diaph.data {MImix} | R Documentation |
This dataset consists of a list of imputed datasets for an example of multiple imputation for the correction of partial verification bias, as originally reported in Harel and Zhou (2006) and discussed by deGroot, et al. (2008).
diaph.data
A list containing three elements:
imputed.tables: A list of 100 imputed tables using the saturated categorical model of Schafer (1997).
sens.samples: A vector of 1000 draws of the sensitivity of the test from the posterior distribution using the saturated categorical model of Schafer (1997).
original.data: The original dataset from Marshall, et al. (1981), including the observations with missing gold standard values.
For the imputed tables and the original table, D
refers to the gold standard test and T
refers to the diagnostic test of interest.
Marshall, V., Williams, D.C., and Smith, K. D. (1981). Diaphanography as a means of detecting breast cancer. Radiology 150:339-343.
Schafer, J. L. (1997). Analysis of Incomplete Multivariate Data by Simulation. Chapman & Hall Ltd.
Harel O., Zhou X.H. (2006) Multiple imputation for correcting verification bias. Statistics in Medicine 25:3769-3786.
de Groot, J.A.H. and Janssen, K.J.M. and Zwinderman, A.H. and Moons, K.G.M. and Reitsma, J.B. (2008) Multiple imputation to correct for partial verification bias revisited. Statistics in Medicine 27:5880-5899.
data(diaph.data) attach(diaph.data) ## Calculate sensitivity for each imputed table sens.imps<-lapply(imputed.tables,function(x){ x[2,2]/(x[2,1]+x[2,2]) }) sens.imps.vars<-lapply(imputed.tables,function(x){ x[2,2]*x[2,1]/(x[2,1]+x[2,2])^3 }) ### Calculate mixture summary MImix(sens.imps,sens.imps.vars) ### Compare to usual t-summary using MIcombine: requires(mitools) library(mitools) summary(MIcombine(sens.imps,sens.imps.vars)) ### Compare both to the Bayesian posterior estimate quantile(sens.samples,c(0.025,0.5,0.975))