Macdonell {HistData} | R Documentation |
In the second issue of Biometrika, W. R. Macdonell (1902) published an extensive
paper, On Criminal Anthropometry and the Identification of Criminals
in which he included numerous tables of physical characteristics 3000 non-habitual
male criminals serving their sentences in England and Wales. His Table III (p. 216)
recorded a bivariate frequency distribution of height
by finger
length.
W. S. Gosset (aka "Student") used these data in two classic papers in 1908, in which he derived various characteristics of the sampling distributions of the mean, standard deviation and Pearson's r. He said, "Before I had succeeded in solving my problem analytically, I had endeavoured to do so empirically." Among his experiments, he randomly shuffled the 3000 observations from Macdonell's table, and then grouped them into samples of size 4, 8, ..., calculating the sample means, standard deviations and correlations for each sample.
data(Macdonell)
A frequency data frame with 924 observations on the following 3 variables giving
the bivariate frequency distribution of height
and finger
.
height
finger
frequency
height
and finger
Class intervals for height
in Macdonell's table were given in 1 in.
ranges, from (4' 7" 9/16 - 4' 8" 9/16), to (6' 4" 9/16 - 6' 5" 9/16).
The values of height
are taken as the lower class boundaries.
Macdonell, W. R. (1902). On Criminal Anthropometry and the Identification of Criminals. Biometrika, 1(2), 177-227. doi:10.1093/biomet/1.2.177
The data used here were obtained from:
Hanley, J. (2008). Macdonell data used by Student. http://www.medicine.mcgill.ca/epidemiology/hanley/Student/
Hanley, J. and Julien, M. and Moodie, E. (2008). Student's z, t, and s: What if Gosset had R? The American Statistican, 62(1), 64-69.
Gosett, W. S. [Student] (1908). Probable error of a mean. Biometrika, 6(1), 1-25. http://www.york.ac.uk/depts/maths/histstat/student.pdf
Gosett, W. S. [Student] (1908). Probable error of a correlation coefficient. Biometrika, 6, 302-310.
data(Macdonell) ## maybe str(Macdonell) ; plot(Macdonell) ... # display the frequency table xtabs(frequency ~ finger+round(height,3), data=Macdonell)