Two of these are commonly used and discussed below, ridge priors and observational
priors.

20



5.6.1 Ridge Priors for High Missingness, Small n’s, or Large Correla-
tions

When the data to be analyzed contain a high degree of missingness or very strong
correlations among the variables, or when the number of observations is only slightly
greater than the number of parameters p(p + 3)/2 (where p is the number of vari-
ables), results from your analysis model will be more dependent on the choice of
imputation model. This suggests more testing in these cases of alternative specifica-
tions under Amelia. This can happen when using the polynomials of time interacted
with the cross section are included in the imputation model. In our running example,
we used a polynomial of degree 2 and there are 9 countries. This adds 3 × 9 = 18
more variables to the imputation model. When these are added, the EM algorithm
can become unstable, as indicated by the differing chain lengths for each imputation:

> a.out.time

Amelia output with 5 imputed datasets.

Return code: 1

Message: Normal EM convergence.

Chain Lengths:

--------------

Imputation 1: 316

Imputation 2: 246

Imputation 3: 122

Imputation 4: 96

Imputation 5: 164

In these circumstances, we recommend adding a ridge prior which will help with
numerical stability by shrinking the covariances among the variables toward zero
without changing the means or variances. This can be done by including the empri

argument. Including this prior as a positive number is roughly equivalent to adding
empri artificial observations to the data set with the same means and variances
as the existing data but with zero covariances. Thus, increasing the empri setting
results in more shrinkage of the covariances, thus putting more a priori structure
on the estimation problem: like many Bayesian methods, it reduces variance in
return for an increase in bias that one hopes does not overwhelm the advantages
in efficiency. In general, we suggest keeping the value on this prior relatively small
and increase it only when necessary. A recommendation of 0.5 to 1 percent of the
number of observations, n, is a reasonable starting value, and often useful in large
datasets to add some numerical stability. For example, in a dataset of two thousand
observations, this would translate to a prior value of 10 or 20 respectively. A prior of
up to 5 percent is moderate in most applications and 10 percent is reasonable upper
bound.

For our data, it is easy to code up a 1 percent ridge prior:

> a.out.time2 <- amelia(freetrade, ts = "year", cs = "country",

+ polytime = 2, intercs = TRUE, p2s = 0, empri = 0.01 *
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Figure 4: The difference in imputations when using no ridge prior (left) and when
using a ridge prior set to 1% of the data (right).

+ nrow(freetrade))

> a.out.time2

Amelia output with 5 imputed datasets.

Return code: 1

Message: Normal EM convergence.

Chain Lengths:

--------------

Imputation 1: 13

Imputation 2: 17

Imputation 3: 18

Imputation 4: 17

Imputation 5: 24

This new imputation model is much more stable and, as shown by using tscsPlot,
produces about the same imputations as the original model (see figure 4):

> tscsPlot(a.out.time, cs = "Malaysia", main = "Malaysia (no ridge prior)",

+ var = "tariff", ylim = c(-10, 60))

> tscsPlot(a.out.time2, cs = "Malaysia", main = "Malaysia (with ridge prior)",

+ var = "tariff", ylim = c(-10, 60))

5.6.2 Observation-level priors

Researchers often have additional prior information about missing data values based
on previous research, academic consensus, or personal experience. Amelia can in-
corporate this information to produce vastly improved imputations. The Amelia
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algorithm allows users to include informative Bayesian priors about individual miss-
ing data cells instead of the more general model parameters, many of which have
little direct meaning.

The incorporation of priors follows basic Bayesian analysis where the imputation
turns out to be a weighted average of the model-based imputation and the prior
mean, where the weights are functions of the relative strength of the data and prior:
when the model predicts very well, the imputation will down-weight the prior, and
vice versa (?).

The priors about individual observations should describe the analyst’s belief
about the distribution of the missing data cell. This can either take the form of
a mean and a standard deviation or a confidence interval. For instance, we might
know that 1986 tariff rates in Thailand around 40%, but we have some uncertainty
as to the exact value. Our prior belief about the distribution of the missing data cell,
then, centers on 40 with a standard deviation that reflects the amount of uncertainty
we have about our prior belief.

To input priors you must build a priors matrix with either four or five columns.
Each row of the matrix represents a prior on either one observation or one variable.
In any row, the entry in the first column is the row of the observation and the entry
is the second column is the column of the observation. In the four column priors
matrix the third and fourth columns are the mean and standard deviation of the
prior distribution of the missing value.

For instance, suppose that we had some expert prior information about tariff
rates in Thailand. We know from the data that Thailand is missing tariff rates in
many years,

> freetrade[freetrade$country == "Thailand", c("year",

+ "country", "tariff")]

year country tariff

153 1981 Thailand 32.3

154 1982 Thailand NA

155 1983 Thailand NA

156 1984 Thailand NA

157 1985 Thailand 41.2

158 1986 Thailand NA

159 1987 Thailand NA

160 1988 Thailand NA

161 1989 Thailand 40.8

162 1990 Thailand 39.8

163 1991 Thailand 37.8

164 1992 Thailand NA

165 1993 Thailand 45.6

166 1994 Thailand 23.3

167 1995 Thailand 23.1

168 1996 Thailand NA

169 1997 Thailand NA
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170 1998 Thailand 20.1

171 1999 Thailand 17.1

Suppose that we had expert information that tariff rates were roughly 40% in
Thailand between 1986 and 1988 with about a 6% margin of error. This corresponds
to a standard deviation of aobut 3. In order to include this information, we must
form the priors matrix:

> pr <- matrix(c(158, 159, 160, 3, 3, 3, 40, 40, 40, 3,

+ 3, 3), nrow = 3, ncol = 4)

> pr

[,1] [,2] [,3] [,4]

[1,] 158 3 40 3

[2,] 159 3 40 3

[3,] 160 3 40 3

The first column of this matrix corresponds to the row numbers of Thailand in
these three years, the second column refers to the column number of tariff in the
data and the last two columns refer to the actual prior. Once we have this matrix,
we can pass it to amelia,

> a.out.pr <- amelia(freetrade, ts = "year", cs = "country",

+ priors = pr)

In the five column matrix, the last three columns describe a confidence range of
the data. The columns are a lower bound, an upper bound, and a confidence level
between 0 and 1, exclusive. Whichever format you choose, it must be consistent
across the entire matrix. We could get roughly the same prior as above by utilizing
this method. Our margin of error implies that we would want imputations between
34 and 46, so our matrix would be

> pr.2 <- matrix(c(158, 159, 160, 3, 3, 3, 34, 34, 34,

+ 46, 46, 46, 0.95, 0.95, 0.95), nrow = 3, ncol = 5)

> pr.2

[,1] [,2] [,3] [,4] [,5]

[1,] 158 3 34 46 0.95

[2,] 159 3 34 46 0.95

[3,] 160 3 34 46 0.95

These priors indicate that we are 95% confident that these missing values are in the
range 34 to 46.

If a prior has the value 0 in the first column, this prior will be applied to all
missing values in this variable, except for explitictly set priors. Thus, we could set
a prior for the entire tariff variable of 20, but still keep the above specific priors
with the following code:
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> pr.3 <- matrix(c(158, 159, 160, 0, 3, 3, 3, 3, 40, 40,

+ 40, 20, 3, 3, 3, 5), nrow = 4, ncol = 4)

> pr.3

[,1] [,2] [,3] [,4]

[1,] 158 3 40 3

[2,] 159 3 40 3

[3,] 160 3 40 3

[4,] 0 3 20 5

5.6.3 Logical bounds

In some cases, variables in the social sciences have known logical bounds. Pro-
portions must be between 0 and 1 and duration data must be greater than 0, for
instance. Many of these logical bounds can be handled by the proper transformation
(see 5.3 for more details on the transformations handled by Amelia). In the rare case
that imputations must satisfy certain logical bounds not handled by these transfor-
mations, Amelia can take draws from a truncated normal distribution in order to
achieve imputations that satisfy the bounds. Note, however, that this procedure
imposes extrememly strong restrictions on the imputations and can lead to lower
variances than the imputation model implies. In general, building a more predictive
imputation model will lead to better imputations than imposing these bounds.

Amelia implements these bounds by rejection sampling. When drawing the im-
putations from their posterior, we repeatedly resample until we have a draw that
satisfies all of the logical constraints. You can set an upper limit on the number of
times to resample with the max.resample arguments. Thus, if after max.resample
draws, the imputations are still outside the bounds, Amelia will set the imputation
at the edge of the bounds. Thus, if the bounds were 0 and 100 and all of the draws
were negative, Amelia would simply impute 0.

As an extreme example, suppose that we know, for certain that tariff rates had to
fall between 30 and 40. This, obviously, is not true, but we can generate imputations
from this model. In order to specify these bounds, we need to generate a matrix of
bounds to pass to the bounds argument. This matrix will have 3 columns: the first
is the column for the bounded variable, the second is the lower bound and the third
is the upper bound. Thus, to implement our bound on tariff rates (the 3rd column
of the dataset), we would create the matrix,

> bds <- matrix(c(3, 30, 40), nrow = 1, ncol = 3)

> bds

[,1] [,2] [,3]

[1,] 3 30 40

which we can pass to the bounds argument,

> a.out.bds <- amelia(freetrade, ts = "year", cs = "country",

+ bounds = bds, max.resample = 1000)
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-- Imputation 1 --

1 2 3 4 5 6 7 8 9 10 11 12 13

-- Imputation 2 --

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-- Imputation 3 --

1 2 3 4 5 6 7 8 9 10 11 12 13 14

-- Imputation 4 --

1 2 3 4 5 6 7 8 9 10 11 12

-- Imputation 5 --

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

The difference in results between the bounded and unbounded model are not
obvious from the output, but inspection of the imputed tariff rates for Malaysia in
figure 5 shows that there has been a drastic restriction of the imputations to the
desired range:

> tscsPlot(a.out, cs = "Malaysia", main = "No logical bounds",

+ var = "tariff", ylim = c(-10, 60))

> tscsPlot(a.out.bds, cs = "Malaysia", main = "Bounded between 30 and 40",

+ var = "tariff", ylim = c(-10, 60))

Again, analysts should be extremely cautious when using these bounds as they
can seriously affect the inferences from the imputation model, as shown in this
example. Even when logical bounds exist, we recommend simply imputing variables
normally, as the violation of the logical bounds represents part of the true uncertainty
of imputation.

5.7 Diagnostics

Amelia currently provides a number of diagnostic tools to inspect the imputations
that are created.

5.7.1 Comparing Densities

One check on the plausibility of the imputaiton model is check the distribution of
imputed values to the distribution of observed values. Obviously we cannot expect,
a priori, that these distribution will be identical as the missing values may differ
systematically from the observed value–this is whole reason to impute to begin with!
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Figure 5: On the left are the original imputations without logical bounds and on the
right are the imputation after imposing the bounds.

Imputations with strange distributions or those that are far from the observed data
may indicate that imputation model needs at least some investigation and possibly
some improvement.

The plot method works on output from amelia and, by default, shows for each
variable a plot of the relative frequencies of the observed data with an overlay of the
relative frequency of the imputed values.

> plot(a.out, which.vars = 3:6)

where the argument which.vars indicates which of the variables to plot (in this
case, we are taking the 3rd through the 6th variables).

The imputed curve (in red) plots the density of the mean imputation over the
m datasets. That is, for each cell that is missing in the variable, the diagnostic
will find the mean of that cell across each of the m datasets and use that value for
the density plot. The black distributions are the those of the observed data. When
variables are completely observed, their densities are plotted in blue. These graphs
will allow you to inspect how the density of imputations compares to the density of
observed data. Some discussion of these graphs can be found in ?. Minimally, these
graphs can be used to check that the mean imputation falls within known bounds,
when such bounds exist in certain variables or settings.

We can also use the function compare.density directly to make these plots for
an individual variable:

> compare.density(a.out, var = "signed")

5.7.2 Overimpute

Overimputing is a technique we have developed to judge the fit of the imputation
model. Because of the nature of the missing data mechanism, it is impossible to
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Figure 6: The output of the plot method as applied to output from amelia. In
the upper panels, the distribution of mean imputations (in red) is overlayed on the
distribution of observed values (in black) for each variable. In the lower panels, there
are no missing values and the distribution of observed values is simply plotted (in
blue). Note that how imputed tariff rates are very similar to observed tariff rates,
but the imputation of the Polity score are quite different. This is plausible if different
types of regimes tend to be missing at different rates.
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tell whether the mean prediction of the imputation model is close to the unobserved
value that is trying to be recovered. By definition this missing data does not exist to
create this comparison, and if it existed we would no longer need the imputations or
care about their accuracy. However, a natural question the applied researcher will
often ask is how accurate are these imputed values?

Overimputing involves sequentially treating each of the observed values as if
they had actually been missing. For each observed value in turn we then generate
several hundred imputed values of that observed value, as if it had been missing.
While m = 5 imputations are sufficient for most analysis models, this large number
of imputations allows us to construct a confidence interval of what the imputed
value would have been, had any of the observed data been missing. We can then
graphically inspect whether our observed data tends to fall within the region where
it would have been imputed had it been missing.

For example, we can run the overimputation diagnostic on our data by running

> overimpute(a.out, var = "tariff")

Our overimputation diagnostic, shown in 7, runs this procedure through all of
the observed values for a user selected variable. We can graph the estimates of
each observation against the true values of the observation. On this graph, a y = x
line indicates the line of perfect agreement; that is, if the imputation model was a
perfect predictor of the true value, all the imputations would fall on this line. For
each observation, Amelia also plots 90% confidence intervals that allows the user to
visually inspect the behavior of the imputation model. By checking how many of
the confidence intervals cover the y = x line, we can tell how often the imputation
model can confidently predict the true value of the observation.

Occasionally, the overimputation can display unintuitive results. For example,
different observations may have different numbers of observed covariates. If covari-
ates that are useful to the prediction are themselves missing, then the confidence
interval for this observation will be much larger. In the extreme, there may be ob-
servations where the observed value we are trying to overimpute is the only observed
value in that observation, and thus there is nothing left to impute that observation
with when we pretend that it is missing, other than the mean and variance of that
variable. In these cases, we should correctly expect the confidence interval to be
very large.

An example of this graph is shown in figure 8. In this simulated bivariate dataset,
one variable is overimputed and the results displayed. The second variable is either
observed, in which case the confidence intervals are very small and the imputa-
tions (yellow) are very accurate, or the second variable is missing in which case this
variable is being imputed simply from the mean and variance parameters, and the
imputations (red) have a very large and encompassing spread. The circles represent
the mean of all the imputations for that value. As the amount of missing information
in a particular pattern of missingness increases, we expect the width of the confi-
dence interval to increase. The color of the confidence interval reflects the percent
of covariates observed in that pattern of missingness, as reflected in the legend at
the bottom.

29



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

20 40 60 80 100

−
50

0
50

10
0

Observed versus Imputed Values of tariff

Observed Values

Im
pu

te
d 

V
al

ue
s

 0−.2 .2−.4 .4−.6 .6−.8 .8−1

Figure 7: An example of the overimputation diagnostic graph. Here ninety percent
confidence intervals are constructed that detail where an observed value would have
been imputed had it been missing from the dataset, given the imputation model.
The dots represent the mean imputation. Around ninety percent of these confidence
intervals contain the y = x line, which means that the true observed value falls
within this range. The color of the line (as coded in the legend) represents the
fraction of missing observations in the pattern of missingness for that observation.
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5.7.3 Overdispersed Starting Values

If the data given to Amelia has a poorly behaved likelihood, the EM algorithm
can have problems finding a global maximum of the likelihood surface and starting
values can begin to effect imputations. Because the EM algorithm is deterministic,
the point in the parameter space where you start it can impact where it ends, though
this is irrelevant when the likelihood has only one mode. However, if the starting
values of an EM chain are close to a local maximum, the algorithm may find this
maximum, unaware that there is a global maximum farther away. To make sure that
our imputations do not depend on our starting values, a good test is to run the EM
algorithm from multiple, dispersed starting values and check their convergence. In a
well behaved likelihood, we will see all of these chains converging to the same value,
and reasonably conclude that this is the likely global maximum. On the other hand,
we might see our EM chain converging to multiple locations. The algorithm may also
wander around portions of the parameter space that are not fully identified, such as
a ridge of equal likelihood, as would happen for example, if the same variable were
accidentally included in the imputation model twice.

Amelia includes a diagnostic to run the EM chain from multiple starting values
that are overdispersed from the estimated maximum. The overdispersion diagnostic
will display a graph of the paths of each chain. Since these chains move through
spaces that are in an extremely high number of dimensions and can not be graphically
displayed, the diagnostic reduces the dimensionality of the EM paths by showing
the paths relative to the largest principle components of the final mode(s) that are
reached. Users can choose between graphing the movement over the two largest
principal components, or more simply the largest dimension with time (iteration
number) on the x-axis. The number of EM chains can also be adjusted. Once the
diagnostic draws the graph, the user can visually inspect the results to check that
all chains convergence to the same point.

For our original model, this is a simple call to disperse:

> disperse(a.out, dims = 1, m = 5)

> disperse(a.out, dims = 2, m = 5)

where m designates the number of places to start EM chains from and dims are
the number of dimensions of the principal components to show.

In one dimension, the diagnostic plots movement of the chain on the y-axis and
time, in the form of the iteration number, on the x-axis. Figures 5.7.3 show two
examples of these plots. The first shows a well behaved likelihood, as the starting
values all converge to the same point. The black horizontal line is the point where
Amelia converges when it uses the default method for choosing the starting values.
The diagnostic takes the end point of this chain as the possible maximum and
disperses the starting values away from it to see if the chain will ever finish at
another mode.

A few of the iterations of this diagnostic can ending up in vastly different locations
of the parameter space. This can happen for a variety of reasons. For instance,
suppose that we created another dataset and accidently included a linear function
of another variable in this dataset:
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Figure 9: A plot from the overdispersion diagnostic where all EM chains are converg-
ing to the same mode, regardless of starting value. On the left, the y-axis represents
movement in the (very high dimensional) parameter space, and the x-axis represents
the iteration number of the chain. On the right, we visualize the parameter space
in two dimensions using the first two principal components of the end points of the
EM chains. The iteration number is no longer represented on the y-axis, although
the distance between iterations is marked by the distance between arrowheads on
each chain.

> freetrade2 <- freetrade

> freetrade2$tariff2 <- freetrade2$tariff * 2 + 3

If we tried to impute this dataset, Amelia could draw imputations without any
problems:

> a.out.bad <- amelia(freetrade2, ts = "year", cs = "country")

-- Imputation 1 --

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-- Imputation 2 --

1 2 3 4 5 6 7 8 9 10 11 12

-- Imputation 3 --

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

-- Imputation 4 --
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-- Imputation 5 --

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

> a.out.bad

Amelia output with 5 imputed datasets.

Return code: 1

Message: Normal EM convergence.

Chain Lengths:

--------------

Imputation 1: 15

Imputation 2: 12

Imputation 3: 17

Imputation 4: 15

Imputation 5: 20

But if we were to run disperse, we would end up with the problematic figure
5.7.3:

> disperse(a.out.bad, dims = 1, m = 5)

While this is a special case of a problematic likelihood, situations very similar
to this can go undetected without using the proper diagnostics. More generally,
an unidentified imputation model will lead to non-unique ML estimates (see King
(1989) for a more detailed discussion of identification and likelihoods).

5.7.4 Time-series plots

As discussed above, information about time trends and fixed effects can help produce
better imputations. One way to check the plausibility of our imputation model is
to see how it predicts missing values in a time series. If the imputations for the
Malaysian tariff rate were drastically higher in 1990 than the observed years of 1989
or 1991, we might worry that there is a problem in our imputation model. Checking
these time series is easy to do with the tscsPlot command. Simply choose the
variable (with the var argument) and the cross-section (with the cs argument) to
plot the observed time-series along with distributions of the imputed values for each
missing time period. For instance, we can run

> tscsPlot(a.out.time, cs = "Malaysia", main = "Malaysia (with time settings)",

+ var = "tariff", ylim = c(-10, 60))
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mean of the imputation distributions. The red lines represent the 95% confidence
bands of the imputation distribution.
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to get the plot in figure 5.7.4. Here, the black point are observed tariff rates for
Malaysia from 1980 to 2000. The red points are the mean imputation for each of
the missing values, along with their 95% confidence bands. We draw these bands
by imputing each of missing values 100 times to get the imputation distribution for
that observation.

In figure 5.7.4, we can see that the imputed 1990 tariff rate is quite in line with
the values around it. Notice also that values toward the beginning and end of the
time series have higher imputation variance. This occurs because the fit of the
polynomials of time in the imputation model have higher variance at the beginning
and end of the time series. This is intuitive because these points have fewer neighbors
from which to draw predictive power.

A word of caution is in order. As with comparing the histograms of imputed and
obseved values, there could be reasons that the missing values are systematically
different than the observed time series. For instance, if there had been a major
financial crisis in Malaysia in 1990 which caused the government to close off trade,
then we would expect that the missing tariff rates should be quite different than
the observed time series. If we have this information in our imputation model, we
might expect to see out-of-line imputations in these time-series plots. If, on the
other hand, we did not have this information, we might see “good” time-series plots
that fail to point out this violation of the MAR assumption. Our imputation model
would produce poor estimates of the missing values since it would be unaware that
both the missingness and the true unobserved tariff rate depend on another variable.
Hence, the tscsPlot is useful for finding obvious problems in imputation model and
comparing the efficiency of various imputation models, but it cannot speak to the
untestable assumption of MAR.

5.7.5 Missingness maps

One useful tool for exploring the missingness in a dataset is a missingness map. This
is a map that visualizes the dataset a grid and colors the grid by missingness status.
The column of the grid are the variables and the rows are the observations, as in
any spreadsheet program. This tool allows for a quick summary of the patterns of
missingness in the data.

If we simply call the missmap function on our output from amelia,

> missmap(a.out)

we get the plot in figure 5.7.5. The missmap function arrange the columns so that
the variables are in decreasing order of missingness from left to right. If the cs

argument was set in the amelia function, the labels for the rows will indicate where
each of the cross-sections begin.

In figure 5.7.5, it is clear that the tariff rate is the variable most missing in the
data and it tends to be missing in blocks of a few observations. Gross international
reserves (intresmi) and financial openness (fivop), on the other hand, are missing
mostly at the end of each cross-section. This suggests missingness by merging,
when variables with different temporal coverages are merged to make one dataset.
Sometimes this kind of missingness is an artifact of the date at which the data was
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merged and researchers can resolve it by finding updated versions of the relevant
variables.

The missingness map is an important tool for understanding the patterns of miss-
ingness in the data and can often indicate potential ways to improve the imputation
model or data collection process.

5.8 Analysis Models

Imputation is most often a data processing step as opposed to a final model in of
itself. To this end, it is easy to to pass output from amelia to other functions. The
easiest and most integrated way to run an analysis model is to pass the output to
the zelig function from the Zelig package. For example, in Milner and Kubota
(2005), the dependent variable was tariff rates. We can replicate table 5.1 from their
analysis with the original data simply by running

> require(Zelig)

> z.out <- zelig(tariff ~ polity + pop + gdp.pc + year +

+ country, data = freetrade, model = "ls")

> summary(z.out)

Call:

zelig(formula = tariff ~ polity + pop + gdp.pc + year + country,

model = "ls", data = freetrade)

Residuals:

Min 1Q Median 3Q Max

-30.7640 -3.2595 0.0868 2.5983 18.3097

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.97e+03 4.02e+02 4.91 3.6e-06

polity -1.37e-01 1.82e-01 -0.75 0.45

pop -2.02e-07 2.54e-08 -7.95 3.2e-12

gdp.pc 6.10e-04 7.44e-04 0.82 0.41

year -8.71e-01 2.08e-01 -4.18 6.4e-05

countryIndonesia -1.82e+02 1.86e+01 -9.82 3.0e-16

countryKorea -2.20e+02 2.08e+01 -10.61 < 2e-16

countryMalaysia -2.25e+02 2.17e+01 -10.34 < 2e-16

countryNepal -2.16e+02 2.25e+01 -9.63 7.7e-16

countryPakistan -1.55e+02 1.98e+01 -7.84 5.6e-12

countryPhilippines -2.04e+02 2.09e+01 -9.77 3.7e-16

countrySriLanka -2.09e+02 2.21e+01 -9.46 1.8e-15

countryThailand -1.96e+02 2.10e+01 -9.36 3.0e-15

Residual standard error: 6.22 on 98 degrees of freedom

Multiple R-squared: 0.925, Adjusted R-squared: 0.915

F-statistic: 100 on 12 and 98 DF, p-value: <2e-16
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Running the same model with imputed data is almost identical. Simply replace
the original data set with the imputations from the amelia output:

> z.out.imp <- zelig(tariff ~ polity + pop + gdp.pc + year +

+ country, data = a.out$imputations, model = "ls")

How to cite this model in Zelig:

Kosuke Imai, Gary King, and Oliva Lau. 2007. "ls: Least Squares Regression for Continuous Dependent Variables" in Kosuke Imai, Gary King, and Olivia Lau, "Zelig: Everyone's Statistical Software," http://gking.harvard.edu/zelig

> summary(z.out.imp)

Model: ls

Number of multiply imputed data sets: 5

Combined results:

Call:

zelig(formula = tariff ~ polity + pop + gdp.pc + year + country,

model = "ls", data = a.out$imputations)

Coefficients:

Value Std. Error t-stat p-value

(Intercept) 2.392e+03 7.394e+02 3.2347 0.004913

polity 4.475e-02 3.681e-01 0.1216 0.904072

pop -8.198e-08 5.643e-08 -1.4528 0.171140

gdp.pc 7.330e-05 1.625e-03 0.0451 0.964523

year -1.137e+00 3.804e-01 -2.9898 0.008001

countryIndonesia -8.541e+01 4.117e+01 -2.0746 0.061959

countryKorea -1.092e+02 4.399e+01 -2.4833 0.026662

countryMalaysia -1.104e+02 4.892e+01 -2.2565 0.045645

countryNepal -1.081e+02 4.769e+01 -2.2663 0.041917

countryPakistan -6.123e+01 4.453e+01 -1.3749 0.196586

countryPhilippines -9.968e+01 4.665e+01 -2.1369 0.055662

countrySriLanka -9.677e+01 5.009e+01 -1.9320 0.080360

countryThailand -9.499e+01 4.520e+01 -2.1018 0.057144

For combined results from datasets i to j, use summary(x, subset = i:j).

For separate results, use print(summary(x), subset = i:j).

Zelig is one way to run analysis models on imputed data, but certainly not the
only way. The imputations list in the amelia output contains each of the imputed
datasets. Thus, users could simply program a loop over the number of imputations
and run the analysis model on each imputed dataset and combine the results using
the rules described in King et al. (2001) and Schafer (1997). Furthermore, users
can easily export their imputations using the write.amelia function as described
in 5.2.1 and use statistical packages other than R for the analysis model.
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5.9 The amelia class

The output from the amelia function is an instance of the S3 class “amelia.” In-
stances of the amelia class contain much more than simply the imputed datasets.
The mu object of the class contains the posterior draws of the means of the complete
data. The covMatrices contains the posterior draws of the covariance matrices of
the complete data. Note that these correspond to the variables as they are sent
to the EM algorithm. Namely, they refer to the variables after being transformed,
centered and scaled.

The iterHist object is a list of m 3-column matrices. Each row of the matrices
corresponds to an iteration of the EM algorithm. The first column indicates how
many parameters had yet to converge at that iteration. The second column indicates
if the EM algorithm made a step that decreased the number of converged parameters.
The third column indicates whether the covariance matrix at this iteration was
singular. Clearly, the last two columns are meant to indicate when the EM algorithm
enters a problematic part of the parameter space.
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6 AmeliaView Menu Guide

Below is a guide to the AmeliaView menus with references back to the users’s guide.
The same principles from the user’s guide apply to AmeliaView. The only difference
is how you interact with the program. Whether you use the GUI or the command
line versions, the same underlying code is being called, and so you can read the
command line-oriented versions of this manual even if you intend to use the GUI.

6.1 Loading AmeliaView

The easiest way to load AmeliaView is to open an R session and type the following
two commands:

> library(Amelia)

> AmeliaView()

This will bring up the AmeliaView window on any platform.
On the Windows operating system, there is an alternative way to start AmeliaView

from the Desktop. See section 4.1 for a guide on how to install this version. Once
installed, there should be a Desktop icon for AmeliaView. Simply double-click this
icon and the AmeliaView window should appear. If, for some reason, this approach
does not work, simply open an R session and use the approach above.

6.2 Step 1 - Input

Figure 13: Detail for step 1 on the front page of AmeliaView.

1. Input Data Format - Choose the format for your dataset. The format you
pick will be the default format that is shown when you open the “Browse” di-
alog. Currently,Amelia supports five different file formats: Comma-Separated
Values (.CSV), Tab-Delimited Text (.TXT), Stata v.5-8 (.DTA), SPSS (.DAT),
and SAS Transport (.XPORT). Note that when using a CSV file, Amelia as-
sumes that your file has a header (that is, a row at the top of the data indicating
the variable names).

2. Input Data File - Enter the location of your dataset. If your file is located in
a high level directory, it might be you are trying to access for more information.

3. Browse - Find files on the system.
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4. Load Data - Loads the data in the “Input Data File” line. Once the file is
loaded, you can reload a different file, but you will lose any work on currently
loaded file.

5. Summarize Data - View plots and summary statistics for the individual vari-
ables. This button will bring up a dialog box with a list of variables. Clicking
on each variable will display the summary statistics on the right. Below these
statistics, there is a “Plot Variable” button, which will show a histogram of
the variable. For data that are string or character based, AmeliaView will not
show summary statistics or plot histograms.

6.3 Step 2 - Options

Figure 14: Detail for step 2 on the front page of AmeliaView.

1. Time Series Variable - Choose the variable that indexes time in the dataset.
If there is no time series component in your data, set it to “(none).” You must
set this option in order to access the Time Series Cross Sectional options dialog.

2. Cross Sectional Variable - Choose the variable that indexes the cross-
section. You must set this in order to access the “Set Case Priors” in the
“Priors” dialog.

3. Variables - Becomes available after you load the data. See 6.3.1 for more
information.

4. TSCS - Becomes available after you set the Time Series variable. See 6.3.2
for more information.

5. Priors - Becomes available after you load the data. See 6.3.3 for more infor-
mation.
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Figure 15: Detail for Variable Options dialog.

6.3.1 Variables Dialog

1. Variable Transformations - Choose the transformation that best tailors the
variable to the multivariate normal, if appropriate. See 5.3 on Transformations
to see how each transformation is useful. You can also choose whether or not
the variable is an identification (ID) variable. If so, it will be left out of the
imputation model, but will remain in the imputed datasets. This is useful for
variables that have no explanatory power like extra case identifiers.

2. Tolerance - Adjust the level of tolerance that Amelia uses to check conver-
gence of the EM algorithm. In very large datasets, if your imputation chains
run a long time without converging, increasing the tolerance will allow a lower
threshold to judge convergence and end chains after fewer iterations.

6.3.2 Time Series Cross Sectional Dialog

1. Polynomials of Time - This option, if activated, will have Amelia use trends
of time as a additional condition for fitting the missing data. The higher the
level of polynomial will allow more variation in the trend structure, yet it will
take more degrees of freedom to estimate.

2. Interact with Cross-Section - Interacting this with the cross section is way
of allowing the trend of time to vary across cases as well. Using a 0 level
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Figure 16: Detail for Time-Series-Cross-Section Options dialog.

polynomial and interacting with the cross section is the equivalent of using a
fixed effects. For more information see 5.5 above.

3. Variable Listbox - Choose the variables whose lag or lead you would like to
include in the imputation model.

4. Lag Settings - Choose to include lags and leads in the data set to handle the
effects of time. See 5.5.1 above.

6.3.3 Priors Dialog

1. Empirical Prior - A prior that adds observations to your data in order to
shrink the covariances. A useful place to start is around 0.5% of the total
number of observations in the dataset (see 5.6.1).

2. Set Observational Priors - Set prior beliefs about ranges for individual
missing observations. For more information about observational priors, see
5.6.2.

6.3.4 Observational Priors

1. Current Priors - A list of current priors in distributional form, with the
variable and case name.

45



11

Figure 17: Detail for Priors Options dialog.
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Figure 18: Detail for Observational Priors dialog

2. Add Distributional Prior - Add a prior belief about an observation or an
entire variable with a mean and standard deviation about the missing values.

3. Add Range Prior - Add a prior belief about an observation or an entire
variable with a range and a confidence level.

4. Remove Selected Priors - This will remove any of the current priors selected
with the check box.

6.3.5 Add Distribution Prior

1. Case - Select the case name or number you wish to set the prior about. You
can also choose to make the prior for the entire variable. The case names are
generated from the row name of the observation, the value of the cross-section
variable of the observation and the value of the time series variable of the
observation.

2. Variable - The variable associated with the prior you would like specify. The
list provided only shows the missing variables for the currently selected obser-
vation.
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Figure 19: Detail for Add Distributional Prior dialog

3. Mean - The mean value of the prior. The textbox will not accept letters or
out of place punctuation.

4. Standard Deviation - The standard deviation of the prior. The textbox will
only accept positive non-zero values.

6.3.6 Add Range Prior

Figure 20: Detail for Add Range Prior dialog

1. Case - Select the case name or number you wish to set the prior about. You
can also choose to make the prior for the entire variable. The case names are
generated from the row name of the observation, the value of the cross-section
variable of the observation and the value of the time series variable of the
observation.
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2. Variable - The variable associated with the prior you would like specify. The
list provided only shows the missing variables for the currently selected obser-
vation.

3. Minimum - The minimum value of the prior. The textbox will not accept
letters or out of place punctuation.

4. Maximum - The maximum value of the prior. The textbox will not accept
letters or out of place punctuation.

5. Confidence - The confidence level of the prior. This should be between 0 and
1, non-inclusive. This value represents how certain your priors are. This value
cannot be 1, even if you are absolutely certain of a give range. This is used to
convert the range into an appropriate distributional prior.

6.4 Step 3 - Output

Figure 21: Detail for step 3 on the front page of AmeliaView.

1. Output Data Format - Choose the format of output data. If you would like
to not save any output data sets (if you wanted, for instance, to simply look at
diagnostics), set this option to “(no save).” Currently, you can save the output
data as: Comma Separated Values (.CSV), Tab Delimited Text (.TXT), Stata
(.DTA), R save object (.RData), or to hold it in R memory. This last option
will only work if you have called AmeliaView from an R session and want to
return to the R command line to work with the output. It will have the name
in memory from “Name of Imputed Datasets”.

2. Name of Imputed Datasets - Enter the prefix for the output data files. If
you set this to“mydata”, your output files will be mydata1.csv, mydata2.csv...

etc. Try to keep this name short as some operating systems have a difficult
time reading long filenames.

3. Number of Imputed Datasets - Set the number of imputations you would
like. In most cases, 5 will be enough to make accurate predictions about the
means and variances.
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4. Seed - Sets the seed for the random number generator used by Amelia. Useful
if you need to have the same output twice.

5. Run Amelia - Runs the Amelia procedure on the input data. A dialog will
open marking the progress of Amelia. Once it is finished, it will tell you that
you can close the dialog. If an error message appears, follow its instructions;
this usually involves closing the dialog, resetting the options, and running the
procedure again.

6. Diagnostics - Post-imputation diagnostics. The only currently available graph
compares the densities of the observed data to the mean imputation across the
m imputed datasets.

6.4.1 Diagnostics Dialog

Figure 22: Detail for Diagnostics dialog.

1. Compare Plots - This will display the relative densities of the observed (red)
and imputed (black) data. The density of the imputed values are the average
imputations across all of the imputed datasets.

2. Overimpute - This will run Amelia on the full data with one cell of the chosen
variable artificially set to missing and then check the result of that imputation
against the truth. The resulting plot will plot average imputations against true
values along with 90% confidence intervals. These are plotted over a y = x
line for visual inspection of the imputation model.

3. Number of overdispersions - When running the overdispersion diagnostic,
you need to run the imputation algorithm from several overdispersed starting
points in order to get a clear idea of how the chain are converging. Enter the
number of imputations here.
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4. Number of dimensions - The overdispersion diagnostic must reduce the
dimensionality of the paths of the imputation algorithm to either one or two
dimensions due to graphical restraints.

5. Overdisperse - Run overdispersion diagnostic to visually inspect the con-
vergence of the Amelia algorithm from multiple start values that are drawn
randomly.

50



7 Reference to Amelia’s Functions
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