
JSS Journal of Statistical Software
MMMMMM YYYY, Volume VV, Issue II. http://www.jstatsoft.org/

http://www.jstatsoft.org/

2 Better Automated Redistricting

BARD: Better Automated Redistricting

Micah Altman

Harvard University

Michael P. McDonald

George Mason University

Brookings Institution

Abstract

BARD is the first (and at time of writing, only) open source software package for general re-
districting and redistricting analysis. BARD provides methods to create, display, compare, edit,
automatically refine, evaluate, and profile political districting plans. BARD aims to provide a
framework for scientific analysis of redistricting plans and to facilitate wider public participation
in the creation of new plans.

BARD facilitates map creation and refinement through command-line, gui, and automatic
methods. Since redistricting is a computationally complex partitioning problem not amenable to
an exact optimization solution, BARD implements a variety of selectable metaheuristics that can
be used to refine existing or randomly-generated redistricting plans based on user-determined
criteria.

Furthermore, BARD supports automated generation of redistricting plans and profiling of
plans by assigning different weights to various criteria, such as district compactness or equality
of population. This functionality permits exploration of trade-offs among criteria. The intent
of a redistricting authority may be explored by examining these trade-offs and inferring which
reasonably observable plans were not adopted.

Redistricting is a computationally-intensive problem for even modest-sized states. Perfor-
mance is thus an important consideration in BARD’s design and implementation. The program
implements performance enhancements such as evaluation caching, explicit memory manage-
ment, and distributed computing across snow clusters.

Keywords: redistricting, optimization.

Journal of Statistical Software 3

1. Introduction

Legislative redistricting is among the most politically charged tasks in American politics. Dis-

trict lines affect which political party wins control of a legislative body, the reelection success of

incumbents, and election of minority preferred candidates.

In the 1960s, after the U.S. Supreme Court’s landmark decisions requiring equal population in

districts, scholars envisioned taking politics out of redistricting by programming computers to

automatically draw districts (Vickrey 1961; Weaver and Hess 1963; Nagel 1965). These scholars

reasoned that an algorithm implementing politics-blind criteria would draw districts neutral to

politics.

Automated redistricting programs were developed, and special purpose software was developed (and

even freely distributed (Nagel 1965, see)) for this purpose, but the problem was too computationally

difficult to solve practically. Instead, computers were found to be well-suited to assist human

planners in processing the large amounts of population, election, and geo-spatial redistricting data.

And it was out of this use that some of the first Geographic Information Systems (GIS) were born

(Altman, MacDonald, and McDonald 2005).

Unfortunately, early computerized redistricting systems were prohibitively expensive to all but state

governments or political parties, effectively shutting out the public from the redistricting process.

Computer hardware and specialized redistricting GIS software have since become more affordable.

However, specialized software packages for redistricting still remain unusually expensive – costing

thousands of dollars. We aim to make the redistricting process more open, by offering the first open-

source general redistricting software. We call our computer program BARD for Better Automated

ReDistricting.1

Our package permits users to draw and compare redistricting ‘plans’.2 Our package also permits

users to evaluate whether these meet legal requirements, and measure their potential political

consequences. The system is open and extendable, so that anyone can a wide variety of built-

in measures, or add any they desire, to evaluate plans. BARD is not only the first open source

package for general redistricting analysis, it is also the first publicly available redistricting package

to support multi-criteria optimization for redistricting plans.

1Tolkein fans may recognize the reference to the slayer of the dragon Smaug, perhaps the most terrible of sala-

manders.
2A plan consists of a geographic map of some administrative unit, such as census tracts or counties, along with

political and demographic measurements for each unit, and an assignment of those units to a set of districts.

4 Better Automated Redistricting

2. Redistricting with BARD

Currently BARD provides functionality in multiple areas, and the implementation of the BARD

system is divided into separate independent modules to facilitate maintenance and flexibility.

First, BARD reads and processes redistricting data. BARD can read and write files representing

redistricting plans in the standard ESRI “shapefile” format, permitting inter-operability with other

GIS packages. Inter-operability is desirable since, while BARD has some rudimentary functionality

for basic interactive map drawing, existing commercial GIS software has more sophisticated manual

map-drawing tools and GUI interfaces. Furthermore, we hope that a redistricting authority will

consider a plan drawn with the aid of BARD, which necessarily requires map export functionality.

Like these other GIS programs, additional demographic and political data can be imported into

BARD that may be essential to evaluate and optimize redistricting plans on.3

Second, BARD evaluates redistricting plans. BARD will generate textual and graphical reports for

a single plan or comparision of multiple plans. Currently BARD shows precinct-level differences

between pairs of plans, counts ‘holes’ in plans, computes common compactness scores, calculates

overall population deviation, and checks for contiguity. BARD computes many common political

measures, such as number of majority-minority districts, plan competitiveness, etc. Since BARD

is built on R, evaluation is extensible to any scoring method that can be programmed into R.

Third, BARD generates and refines districting plans. Plans can be automatically generated to use

as starting points in further refinement, or evaluated in their own right. A user may also choose to

start refinement from pre-existing plans (e.g. chosen by the legislature, or offered by a public interest

group), if available. We provide a number of different procedures for automatically generating plans

including plans for pure random generation of districts (e.g., as described in Grofman (1982)),

random-walk based methods for generating contiguous equi-populous districts, including methods

described in Cirincione, Darling, and O’Rourke (2000), and both simple and weighted k -means

based plan generation. Once generated (or provided), plans may be automatically refined using

metaheuristics discussed below to meet chosen goals. The application of a metaheuristic to refine

plans should yield a plan that is an improvement, given a chosen scoring formula.

The third phase may vary in some important ways, depending on a user’s intended use of the

program. For pure applied redistricting, the generation step is omitted and refinement is used

to improve existing redistricting plans. For ‘random’ redistricting analysis, such as to probe the

characteristics of arbitrary redistricting plans (see Engstrom and Wildgen (1977); Rossiter and

Johnston (1981); O’Loughlin (1982); Grofman (1982) and Cirincione et al. (2000)), generation may

3At this stage BARD also generates a contiguity analysis of maps in preparation for later manipulation.

Journal of Statistical Software 5

The figure below illustrates these areas, and the typical phases of redistricting in BARD

0

1

2

3
4

5

6

7
8

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2
2 3

2 4

2 5

2 6

2 72 8

2 9

3 0

3 1

3 2

3 3

3 4

3 5
3 6

3 7

3 8

3 9

4 0

4 1

4 2

4 3

4 4

4 5

4 6

4 7

4 8 4 9

5 0

5 1 5 2

5 3

5 4

5 5

5 6
5 7

5 8

5 9

6 0

6 1

6 2

6 3

6 4

6 5

6 6
6 7

6 8

6 9

7 0

7 1

7 2
7 3

7 4

7 5

7 6
7 7

 Choose Scoring Functions

Edit Plans

Weight
sequence
complete?

Refine Plans based on
Re-weighted Score

Generate Additional Plans

Choose Heuristics

Initialization

Input Demography

Input Geography

Generate Contiguity List

Input Initial Plans

Has
list?

Compare Plan Scores

Compare Plan Differences

Profile Plan Score Tradeoffs

Data Input and Processing

Configuration and Editing

Generation and Refinement

Display and Reporting

Figure 1: Phases of redistricting in BARD.

6 Better Automated Redistricting

be used without refinement, or with refinement only to absolute legal requirements. Analysis of

legal constraints on redistricting, as in Altman (1997) and Rogerson and Yang (1999), may involve

repeated generation and refinement. BARD further supports automated re-weighting of a score

function to generate a profile of how one redistricting criterion changes as another is optimized and

in this manner BARD will automatically generate profiles of plans that explore tradeoffs among

redistricting criteria. (This is computationally expensive, thus BARD supports distributing these

calculations across a computing cluster.)

Fourth, BARD compares multiple plans. BARD outputs the range of overall scores, the range of

scores for each component, the differences among plans, and the correlations among score compo-

nents. Candidate plans may also be contrasted with the starting plans if meaningful pre-existing

starting points are selected. This analysis phase can be used to probe redistricting trade-offs – to

what extent attempting to improve plans based on one criterion necessarily reduces performance

on other criteria.

3. Using BARD for Plan Evaluation and Modification

This section demonstrates some of the basic redistricting functions in BARD. These functions

permit users to load existing plans into BARD or instruct the program to automatically gener-

ate a quasi-random map, permit users to manually edit plans, and report plan comparisons. In

the next section we introduce the mathematical basis for these functions and the more complex

metaheuristics used to optimize redistricting plans.

This command loads the BARD package:

> library(BARD)

This command imports a standard “shapefile” into BARD which will be used as the base map.

The file contains the coordinates of the outlines of all geographical units (the smallest of which in

the United States context are known as ‘census blocks’) along with any political and demographic

variables in each unit. Our example dataset describes Suffolk County, New York. Optionally, a user

can supply a variable in this file that indicates the district to which each unit is currently assigned,

thereby enabling evaluation of existing plans.

> suffolk.map <- importBardShape(file.path(system.file("shapefiles",

+ package = "BARD"), "suffolk_tracts"))

Journal of Statistical Software 7

These commands illustrate are several BARD functions that create “random” redistricting plans:

• createRandomPlan: Uses pure random assignment.

• createRandomPopPlan: Uses pure random assignment until a district reaches a target popu-

lation threshold.

• createKmeansPlan: Uses kmeans on geographical district centroids.

• createWeightedKmeansPlan: Weights kmeans by a variable, such as population.

• createContiguousPlan: Attempts to create contiguous plans through the random-walk

method of Cirincione et al. (2000).

More information on these functions is included in the documentation accompanying the package.

Two of these functions are illustrated below:

> kplan <- createKmeansPlan(suffolk.map, 5)

> rplan <- createRandomPlan(suffolk.map, 5)

The results of these are preliminary assignments of geographic units to districts – the assignments

will need to be refined extensively in most cases to yield a legal plan.

BARD supports simple plotting of plans as well:

8 Better Automated Redistricting

> plot(kplan, cols = colorRampPalette(c("red", "grey"))(5), axes = F)

Figure 2: Plotting a sample plan

In addition to plan generation, BARD supports basic interactive editing of plans (here, by reas-

signing census blocks among districts).

Journal of Statistical Software 9

The interactive map generation interface is illustrated below:

Figure 3: Interactive creation of districts with BARD.

Furthermore, BARD generates reports for plans based on built-in or user-supplied redistricting

criteria, as described in the next section. Here is another brief example:

10 Better Automated Redistricting

> reportPlans(plans = list(kmeans = kplan, ‘random 1‘ = rplan))

Plan Scores

Plan DistrictID OriginalID Contiguity Holes LW Compact Reock

1 kmeans 1 1 0.0000000 NA 0.13276734 0.6475287

2 kmeans 2 2 0.0000000 NA 0.15240584 0.5042317

3 kmeans 3 3 0.0000000 NA 0.07392494 0.5432474

4 kmeans 4 4 0.0000000 NA 0.37793995 0.6615332

5 kmeans 5 5 0.0000000 NA 0.08745115 0.3883830

6 kmeans Total Total 0.0000000 0 0.82448922 2.7449241

7 random 1 1 3 0.9705882 NA 0.61677727 0.9241172

8 random 1 2 1 0.9615385 NA 0.50409000 0.9475387

9 random 1 3 4 0.9714286 NA 0.68266112 0.9320151

10 random 1 4 2 0.9629630 NA 0.61381939 0.9245016

11 random 1 5 5 0.9583333 NA 0.61258700 0.9115207

12 random 1 Total Total 4.8248516 0 3.02993478 4.6396932

Plan Differences

Comparing plan kmeans with plan random 1 :

Dist ID Original ID # of original blocks # Blocks Removed # Added

1 1 3 39 29 54

2 2 1 64 50 47

3 3 4 103 77 44

4 4 2 21 15 55

5 5 5 93 72 43

Holes NA NA 0 0 0

% Shared

1 10.80

2 12.60

3 17.70

4 7.89

5 15.40

Holes NA

Journal of Statistical Software 11

This report compares a set of plans and can report differences in aggregate scores, differences in

district level scores, and diffences in census unit assignments between districts.

The differences between districts can be plotted, using a basic plot function. Here, identify areas

in which two plans overlap:

> plot(diff(kplan, rplan), plotall = TRUE, cols = colorRampPalette(c("red",

+ "grey"))(5), axes = FALSE, horizontal = FALSE)

Figure 4: Plotting differences among plans

For reporting, BARD accepts user-generated score functions, which are discussed below. Addi-

tional plotting and reporting options are available and described in detail in the accompanying

documentation.

12 Better Automated Redistricting

4. A Mathematical Formulation of Redistricting Criteria

When redistricting authorities draw district boundaries they do not simply take pen to paper (or

mouse to mousepad).4 They also analyze information associated with the geographic components

of districts to ensure that maps satisfy legal requirements and political realities. To solve redis-

tricting problems with a computer, the analogous mathematical problem must be formalized. Since

redistricting intrinsically involves assigning discrete blocks of geography (or discrete individuals) to

districts to achieve a set of goals that is a function of the redistricting plan as a whole, the corre-

sponding mathematical problem thus falls into the general area of combinatoric optimization.5

There are many ways to represent particular redistricting problems mathematically within the

general combinatoric optimization framework (Altman 1997). However, representing redistricting

as a graph partitioning problem is the most natural formulation, since it allows the expression of

geographic values, such as compactness and contiguity in a simple and direct way. Furthermore, in

previous research, this representation seems to be the most amenable to an efficient solution.6

To put the problem in formal terms7:

1. Let xi refer to the i th census block, xi ∈ X where X is the set of all census blocks in a
4Prior to redistricting, another process of reapportionment is used to determine the number of districts to be

drawn. We do not address reapportionment algorithms here. For more information see Balinski and Young (2001).
5Generically, this formulation of the problem assumes that the fundamental units are indivisible. If units are

divisible, the problem becomes a continuous optimization problem, and different approaches would apply. In practice,

reaggregating census geography is difficult and uncertain (see, for example, King, Palmquist, Adams, Altman, Benoit,

Gay, Mayer, and Reinhardt (1997)) the lowest level census geography is treated as indivisible in redistricting, with

the rare exception of ’split blocks.’ Blocks can be manually split, and BARD can proceed with plan evaluation and

generation if a shapefile is generated that includes geographical representations of split blocks. Our software simply

treats the input units as given – so ’split blocks’ can be included in the input data, although the software will not

split blocks automatically.
6Less commonly, set-partitioning and integer programming approaches have been used to solve the redistricting

problem. These are mathematically equivalent, although incorporating contiguity requires that a large number of

side constraints be enumerated in formulating each problem instance. Also, geographic site-selection and facility

allocation problems (as found in the operations research literature) are related to the redistricting problem, but no

method is available currently to reformulate arbitrary redistricting problems in these terms. In terms of fundamental

computational complexity, the particular problem representation is less important, since one could convert a redis-

tricting problem instance back and forth among any different NP-complete problem representation in polynomial

time. However, in practice, a proper choice of representation can make it much easier to formulate and solve the

problem.In recent work, integer programming approaches have been successsful in small problems (see Aerts, Eisinger,

Heuvelink, and Stewart 2003), whereas success for much larger problems has bee reported using heuristics on graphs

(see Xiao 2006).
7For consistency, we use the notation previously published in Altman (1997) and Altman (1998a).

Journal of Statistical Software 13

jurisdiction. These blocks are vector-valued, and we will assume that blocks are associated to

various population values, political measures, and geographic locations, among other features.

dj refers to the j th district. A district is a set of census blocks:

dm = {xi,xi′ ...,xi′′}

2. pk refers to a particular plan. plan is a partition of the set of all census blocks X into a disjoint

set of districts of exogenously given size n, such that X =
⋃
∀j

dj and dj
⋂

∀{j,j′},j 6=j′
dj′ = ∅:8

pi = {d1,...,dn}

3. G = (V,E) is a mathematical graph representing the underlying census block geography.

Each node vi in g represents a census block, and each edge ei,j denotes physical adjacency of

those block

4.1. Redistricting Criteria

Part of solving this problem is operationalizing the criteria important for districting as functions of

the demographic, political, and geographical properties of the redistricting plan. Here we discuss

the most commonly recognized redistricting criteria (see McDonald 2004), all of which can be easily

calculated using score functions provided with BARD: equal population, completeness, contiguity,

geographic compactness, political competitiveness or partisan bias, minority-opportunity to elect a

candidate of choice, and respect for existing political boundaries or communities of interest.9

Perhaps the most important criterion is that districts have equal population.10 And the format of

population data released by the U.S. Census Bureau further guides how the redistricting problem
8A very small number of state and local jurisdictions permit overlapping “floterial” districts, which permit the

assignment of units (typically towns or municipalities) to more than one district – thus allowing voters in those

municipalities to vote in multiple districts simultaneously. BARD does not provide direct support for this situtation.

In practice, this is often approached as a set of sequential partitioning problems: First partition the towns into n−m

districts. Then create a separate overlay partition of m districts, using only ‘underepresented’ towns. This sequential

problem formulation could be solved using BARD, by removing ineligible units from the base map in the second

stage.
9Formally, required criteria for any legal redistricting plans, such as compactness, may be thought of as constraints

rather than scores. In general in BARD, these constraints are treated as a very heavily valued component of the score

function, thereby permitting the use of a variety of generalized optimization heuristics. However, a few (optional)

specialized functions in BARD, such as the “contiguous” plan generation function, has one or more constraints “hard-

wired” into the generation or refinement processes.
10Congressional districts must be of less than a one percent population division to ensure that they conform to

14 Better Automated Redistricting

is formalized. These data are not reported for individuals, rather, to protect the confidentiality of

respondents data, these are aggregated into discrete geographic entities known as “census blocks”

which roughly conform to a city block in urban areas. It is thus not difficult to imagine census

blocks as corresponding to points on a graph.

This conceptualization is how Geographic Information Systems (GIS) programs generally work:

they plot the vertices of census blocks (and higher geographic units, such as counties and cities)

onto a screen for user manipulation. GIS redistricting modules enable users to assign blocks to

districts through simple point and click operations. Characteristic data associated with each block

can be displayed on-screen. For example, in the case of equal population requirements, blocks can

be associated with their total population. If a district needs more population, a user can click on

blocks adjacent to a district to identify those that will help meet a target population number. GIS

programs are well-suited to display and produce summary statistics of similar data, such as racial

population data, which are used to meet target racial population numbers to conform with the

Voting Rights Act, and election data, which are used to predict political outcomes. (Indeed, we

might think of all such characteristic block data as belonging to the same family for optimization

purposes.) However, GIS modules do not assure that the districts created in this way conform to

criteria such as equal population, only that these data are available to map drawers.

Part of the definition of a legal redistricting plan is that it is a complete assignment of census

blocks to districts. Thus completeness is not usually discussed explicitly as a redistricting criterion.

Nevertheless, in practice, because of the technical complexity of redistricting, even professionals

often commit errors leading to incomplete plans. To assist the creation of legal plans, BARD can

evaluate the completeness of the proposed plan, and to repair “holes” in it.

Another important criterion is that districts must (usually) be contiguous, or connected.11 The

geospatial coordinate data used to plot census blocks can also be used to determine if two blocks

are connected to one another. In normal operation, block boundaries are pre-processed to generate

legal standards. State legislative districts are permitted a ten percent population deviation under federal law, though

some state laws require a smaller deviation (Cain, Donald, and McDonald 2006). In our software, both the score

function for measuring population deviation, and the methods for generating initial district assignments allow the

amount of tolerable deviation in population to be specified by the user.
11While contiguity is a legal requirement in many states, it is not a Federal requirement. And there are documented

instances of non-contiguous districts or districts of questionable contiguity because they are connected over water

without a bridge (Altman 1998b). Another example, some states require districts to be composed entirely of wards or

other political subdivisions which are themselves sometimes non-contiguous when odd city boundaries create islands

of incorporated or unincorporated territory. The Wisconsin 61st Assembly district created in 2001 is non-contiguous

as a result of containing such a ward on its perimeter. To avoid having non-contiguous districts, the state created a

legal fiction that states all wards are contiguous, see Wisconsin Code 5.15(1)(b)

Journal of Statistical Software 15

a complete contiguity matrix that lists every block’s neighbors which BARD then uses to determine

rapidly if a proposed plan satisfies contiguity.

Geographic compactness is an oft-mentioned criterion for redistricting that is honored in the breach.

Dozens of scores have been proposed, but few are used in practice (see Altman (1998b), Niemi,

Grofman, Carlucci, and Hofeller (1991)). BARD provides three functions that calculate common

geographic compactness scores which capture the dispersion and dissection of districts (how much

they are stretched or have chunks removed from them). BARD also provides a parameterized and

weighted ‘moment-of-inertia’ score that can be used to measure geographic compactness, population

compactness, and cumulative distance from fixed locations, such as candidates homes, warehouses,

or schools. Other scores can easily be programmed in R.

Election outcomes that may be expected from a redistricting plan can be constructed from election

or demographic input variables. Estimates of how reliably districts may elect partisan candidates

of either party are commonly measured by estimating the expected partisan vote share in each

districts (McDonald 2006).12 If the expected ratio of partisan vote shares is approximately the

same within a threshold tolerance, a district is deemed competitive by this measure. In a similar

manner, minority opportunity districts are usually identified as those in which the ratio of minority

population to majority population falls above a designated threshold (Grofman, Handley, and Niemi

1992). These partisan or racial vote share may be estimated simply, based on voter registration in

the proposed district, or through a more complex model such as in Gelman and King (1994). The

BARD framework provides a generalized scoring function that efficiently computes the sum of a

predictor variable associated with each block, or the ratio of two predictive variables. With this it is

possible to calculate estimates of the number of districts that may be won by a party’s candidates,

district competitiveness scores, identify minority-opportunity districts, or other predictive election

results.

Another quasi-geographic set of criteria often found in state law is ‘respect’ for geographic or politi-

cal features such as city or county boundaries, communities of interest (often defined by redistricting

authorities), or other ‘natural’ features such as rivers or mountain ranges. Capturing these crite-

ria mathematically is straight-forward: any set of census blocks can be defined as belonging to a

grouping set and a penalty for splitting groups can be added to the score function for evaluating a

redistricting plan.13 An example of this type of community cost function is included in the BARD

12An alternative way of evaluating the political outcomes of the plan involve estimating the predicted seat-votes

curve resulting from that plan. This was proposed thirty years ago by Tufte (1973) and Niemi and John Deegan

(1978). Gelman and King (1994) provide the leading method for estimating this.
13We are sympathetic to the argument put forth by Forest (2004) that using only quantitative data to repre-

16 Better Automated Redistricting

package. The twist is that these criteria are often secondary to equal population, contiguity, and

Voting Rights Act concerns, and so the scores associated with each criterion must be properly

weighted in order to permit some violation of feature boundaries to accommodate superseding

criteria. All of these criteria may be calculated in BARD.

In addition, the BARD score framework enables any function of model in R to be used in the

evaluation of a plan. Thus, it is relatively straightforward to add new scores to BARD to evaluate

plans based on the user’s choice of statistical model.

We note that there is no universally agreed upon set of redistricting criteria, and many jurisdic-

tions often require vague goals such as “compact” districts, without a specific definition to guide

implementation. For example, is compactness defined as the minimization of the length of the

district perimeter or the ratio of the district’s area to that of the largest inscribed circle (both are

proposed methods of measuring compactness)? Different formulations may lead to substantively

different types of districts, which means that redistricting criteria may have subtle “second-order

biases” (Parker 1990), that is, the criteria are seemingly neutral on face value but reliably produce

a political outcome. Defining criteria and meaningfully weighing them against one another is an art

that demands experimentation since no two jurisdictions have the same geography or population

distribution. This also reveals the importance of the BARD open source approach to formulating

redistricting criteria (and automation) since a black box approach is vulnerable to hidden manip-

ulation.

5. Use of Automated Redistricting for Plan Analysis

In addition to evaluating and improving existing plans, automated redistricting has long been

used as a method for redistricting analysis, especially by political geographers. Pioneering work by

Shepherd and Jenkins (1973) and Gudgin and Taylor (1979) employ enumeration of all possible par-

titions (for extremely small districting plans) to reveal the complete range of possible redistricting

alternatives.

Scholars have proposed methods other than full enumeration to overcome the computational limita-

tions of enumeration on even modestly redistricting problems, with as little as 50 units to assign to

districts. Another way of using automated redistricting for analysis is taken by Altman (1997) and

Rogerson and Yang (1999). These authors propose automated refinement of redistricting plans to

sent communities of interest can result in ‘thin’ representations of community. Using the technique just described,

the BARD system can incorporate information about the boundaries of communities of interest based on external

qualitative analysis and “thick” descriptions.

Journal of Statistical Software 17

simulate the effects of additional legal constraints on redistricting outcomes. Another alternative,

and relatively common use of automated redistricting, is to use “random” generation of districts

to probe the characteristics of arbitrary redistricting plans (see Engstrom and Wildgen (1977);

Rossiter and Johnston (1981); O’Loughlin (1982); Grofman (1982); Cirincione et al. (2000)). Note

however that work does not establish that ‘random’ districts are probability samples from a well-

described population of plans (Altman and McDonald 2004). 14 We recommend that these methods

be interpreted with caution.

6. Improving Algorithms for Automated Redistricting Refinement

The BARD package provides functions to refine districts based on specified score functions. In this

section we describe the formulation of the refinement problem, existing software, and the algorithms

BARD currently provides.

Formally, redistricting is a computationally complex optimization problem: Common variations of

redistricting be shown to be equivalent to general optimization problems already known to be ‘NP-

Complete’ (see Altman 1997). An illustration of this is the specific problem of finding equi-populous

contiguous plans. Formally, this is equivalent to the the following optimization problem, known as

“Cut into Connected Components of Bounded Size (& Weight)” (Johnson 1982):

Is there a partition of vertices, V, into disjoint sets V1 and V2 such that∑
v∈V1

s (v) ≤ K

and ∑
v∈V2

s (v) ≤ K

and both V1 and V2 induce connected subgraphs of G?

For very small numbers of vertices, the optimal plan could be selected simply by enumerating all

feasible redistricting plans and identifing the most optimal plan. Unfortunately, for the task of

redistricting a state’s congressional or state legislative districts, no algorithm is guaranteed success

in a reasonable time. Consider a middle-sized state such as Wisconsin, which has slightly more

than 330,000 census blocks. If blocks were of equal population, then there would be more possible

14For example Cirincione et al. (2000, e.g.,) use a random-walk like method to create contiguous districts. However,

the process can be shown not to yield a simple random sample of redistricting plans in small samples, and indeed

there is no evidence to establish convergence to a probability sample. In general, as Knuth warns, algorithms that

are stochastic do not necessarily yield random distributions of results (Knuth 1997).

18 Better Automated Redistricting

redistricting plans than there are quarks in the universe. More generally, the number of possible

districts for a given number of equi-populous blocks and districts is a Stirling Number of the Second

Kind:

S (n, r) =
1
r!

r∑
i=0

[
(−1)r (r − i)n r!

(r − i)!i!

]

In practice, contiguity will reduce the number of feasible plans that must be enumerated, none-the-

less, the number of possible plans likely remains staggeringly large. Thus, selecting the globally

optimal plan from a full enumeration of all plans is not feasible even using the fastest computers

currently available. For similar reasons, random generation of districting plans (e.g. via a random

walk) is unlikely to generate feasible plans.

Lacking enumeration, some sort of heuristic or algorithm is needed to find an optimal redistricting

plan. The fact that the problem has been shown to be NP-Complete strongly suggests that there

are no efficient algorithms capable of solving the problem with any guaranteed approximation

of optimality. Thus researchers in this area have turned to heuristic approaches, that while not

guaranteed to produce quality solutions, do complete in a reasonable amount of time.

A variant on simple random block assignment is a “greedy” heuristic that starts from a seed block

and randomly assigns additional contiguous blocks to a district until a target population value

is reached. Perhaps a greedy algorithm could find an optimal redistricting plan if there was one

clear path to the optimal plan. Upon reflection, this is unlikely to work for most redistricting

problems. For example, imagine a state must draw a district with more than a majority percentage

of minorities (so called “minority-majority” districts) to be in compliance with the Voting Rights

Act. Imagine that there are two sizable minority communities separated by a white suburb. The

only feasible minority-majority district is one that links the communities by a narrow bridge across

the suburb. A greedy algorithm aimed towards maximizing district minority population might easily

miss this arrangement because drawing a bridge across the white community would momentarily

decrease the value of the objective function to be maximized until the bridge was complete. In

general, partitioning problems such as the redistricting problem are known to be rife with local

optima that trap greedy approaches.15

15Note that the final target of the heuristic must be generation of a plan. Since the allocation of one district affects

others in the same plan, heuristics that take a district-by-district approach are even more prone to being trapped at

local optima.

Journal of Statistical Software 19

6.1. Available Software

Despite a long history of experiments in automated redistricting, there are few tools publicly avail-

able for automated redistricting. To our knowledge, five commercial software tools produced by

Caliper Corporation, ESRI, Digital Engineering Corporation (which provides a redistricting add-on

for ESRI’s GIS program), Corona Solutions, and Manifold Systems provide automated redistricting

functionality (Altman et al. 2005).16

All publicly available tools are limited in several regards. They are capable only of producing

districts with equal population and have no means to accommodate other criteria necessary to pro-

duce legal plans. All but one program uses variations on steepest ascent heuristics, the exception

is Corona Solutions which claims to use a single-criterion genetic algorithm. Unfortunately, we do

not know much about the internal workings of these programs since they are closed-source and

their algorithmic details poorly documented, which raises transparency issues similar to the contro-

versies surrounding electronic voting machines. These redistricting GIS programs with automated

algorithms typically cost several thousand dollars (Manifold being the single notable exception),

limiting their wide use.

In our testing of these programs (see Altman et al. (2005)), we found that while they could generate

plans of a sort automatically, these plans would not satisfy legal requirements or basic plausibility.

For example, ESRI’s automated redistricting algorithm stops growing districts when the growing

circular districts touch, yielding polka-dot districts that leave much of a jurisdiction unassigned to

any district. Manifold’s algorithm apparently randomly selects a number of blocks equal to the

number of districts as seeds and grows districts from these seeds one district at a time, thereby

sometimes producing a single-block district when other districts are first grown around it.

Moreover, these programs are limited to balancing the allocation of a single fixed variable (measured

at the unit level), sometimes in combination with a built-in (and usually idiosyncratic) measure of

compactness, using a single optimization methods. These programs cannot perform multi-criteria

optimization, accept user-defined weights and score functions, use alternative definitions of com-

pactness, or probe trade-offs between the redistricting criteria and political goals. Thus, for most of

the redistricting scenarios that BARD is intended to address, the available commercial automated

redistricting software simply cannot be applied.

That these companies supply rudimentary automated features is perhaps unsurprising, since there

is little market demand for automated functionality. Well-funded redistricting authorities and

16In addition to these companies, the Texas Legislative Council developed prior to the 2001 round of redistricting

a promising in-house automated redistricting program known as TARGET with limited exploratory capabilities.

20 Better Automated Redistricting

consultants are reticent to hand over highly sensitive political decisions to a machine. They have

little incentive to use this functionality, since they can accomplish their ends without it, and it

exposes them to potential legal complications since their optimization goals would be made clear.

Although there is no money in it (and hence no market), public participation in the process will,

however, be aided by these functions since they make it easier to draw plans that meet legal

constraints and serve public goals.

6.2. New Metaheuristic Approaches

A more general optimization heuristic is needed to address the redistricting problem. To be adapt-

able to any reasonable redistricting goal, a successful approach should consider not only additions

of single census blocks to a district core, but also arbitrary exchanges of multiple blocks among

districts. To avoid being trapped in local optima, such a heuristic must be permitted to make some

backwards (non-improving) steps in search of the global optimum, such as bridging two minority

communities through a white community. These features of the redistricting problem suggest that

metaheuristics may be an effective practical solution.

Over the last two and a half decades, a set of new and surprisingly effective heuristic approaches to

large optimization problems have arisen, including simulated annealing, evolutionary optimization

(including genetic algorithms), iterated local search (including greedy randomized adaptive search),

ant colony optimization, and tabu search. These approaches, although formulated independently,

have now been recognized as belonging to a more general metaheuristic framework.

Essentially, metaheuristics are a general approach to optimization that involves combining a set of

basic heuristics that find optima only in a local neighborhood with a larger framework for guiding

and applying these heuristics repeatedly in a large search space (see Blum and Roli (2003) for an

in-depth survey of metaheuristics, and Altman (1997) di Cortona, Manzi, Pennisi, Ricca, and Sime-

one (1999) and Xiao (2003) for other optimization algorithms used in redistricting). Designing and

applying metaheuristics requires dynamically balancing between diversification and intensification.

Diversification involves generating new candidate solutions in such a way as to thoroughly explore

the solution space. Intensification involves using (implicitly or explicitly) the history of candidate

solutions that have been previously evaluated to guide the direction of an iterative search. Diver-

sification is needed to have a high probability of finding the region of solutions that contains an

optimal solution and intensification is needed to find these solutions in a practical amount of time.

These metaheuristics have many variants and parameterizations, and none work well for all opti-

mization problems (Wolpert and Macready 1997). This raises the possibility of ‘third-order’ bias,

Journal of Statistical Software 21

in which attributes of the outcome not specified in the optimization function may be affected in

systematic ways by the solution method (Altman 1997). Finding the right solution approach for a

particular domain of problems is a matter of craft as much as science. Although no single meta-

heuristic is guaranteed to be ideal, there are many reasons why the metaheuristic framework is an

appropriate one to use for redistricting:

1. First, metaheuristics have a track record of being successful on difficult combinatoric opti-

mization problems. Redistricting is an exemplar of such a problem – no sure solutions are

available and no sure solutions are likely to be discovered due to the problem’s computational

complexity.

2. Second, in experimental work metaheuristics are most successful for redistricting-like parti-

tioning problems.

3. Third, metaheuristics do not assume a-priori a set of particular redistricting goals, or op-

erationalization of them (although it is still likely that a particular configuration of selected

metaheuristic is better at optimizing on one type of goal, such as compactness, than another,

such as competitiveness). By using a general metaheuristic framework we can allow the redis-

tricting plan’s author the flexibility to specify goals to be satisfied, rather than hard-coding

the goals into the solution method.

4. Fourth, by using multiple metaheuristics to “solve” the same problem, we reduce the threat

that a particular heuristic can systematically interact with a redistricting goal to bias the

resulting plan.

6.3. Optimization Methods in BARD

The initial version of BARD includes four metaheuristics:

Simulated Annealing (see citations above) exploits an analogy between the way in which molten

metal freezes into a minimum energy crystalline structure (the annealing process) and the search for

a function optimum. At each iteration, simulated annealing randomly generates a candidate point

(or set of points) within a local neighborhood of the current solution. The probability of moving

from the current solution to one of the candidate points is a function of both the difference in the

value of the objective function at each point, and a temperature parameter. At high temperatures,

candidate points that are “worse” than the current solution can be selected as the solution in the

next iterate. This helps the heuristic to avoid a local optimum. At each iteration, the temperature

is reduced gradually, so that the probability of heading downhill becomes vanishingly small.

22 Better Automated Redistricting

Genetic Algorithms (see citations above) are a form of heuristic inspired by analogies between

optimization (and adaptation) and the evolution of competing genes. In a genetic algorithm, a

population set of candidate solutions are supplied to the optimization problem. Each solution is

encoded as a string of values. At each iteration each member of the population is subject, at

random, to mutation (an alteration of the solution vector), hybridization (a reshuffling of subse-

quences between two solutions). In addition, each round undergoes selection, where some solutions

are discarded and some are duplicated within the population, depending on the fitness (function

evaluation) of that member.

Tabu Search (see Glover (1986) and the citations above) modifies hill-climbing by retaining a

memory of recent moves (or attributes thereof) and avoiding those moves unless they meet particular

aspiration criteria. This use of memory encourages diversification.

Greedy Randomized Adaptive Search or GRASP (Feo and Resende 1989) is a multi-start meta-

heuristic. Each iteration involves two phases, generation of a random starting candidate solution,

and greedy exploration of the search neighborhood (hill-climbing) to find a local optimum. GRASP

iterates repeatedly, and returns the best solution across all iterations.

Greedy algorithms, when applied to redistricting problems, almost inevitably become trapped at a

local optimum. The performance of such heuristics performance is thus quite sensitive to starting

values. This is true even for metaheuristics unless the researcher is lucky, adapts the heuristic to

the particular problem successfully, or uses external knowledge to pick starting values in the correct

basin of attraction for the global optimum. Solving difficult optimization problems, however, is as

much an art as a science.

A problem’s difficulty is increased when trying to optimize on multiple constraints, for example

equal population and contiguity. A solution that scores well on equal population may have diffi-

culty improving districts to create a plan with contiguous districts. When a plan has near equal

population, but is not contiguous, the rearrangement of blocks to create a contiguous plan may

first require large negative steps on equal population before population re-balancing can resume to

produce a plan that is both contiguous and has equal population.

The proceeding example suggests that the size of the local neighborhood being searched at each

iteration affects optimization performance. Sometimes an algorithm must take large steps to escape

a local optimum’s basin of attraction. For example, a simulated annealing algorithm that considers

only a single trade of census blocks among districts at each iteration may become trapped in a

local optima more easily than one that considers trades of two or more blocks at a time. However,

considering local neighborhoods induced by multiple rather than single trades makes these neigh-

Journal of Statistical Software 23

borhoods much larger, and more difficult or impossible to search thoroughly (ruling out some forms

of greedy heuristic, for example.)

Selecting good starting values makes it much easier for metaheuristics to yield improved plans. In

practice, when one starts with a current legal plan, it is much faster to generate a new, better-scoring

plan than when starting from entirely randomly generated districts. A potential problem with using

the former districts as a starting point is that the same political motivations that predominate the

district shapes may continue to influence the solution.

7. Plan Refinement, Sampling and Profiling

This simple demonstration shows how BARD can be used to repeatedly generate and refine plans

by applying one optimization algorithm to a set of 21 plans: a plan generated by k-means plus

20 plans generated by createRandomPlan. Each plan is then refined using the score function and

optimization function indicated:

> myScore <- function(plan, ...) combineDynamicScores(plan, scorefuns = list(calcPopScore,

+ calcLWCompactScore))

> samples <- samplePlans(list(kplan), score.fun = myScore, ngenplans = 20,

+ gen.fun = "createRandomPlan", refine.fun = "refineNelderPlan",

+ refine.args = list(maxit = 200, dynamicscoring = TRUE))

This yields a set of improved plans, which can be summarized and plotted using methods that the

package supplies for evaluating groups of plans. BARD also supplies a profilePlans function that

replicates samplePlans, while reweighting components of a given score function. This allows one to

examine the effects of trade-offs among pairs of redistricting criteria.

Although redistricting is a computational problem that is too difficult to ensure the resulting plan

is optimal, the program may yield a useful improvement over the starting map and may further

enable the public to generate constitutionally viable plans. 17

A unique aspect of BARD’s approach is that it enables one to explore the tradeoffs between re-

districting goals, such as the de-minimis population inequality effect and district compactness, the

creation of an additional majority-minority district, the number of partisan seats and district com-

petitiveness, and compactness. We can repeatedly generate plans using the same set of redistricting
17To keep the run-time of this demonstration manageable, we implement the essential profiling steps using a quick

but primitive optimization method, refineNelderPlan. In a real (and long running) application we would substitute

refineTabuPlan, refineAnnealPlan, refineGRASPplan, or refineGenoudPlan for refineNelderPlan above.

24 Better Automated Redistricting

> plot(summary(samples))

●

●
●

●

●
●

●
●

●

●

● ● ●

●
● ● ● ●

●
●

●

5 10 15 20

2.
5

3.
5

Sample Scores

Index

m
yS

co
re

2.5 3.0 3.5 4.0

0.
0

1.
0

2.
0

Density

myScore

Figure 5: Plotting a distribution of “samples” randomly generated districts

goals, while systematically changing the weight given to one (or more) of those goals. For example,

if plans generated using a scoring rule that weights compactness heavily have significantly fewer

minority districts than plans generated with a lower weight on compactness, this suggests a tradeoff

exists between compactness and minority representation.

A variant of this technique can be applied to reveal the preferences of those who created a districting

plan. Informally, if we start with a redistricting plan chosen by a set of participants and show that

a small modification to this plan has a large impact on a particular goal without much affecting

other relevant criteria, we can infer that the plan’s author places a relatively low value on that

goal. For example, if a more competitive plan can be produced at the expense of a small degree of

compactness, while keeping the plan the same in all other relevant ways, then we have reason to

believe that the plan’s author valued compactness over competitiveness.

Journal of Statistical Software 25

Courts and litigants have used this approach informally, especially in the absence of smoking gun

evidence, when they examine characteristics of plans that were rejected to illuminate why a par-

ticular plan was accepted. For example, it has been used by academics to assess intent in North

Carolina’s redistricting in the 1990s (Gronke and Wilson 1999). Using automated redistricting it

is possible to systematize this method – and BARD facilitates this.

Formally, this technique based on a fundamental axiom in economics, the Weak Axiom of Revealed

Preference (WARP) (Samuelson 1948). Any method to infer preferences from the actions of a

rational actor must rest on WARP. WARP states that if one observes a choice

{a}

from a set

{a, b, c}

then it must be the case that

a ≥ b, a ≥ c

To illustrate with a simple example, WARP implies that if I like chocolate ice cream over vanilla

and strawberry, I will choose chocolate when presented with either a choice between chocolate and

vanilla or chocolate and strawberry.

In a redistricting context, if plans a and b are available, but plan a is chosen, then it must be that

plan a is weakly preferred. Using this method to reject competing hypotheses does not require the

distributional assumptions that limit sampling heuristics. WARP is deterministic: the probability

that b > a when a is chosen, equals zero.18

Computationally-intensive district generation techniques can reveal intent using WARP. An opti-

mization algorithm can map out the space of local optimum of a value function that captures all

relevant redistricting goals. For example, if there exists a plan that contains one more minority

districts than an adopted map, and there is no difference in terms of other geographic and political

goals, then maximization of minority districts was not a goal of a redistricting authority.

To be interpreted as revealing preference rather than simply opportunity, the redistricting authority

must be reasonably aware of the existence of an alternative map. In some states, maps revealed

through public submission phases of a redistricting process can help chart a redistricting authority’s

preference structure. (BARD may thus provide a means of charting out a redistricting authority’s

18Any method for inferring intent must assume some weak collective rationality of a redistricting authority such as

a legislature – that what is intended is also what is chosen. If this assumption is violated, and the preferred plan is

not the one chosen (at least probabilistically), then any attempt to infer intent is futile.

26 Better Automated Redistricting

preference structure where public plan submissions are permitted by actually submitting maps

generated by the program). Where public submissions are not permitted, optimization from the

starting point of the adopted map may reveal if there was an easily discoverable district configu-

ration that would have improved a map on a given criterion under study. BARD’s advantage over

other statistical methods of analyzing plan choice is that they assume a districting authority was

aware of, and had a choice over, the entire distribution of plans, whereas BARD requires only that

the redistricting authority was reasonable aware of their discoverable choices.

There are two further limitations to this approach. First, the components of the scoring function

should represent plausible explanations of the goals of the redistricting process in the political

context being analyzed: like any other statistical test, a set of reasonable causal hypotheses must

be a starting point. Second, like any other analytic method, its effectiveness will depend on how

informative the data is. In some cases it may fail to reject any of the competing hypotheses, and

one may need to obtain more data, such as other plans that were under consideration.

8. Efficiency in Implementation and Design

Because of the computational intensity of plan refinement methods, performance is an important

consideration in the design and implementation of BARD. BARD uses a number of techniques to

improve performance and facilitate large-scale problem computation at different levels of computa-

tion: data structures, computing scores, refining individual plans, and generating sets of plans for

sampling and profiling.

8.1. Data Structures

BARD employs the maptools (Lewin-Koh and Bivand 2007) data structures for storing geographic

maps, in combination with a standard data frame for related variables such as population, and

political composition of census blocks. To determine contiguity and compactness, BARD requires

an adjacency graph. A standard distance matrix requires excessive amounts of memory, so BARD

uses the spdep (Bivand 2008) package’s neighborhood list structure and methods. Our benchmarks

determined that creating subsets of neighborhood lists was quite slow, and thus the implementation

of score functions took some care to avoid generating such subsets.

Redistricting plans are represented as simple integer vectors with attributes identifying the number

of districts and the related geographic map and data frame. However, although R supports copy-

on-write for its objects, we found a significant amount of experimentation and care was necessary in

order to avoid unnecessary duplication of redistricting plan objects. (See the appendix for details.)

Journal of Statistical Software 27

8.2. Performance Tuning

The performance of score functions is critical, since almost all of the other phases of BARD analysis

(such as reporting, refinement, and sampling) repeatedly call these functions. Each of these scoring

functions has been subject to benchmark testing (Rprof and Rprofmem are particularly useful in

this respect) and tuning in R, where performance is poor. Two scoring functions, both geographical,

were found to be surprisingly inefficient in R, and recoded in C, which improved performance by a

factor of ten or better.

Moreover, each of the built-in score functions provided in BARD is designed to permit dynamic

updating. Each accepts the previous score, and a list of changed block assignments, and will

return an updated score. At a minimum, this information is used to determine which districts

changed, and a recalculation is performed only for those districts. Some scoring functions, such as

the population deviation function, provide further performance improvements by conducting only

partial recalculations for the districts affected.

Dynamic scores rely on having the previous score evaluation passed back to the score function.

When manually creating weighted scores that combine multiple dynamic scores, extra care should

be taken to pass arguments back to each component score function.

In addition, combinations of scores should weight components in order to guarantee that legally

required criteria (constraints) always dominate legally optional criteria. Since all score functions

are standardized to produce values in [0,1], this is easily accomplished by setting the weight for

each required constraint so that:∀j ∈ required, wj >

(
number of districts ∗

∑
i/∈required

wi

)

28 Better Automated Redistricting

The following combination score function illustrates a straightforward approach to these issues:

> myCombinedS <- function(plan, lastscore = NULL, ...) {

+ plast <- NULL

+ ctlast <- NULL

+ if (!is.null(lastscore)) {

+ plast <- attr(lastscore, "plast")

+ ctlast <- attr(lastscore, "ctlast")

+ }

+ pscore <- calcPopScore(plan, lastscore = plast, ...)

+ ctscore <- calcContiguityScore(plan, lastscore = ctlast,

+ ...)

+ combined <- exp(ctscore) * attr(plan, "ndists") * 2 + exp(pscore)

+ attr(combined, "plast") <- pscore

+ attr(combined, "ctlast") <- ctscore

+ return(combined)

+ }

In most cases it will be unecessary, however to write functions like those above manually: To min-

imize the housekeeping of creating composite dynamic score functions, BARD provides a wrapper

function, combineDynamicScores, that facilitiates the combination of multiple score functions.

Between the score function and the optimization heuristic, BARD inserts a dynamically generated

function wrapper (analogous to a “factory” pattern in more typically object-oriented language).

This wrapper encapsulates the score function interfaces that are exposed to the refinement heuristic

and provides a set of automatic facilities for encapsulation and performance enhancement. These

facilities detect and take advantage of dynamic score capabilities in the score function, implement a

score cache, provide optional bounds checking on candidate plans generated by the chosen optimizer,

and provide real-time graphical updates for use in demos and diagnostics. This factory wrapper

is transparent to both score functions and optimization heuristics, allowing optimizers such as

optim() and genoud() to be used “out of the box”.

Dynamic scoring is particularly useful for trajectory-based optimization heuristics such as simulated

annealing, hill-climbing (the“greedy”refinement method), and GRASP. BARD’s implementation of

the score factory automatically detects when dynamic scoring is supported by the scoring function

and makes use of it within whichever optimization heuristic calls it. Population-based heuristics,

such as genetic algorithms, are less likely to benefit from dynamic scoring, so dynamic scoring is

Journal of Statistical Software 29

not used by default in BARD’s genetic algorithm refinement heuristic.

A score caching mechanism avoids the need to recalculate scores on recently visited candidate

plans. This is useful for population and trajectory-based optimization heuristics, although not

useful for strictly greedy methods (since no plan is ever revisited by these methods). BARD’s score

factory wrapper makes use of the history mechanism transparent to both the score function and the

optimization heuristic. For memory efficiency, the history mechanism stores digests (using digest

Eddelbuettel, with contributions by Antoine Lucas, Tuszynski, Bengtsson, and Urbanek (2007)) of

the plans visited, rather than complete plans.

Each plan refinement heuristic is also adapted for application to redistricting. The details of these

adaptations are particular to each heuristic, but generally include: adjusting heuristic stopping cri-

teria based on plan size, adjusting optimization-specific tuning parameters (such as temperature in

annealing and population size in the genetic algorithm) based on plan characteristics, and providing

customized candidate/neighborhood generation functions (such as the candidate function for the

annealing method in optim).

8.3. Scalability

To support scaling out to larger problems, BARD supports the use of clusters of distributed com-

puters for plan sampling, and GRASP refinement. The refineGRASPplan, samplePlans, and

profilePlans functions will distribute instances of plan generation and refinement runs across a

cluster. This allows for effective parallelization across hundreds of nodes with very little commu-

nications overhead. (In addition the genoud based genetic algorithm refinement function can use

a cluster, however, because the parallelization for this function is implemented at the score level,

communication overhead is much higher.)

BARD uses the snow (Rossini, Tierney, and Li 2007) framework to distribute work across compute

clusters. This package encapsulates parallelization behind a set of interfaces that are similar to

lapply, that take the computing cluster object as an extra parameter. (Also, a module-specific

closure is used to store the current cluster object, avoiding the need to pass the cluster parameter

in most cases.) Snow clusters can use MPI, PVM or raw sockets for communication.

Internally, BARD further encapsulates the snow lapply functions behind the lapplyBardCluster

function. (Where very large data structures are involved, such as maps, we also found it worth-

while to pre-stage the distribution of these data structures to the distributed compute nodes, and

explicitly manage references to these data structures.) This encapsulation function discovers the

configured cluster (avoiding the need to send additional parameters through the calling chains);

30 Better Automated Redistricting

unifies the multiple snow functions for using different types of scheduling of work; automatically

retries any failed jobs (since socket-based clusters appeared to be particularly unreliable in some

environments); and automatically falls back to local execution if distributed execution is unavailable

or unsuccessful. The result is that other BARD modules can substitute this function for lapply

and instantly make use of fault-tolerant parallelization whenever a cluster is available, without any

other changes to implementation.

9. Future Developments

BARD has recently been released to the public. While BARD offers a unique set of redistricting

features, and serves as a usable framework for developing objective functions and redistricting

algorithms, we envision extensions of it.

The redistricting process is complex; some might say “arcane.” While BARD lowers the barrier to

entering the redistricting process significantly, the learning curve remains steep. Users still must

have experience in interpreting census and election data and knowledge of R. (While BARD offers

some nascent interactive functionality, this is limited.) Integration of BARD into an existing GIS

system could significantly enhance ease of use for non-experts. For novice users, interface features

such as “wizards”, accompanied by extensive help, and training examples would be valuable, and

we expect to develop these interfaces in the future.19

While BARD supplies the most common evaluation criteria for redistricting, there are many varia-

tions in formulas for computing compactness, and many variations of other criteria across political

jurisdictions. We plan to release more score function options and encourage those who write score

functions that can be used with BARD to share them.

Finally, while we have paid careful attention to efficiency in algorithms and implementation (as

described above), plan refinement, sampling and profiling remains very computationally inten-

sive. We have had moderate success with moderate size plans. Since redistricting is a provably

computationally-complex problem and thus not amenable to a general, exact solution, it is prac-

tically certain that the metaheuristics used in BARD can be further refined and supplemented to

increase the size of plans that can be refined in practice, and to efficiently employ more complex

evaluation criteria.

19In addition, although BARD accepts data in the standard statistical and GIS formats, novices may have difficulty

assembling redistricting data, which must be merged from several institutional sources.

Journal of Statistical Software 31

10. Summary

BARD is the first and (at the time of writing) only open-source system for general map drawing and

redistricting analysis. While the first version of BARD was released in September, 2007 the package

offers capabilities unavailable even in high-end commercial systems. It is the only publicly available

(commercial or non-commercial) software that performs multi-criteria optimization on redistricting

plans, allowing a user to specify a formula that includes more than one variable. Furthermore,

while many articles in political science and political geography have presented analyses based on

automated redistricting techniques, no tools that support such methods have previously been made

publicly available. BARD provides tools supporting a range of analytic methods including sim-

ulation of legal constraints on redistricting, “random”ized redistricting analysis, and automated

exposure of revealed preference.

The BARD package provides those interested in creating or evaluating redistricting plans with a

complete set of tools to read maps and data, display plans and edit them. Users can evaluate plans

on a range of redistricting criteria and compare them to other competing redistricting plans.

The BARD package runs on Windows, Linux, and MacOS, and can be obtained from the project

web site bard.sf.net and from any CRAN mirror (http://cran.r-project.org/).

11. Acknowledgements

We thank Max Tsvetovat, Mike Margolis, and Simon Jackman for their comments and recommen-

dations, and Mark Rouleau for research assistance and programming. We also thank the Joyce

Foundation for financial support.

12. Appendix: Memory Management Details

As noted above, additional care in the implementation of BARD is needed to avoid making copies

of large objects. A particular issue is the assignment of large objects as attributes of other objects.

This occurs when redistricting plans contain a reference to the underlying map object on which

they are based. We develop the idiom of wrapping these objects in an environment and assign this

environment as an attribute, which proves successful at avoiding duplication of these large data

structure. We further develop a special-purpose “shallow” concatenate operator, which is used to

concatenate multiple lists of large objects. This avoids memory duplication which would normally

occur when using the c() operator.

bard.sf.net
http://cran.r-project.org/

32 Better Automated Redistricting

This shallow copy function is illustrated below:

> cs <- function(...) {

+ mc <- substitute(list(...))

+ if (length(mc) == 0) {

+ return(list())

+ }

+ listlength <- 0

+ for (i in seq(from = 2, length.out = length(mc) - 1)) {

+ listlength <- listlength + length(eval.parent(mc[[i]]))

+ }

+ lastpos <- 0

+ retval <- vector(length = listlength, mode = "list")

+ for (i in seq(from = 2, length.out = length(mc) - 1)) {

+ tmp <- eval.parent(mc[[i]])

+ for (j in seq(from = 1, length.out = length(tmp))) {

+ retval[lastpos + j] <- tmp[j]

+ }

+ lastpos <- lastpos + length(tmp)

+ }

+ return(retval)

+ }

References

Aerts JC, Eisinger E, Heuvelink GB, Stewart TJ (2003). “Using Linear Integer Programming for

Multi-Site Land-Use Allocation.” Geographical Analysis, 35(2), 148–69.

Altman M (1997). “Is Automation the Answer: The Computational Complexity of Automated

Redistricting.” Rutgers Computer and Law Technology Journal, 23(1), 81–141.

Altman M (1998a). Districting Principles and Democratic Representation. Ph.D. thesis, California

Institute of Technology, Pasadena, California.

Altman M (1998b). “Modeling the Effect of Mandatory District Compactness on Partisan Gerry-

manders.” Political Geography, 17(8), 989–1012.

Journal of Statistical Software 33

Altman M, MacDonald K, McDonald MP (2005). “From Crayons to Computers: The Evolution of

Computer Use in Redistricting.” Social Science Computer Review, 23(3), 334–346.

Altman M, McDonald MP (2004). “A Computation-Intensive Method for Evaluating Intent in

Redistricting.” Presented at the annual meeting of the Midwest Political Science Association,

URL http://www.hmdc.harvard.edu/micah_altman/papers/dividing.pdf.

Balinski ML, Young HP (2001). Fair Representation: Meeting the Ideal of One Man, One Vote.

Brookings Institution Press, Washington, D.C.

Bivand R (2008). spdep: Spatial dependence: weighting schemes, statistics and models. R package

version 0.4-29.

Blum C, Roli A (2003). “Metaheuristics in Combinatorial Optimization.” ACM Computing Surveys,

35(3), 268–308.

Cain B, Donald KM, McDonald MP (2006). “From Equality to Fairness: The Path of Political

Reform Since Baker v. Carr.” In B Cain, T Mann (eds.), “Party Lines,” Brookings.

Cirincione C, Darling T, O’Rourke T (2000). “Assessing South Carolina’s 1990’s Congressional

Districting.” Political Geography, 19, 189–211.

di Cortona PG, Manzi C, Pennisi A, Ricca F, Simeone B (1999). Evaluation and Optimization of

Electoral Systems. SIAM Pres, Philadelphia.

Eddelbuettel D, with contributions by Antoine Lucas, Tuszynski J, Bengtsson H, Ur-

banek S (2007). digest: Create cryptographic hash digests of R objects. R pack-

age version 0.3.0, URL http://www.cr0.net:8040/code/crypto/,ftp://ftp.rocksoft.com/

cliens/rocksoft/papers/crc_v3.txt.

Engstrom R, Wildgen J (1977). “Pruning Thorns from the Thicket: An Empirical Test of the

Existence of Racial Gerrymandering.” Legislative Studies Quarterly, 4, 465–479.

Feo T, Resende M (1989). “A probabilistic heuristic for a computationally difficult set covering

problem.” Operations Research Letters, 8, 67–71.

Forest B (2004). “Information sovereignty and GIS: the evolution of ’communities of interest’ in

political redistricting.” Political Geography, 23, 425–451.

Gelman A, King G (1994). “A Unified Method of Evaluating Electoral Systems and Redistricting

Plans.” American Journal of Political Science, 38, 513–54.

http://www.hmdc.harvard.edu/micah_altman/papers/dividing.pdf
http://www.cr0.net:8040/code/crypto/, ftp://ftp.rocksoft.com/cliens/rocksoft/papers/crc_v3.txt
http://www.cr0.net:8040/code/crypto/, ftp://ftp.rocksoft.com/cliens/rocksoft/papers/crc_v3.txt

34 Better Automated Redistricting

Glover F (1986). “Future Paths for Integer Programming and Links to Artificial Intelligence.”

Computers and Operations Research, 13, 533–549.

Grofman B (1982). “For single Member Districts Random is Not Equal.” In B Grofman, A Lijphart,

R McKay, H Scarrow (eds.), “Representation and Redistricting Issues,” Lexington Books.

Grofman B, Handley L, Niemi R (1992). Minority Representation and the Quest for Voting Equality.

Cambridge University Press.

Gronke P, Wilson J (1999). “Competing Redistricting Plans as Evidence of Political Motives.”

American Politics Quarterly, 27(2), 147–76.

Gudgin G, Taylor P (1979). Seats, Votes, and the Spatial Organization of Elections. Pion Limited.

Johnson DS (1982). “The NP-Completeness Column: An Ongoing Guide.” Journal of Algorithms,

3, 182–195.

King G, Palmquist B, Adams G, Altman M, Benoit K, Gay C, Mayer R, Reinhardt E (1997). “The

Record of American Democracy, 1984-1990.” Technical Report 23623, ICPSR.

Knuth D (1997). The Art of Computer Programming : Seminumerical Algorithms. Addison Wesley,

2nd edition.

Lewin-Koh NJ, Bivand R (2007). maptools: Tools for reading and handling spatial objects. R

package version 0.6-13.

McDonald MP (2004). “Comparative Analysis of United States Redistricting Institutions.” State

Politics and Policy Quarterly, 4(4), 371–96.

McDonald MP (2006). “Redistricting and District Competition.” In MP McDonald, J Samples

(eds.), “The Marketplace of Democracy: Electoral Competition in American Politics,” Brookings

Press.

Nagel SS (1965). “Simplified Bipartisan Computer Redistricting.” The Stanford Law Review, 17,

863–869.

Niemi R, Grofman B, Carlucci C, Hofeller T (1991). “Measuring Compactness and the Role of a

Compactness Standard in a Test for Partisan and Racial Gerrymandering.” Journal of Politics,

53, 1155–1179.

Journal of Statistical Software 35

Niemi RG, John Deegan J (1978). “A Theory of Political Districting.” The American Political

Science Review, 72(4), 1304–1323.

O’Loughlin J (1982). “The identification and evaluation of racial gerrymandering.” Annals of the

Association of American Geographers, 70, 353–70.

Parker FR (1990). Black Votes Count. University of North Carolina Press.

Rogerson P, Yang Z (1999). “The Effects of Spatial Population Distributions and Political District-

ing on Minority Populations.” Social Science Computer Review, 17(1).

Rossini A, Tierney L, Li N (2007). “Simple Parallel Statistical Computing in R.” Journal of

Computational and Graphical Statistics, 16(2), 399–420.

Rossiter D, Johnston R (1981). “Program GROUP: the identification of all possible solutions to a

constituency-delimitation problem.” Environment and Planning, 13, 231–8.

Samuelson PA (1948). “Consumption Theory in Terms of Revealed Preference.” Econometrica, 15,

243–253.

Shepherd J, Jenkins M (1973). “Decentralizing High School Administration in Detroit: A computer

Evaluation of Alternative Strategies of Political Control.” Economic Geography, 48, 95–106.

Tufte ER (1973). “The Relationship between Seats and Votes in Two-Party Systems.” The American

Political Science Review, 67(2), 540–554.

Vickrey W (1961). “On the Prevention of Gerrymandering.” Political Science quarterly, 76, 105–

110.

Weaver JB, Hess SW (1963). “A Procedure for Nonpartisan Districting.” The Yale Law Journal,

72(2), 228–308.

Wolpert D, Macready W (1997). “No Free Lunch Theorems for Optimization.” IEEE Transactions

on Evolutionary Computation, 1(1), 67–82.

Xiao N (2003). Geographical Optimization using Evolutionary Algorithms. Ph.D. thesis, University

of Iowa.

Xiao N (2006). “An Evolutionary Algorithm for Site Search Problems.” Geographical Analysis, 38,

227–47.

36 Better Automated Redistricting

Affiliation:

Micah Altman

Senior Research Scientist

Institute for Quantitative Social Science

Harvard University

1737 Cambridge Street, N325

Cambridge, MA, 02138.

United States of America

E-mail: micah_altman@harvard.edu

URL: http://maltman.hmdc.harvard.edu/

Michael P. McDonald

Associate Professor, Department of Public and International Affairs

George Mason University

4400 University Drive - 3F4

Fairfax, VA 22030-4444

E-mail: mmcdon@gmu.edu

URL: http://elections.gmu.edu/

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume VV, Issue II Submitted: yyyy-mm-dd

MMMMMM YYYY Accepted: yyyy-mm-dd

mailto:micah_altman@harvard.edu
http://maltman.hmdc.harvard.edu/
mailto:mmcdon@gmu.edu
http://elections.gmu.edu/
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Redistricting with BARD
	Example: Using BARD for Plan Evaluation and Modification
	A Mathematical Formulation of Redistricting Criteria
	Redistricting Criteria

	Use of Automated Redistricting for Plan Analysis
	Improving Algorithms for Automated Redistricting Refinement
	Available Software
	New Metaheuristic Approaches
	Optimization Methods in BARD

	Plan Refinement, Sampling and Profiling
	Efficiency in Implementation and Design
	Data Structures
	Performance Tuning
	Scalability

	Future Developments
	Summary
	Acknowledgements
	Appendix: Memory Management Details

