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1 Introduction

What follows is a detailed description of how I presently estimate the intensity func-
tion (IF )1 of spike trains recorded in the spontaneous regime using STAR functionalities.

This a “short” version of the vignette describing rather breifly the analysis of a single
spike train. A longer,more comprehensive version can be found in the STAR web site2.

1.1 Some jargon

Before entering into the details of the analysis some technical terms that are going to be
used constantly in the sequel will be introduced. The notations follow mainly the ones
of Brillinger [1988a, pp 190–191].

Definition 1 For points {tj} randomly scattered along a line, the counting process N(t)
gives the number of points observed in the interval (0, t]: counting pro-

cess definition
N(t) = ]{tj with 0 < tj ≤ t} (1)

where ] stands for the cardinality (number of elements) of a set.

Brillinger [1988a] uses τj for our tj .

Definition 2 The history, Ht, consists of the variates determined up to and including history defini-
tiontime t that are necessary to describe the evolution of the counting process.

The history is often called the filtration in the counting process literature. See
Touboul and Faugeras [2007, p 93] for a rigorous definition of the concept, see also
Andersen et al. [1993, pp 49–51].

Definition 3 For the process N and history Ht, the intensity function at time t is
defined as: intensity func-

tion definitionλ(t | Ht) = lim
h↓0

Prob{event ∈ (t, t+ h] | Ht}
h

(2)

1“Our” intensity function is also often called the conditional intensity function, e.g., Brillinger [1988a],
Ogata [1988] or the hazard function, e.g., Johnson [1996]. The intensity function should be called more
properly the intensity processsince it is in general a function of random variables Andersen et al. [1993,
p 51]

2http://sites.google.com/site/spiketrainanalysiswithr/
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For small h one has the interpretation:

Prob{event ∈ (t, t+ h] | Ht} ≈ λ(t | Ht)h (3)

Notice that we are using symbol λ for the intensity function, following the now most
usual convention Andersen et al. [1993, p 51], while Brillinger [1988a], Johnson [1996]
use µ.

1.2 Loading STAR

We will start with the analysis of the discharge of neuron 1 in data set: e060824spont.
I assume that you have installed the last version of STAR from your favorite CRAN
server. Then the first thing to do once R has been started is to load the package: library

> library(STAR)

Here some of the stuff printed upon loading the package has been removed.

2 Analysis of data from neuron 1 of e060824spont data set

2.1 Loading data

Fine, we now have to make the data set e060824spont available from our work space,
and this is done with function data: data

> data(e060824spont)

2.2 Summarizing data

We start by getting a quick summary of neuron 1 spike train by applying the sum-
mary method to the spikeTrain object, e060824spont[["neuron 1"]]3: summary

> summary(e060824spont[["neuron 1"]])

A spike train with 505 events, starting at: 0.594 and ending at: 58.585 (s).
The mean ISI is: 0.115 and its SD is: 0.36 (s).
The mean log(ISI) is: -3.148 and its SD is: 1.044
The shortest interval is: 0.008
and the longest is: 3.811 (s).

2.3 Automatic analysis

2.3.1 reportHTML

We next carry out an “automatic analysis” using method reportHTML: reportHTML

3As can be seen by looking at the documentation of the data set (?e060824spont), e060824spont is
a list of two spikeTrain objects.
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Figure 1: The spike train plot of neuron 1 of data set e060824spont.

> reportHTML(e060824spont[["neuron 1"]], filename = "e060824spont_1",

+ directory = "report", otherST = e060824spont[c(2)], maxiter = 100)

The result of this automatic analysis is a bunch of figures in png format and an html
file named e060824spont_1.html and located in subdirectory report. The best way to
visualize the html file is clearly to use your favorite web browser.

2.3.2 Spike train plot

The first figure appearing on the web page (e060824spont_1.html) is a spike train
plot [Pouzat and Chaffiol, 2009] and is reproduced in Fig. 1. A striking staircase pattern
can be seen on the realization of the counting process defined by Eq. (1). This pattern
which translates into the non-uniform distribution of the ticks on the raster plot shown
at the bottom of the graph rules out a model based on a homogenous Poisson process for
this spike train.
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Intensity function of an homogenous Poisson process The IF of an homogenous
Poisson process is extremly simple. One has:

λ(t | Ht) = λ0 (4)

That is, the IF is a constant.

Tip When dealing with spike train with a lot of events, say 1000 or more, the extra
“visibility” provided by the spike train plot compared to the classical raster plot , can
be defficient in the sense that important details of the discharge can end up being not
discernible. It is then easy to use the subsetting method for spikeTrain objects which
would give in the present case: Subsetting

spikeTrain ob-
jects> e060824spont[[1]][10 <= e060824spont[[1]] & e060824spont[[1]] <

+ 40]

The resulting spike train plot is not shown in this document, but a “zoom” of Fig. 1
between seconds 10 and 40 would pop-up.

2.3.3 renewalTestPlot

As explained in Pouzat and Chaffiol [2009, Sec. 2.4.3], the model “following” the ho-
mogenous Poisson process is the homogenous renewal process. A graphical plot of the
suitability of such a model for empirical data is the second graph appearing on the web
page, e060824spont_1.html, and is generated by function renewalTestPlot. We show it
here on Fig. 2 from which it is clear that a homogenous renewal process model does not
apply.

Intensity function of a homogenous renewal process The IF of a homogenous
renewal process is still reasonably simple. One has:

λ(t | Ht) = r(t− tl) (5)

where tl is the occurence time of the last spike before t, formally, tl = max{tj : tj < t}.
In other words, t − tl is the elapsed time since the last spike. It is as if the clock was
reset at 0 everytime an event occurs. For a homogenous renewal process the history is
simply made of all the spikes observed up to, but not including, t: {tj : tj < t}.

2.3.4 Cross correlation histograms and Cross-intensity plots

The web page shows next two plots which are relevant only when the homogenous
renewal process applies. They are not reproduced here since a more sophisticated
model is required as shown by Fig. 2. The last plots showing the cross-correlation his-
togram [Brillinger et al., 1976, Eq. (13), p 218] and its smooth version, the cross-intensity
plot , is reproduced here on Fig. 3. Since this data sets contains only two neurons, only
one such plot appears on the web page. With more neurons in the data set, more plots
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Figure 2: Renewal test plot of neuron 1 of data set e060824spont.
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Figure 3: Cross-intensity plot and Cross correlation histogram between neuron 1 and 2
of data set e060824spont.

can be generated by setting properly argument otherST of method reportHTML. Since
the black horizontal lines on Fig. 3 is entirely contained in the “confidence region”, there
is no ground to include an interaction term between the two recording neurons in our
discharge model for neuron 1.

2.3.5 Conclusions of the automatic analysis

This automatic analysis leads us to conclude that our model needs to be more complex
than a homogenous renewal process model (Fig. 2). The absence of significant cross-
correlation (Fig. 3) suggests that an interaction term between neurons 1 and 2 of the
data set is not required. Moreover neither the spike train plot (Fig. 1) nor the auto-
correlation function plot (bottom left of Fig. 2) show clear signs of non stationnarity
of the train. At the present stage we do not have any method leading to unambiguously
interpretable models with non stationnary data in the spontaneous regime.

A model more complex than a homogenous renewal process model will necessarily
lead us to a multivariate IF . Biophysics teaches us that every neuron exhibits a refractory
period following a spike (ruling out the homogenous Poisson process as a “true” model)
and that will lead us to always include the elapsed time since the last spike in our
models; just as we did for the homogenous renewal process model of Eq. (5). Of course
the bothering question at this stage is: What the extra variables in our IF model should
be? A“natural”way to include interactions between neurons would be to add the elapsed
time since the last spike of a“functionally”coupled neuron in our variables list. But as we
just saw for the present data set such an additional variable does not seem necessary. We
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Figure 4: The partial autocorrelation function of neuron 1 of data set e060824spont.

are therefore left with the occurrence times of the other previous spikes, or equivalently,
with the duration of the previous inter spike intervals (isis). The question becomes
then: how many previous isis should we include in our variables list? The next section
presents a tool providing us with a first guess.

2.4 Partial autocorrelation function

A practical guidance on how many past isis should be included is provided by the partial
autocorrelation function of the isis [Kuhnert and Venables, 2005, pp 77–79]. A graph of
this function for the present data set is shown on Fig. 4. It is obtained with command: acf

> acf(diff(e060824spont[["neuron 1"]]), type = "partial")

What we should look at here are the lags at which the function is out of 95% “confidence
intervals”, like lag 1 for this data set.

This initial analysis would lead us to a model like:

λ(t | Ht) = f(t− tl, i1) (6)

where i1 is the duration of the last isi .
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Tip In practice when the homogenous renewal process model does not apply, I always
include the last isi in the model variables list even if partial autocorrelation function is
not out of the confidence intervals at lag 1. I include in addition all the other isis for
which it is out.

2.5 Data frame for gss

We will follow the approach of Brillinger [1988a, p 191], where for computational conve-
nience, a discretization of the spike train is performed. That is, we go from the “actual
train”, {t1, . . . , tn} where 0 < t1, . . . , tn ≤ T , to a binary vector, event, whose jth element time discretiza-

tion and vector
event

is the value of the sum over {t1, . . . , tn} of the indicator function Ij defined by:

Ij(t) =
{

1 if (j − 1)δ < t ≤ jδ
0 otherwise

(7)

Where the “bin width”, δ, is chosen small enough to have at most one spike per bin4.
More explicitly we have:

eventj =
n∑
k=1

Ij(tk) (8)

When we work with this binary vector event we do not estimate f(t − tl, i1) directly
anymore but:

fδ(t− tl, i1) ≡ f ((j − jl)δ, (jl − jl−1)δ) δ (9)

where j is be index of the bin containing time t, jl is the index of the bin of the previous
spike and jl−1 is the index of the second previous spike. fδ should be a probability
(if δ has indeed been set small enough), that is a number between 0 and 1. This is
what Brillinger [1988a, Eq. (2.5), p 191] writes pt (his t being our j).

Since Biophysics doesn’t help us much beyond the presence of a refractory period, it
is hard to guess what f(t − tl, i1) of Eq. (6) or fδ(t − tl, i1) of Eq. (9) should look like.
We will therefore use a nonparametric approach where fδ(t − tl, i1) will be estimated
with a penalized likelihood method. The general features of this approach are describe
briefly in Pouzat and Chaffiol [2009, Sec. 2.5.2] and in depth in Gu [2002].

The model estimation will moreover be performed by function gssanova of Chong
Gu’s package gss. The data “fed” to this function have to be in a data frame format.
Function mkGLMdf of STAR will allow us to build a data frame from a spikeTrain object.
Since our preliminary analysis lead us to rule out an interaction between the two neurons
of our data set, we do not need to include a variable containing the ellapsed time since
the last spike of neuron 2 in our data frame. Our initial summary taught us that the
shortest isi was 8 ms long and that events were obeserved between 0 and 59 s. We will
therefore use a bin width of 4 ms and create our data frame with: mkGLMdf

4This type of discretization is referred to by Berman and Turner [1992, pp 33–34] as a probabilistic
approximation, they propose an alternative numerical approximation where the bin width, δ, is allowed
to change along the time axis. The quantity being approximated is the likelihood of intensity [Pouzat
and Chaffiol, Sec. 2]. Chornoboy et al. [1988] present an approach similar to the one of Brillinger [1988a]
albeit with a different motivation. Brillinger did moreover use this probabilistic approximation from the
early eighties on as witnessed by his 1983 “Wald Memorial Lecture” [Brillinger, 1988b, p 34].
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> DFA <- mkGLMdf(e060824spont[["neuron 1"]], 0.004, 0, 59)

We can get a quick view of the first elements of our data frame DFA with: head

> head(DFA)

event time neuron lN.1
150 0 0.596 1 0.004
151 0 0.600 1 0.008
152 0 0.604 1 0.012
153 0 0.608 1 0.016
154 0 0.612 1 0.020
155 0 0.616 1 0.024

Here the variables are:

� event corresponds to our previous event vector, it contains the binary version of
the spike train.

� time contains the time at the bin center (in s).

� neuron contains the number of the considered neuron in the data set (the one to
which the spikes in the event variable belong). It wont be used here but it becomes
useful when several neurons are present and when interactions between them have
to be considered as we will later see.

� lN.1 contains the elapsed time since the last spike of neuron 1, that is, j − jl in
Eq. (9).

We can also get a quick view at the end of DFA with: tail

> tail(DFA)

event time neuron lN.1
14746 0 58.980 1 0.396
14747 0 58.984 1 0.400
14748 0 58.988 1 0.404
14749 0 58.992 1 0.408
14750 0 58.996 1 0.412
14751 0 59.000 1 0.416

There is still one variable missing in our data frame in order to work with our
candidate model: the last isi which can be obtained with function isi of STAR: isi

> DFA <- within(DFA, i1 <- isi(DFA, lag = 1))

Here we have just added variable i1 to our data frame. As we can see by calling head on
our modified DFA:
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> head(DFA)

event time neuron lN.1 i1
150 0 0.596 1 0.004 NA
151 0 0.600 1 0.008 NA
152 0 0.604 1 0.012 NA
153 0 0.608 1 0.016 NA
154 0 0.612 1 0.020 NA
155 0 0.616 1 0.024 NA

values of i1 are not available for the first elements of the data frame. It makes sense
since we do not know when was the last spike before the beginning of the acquisition.
We are therefore going to remove the elements of DFA for which one of the variables is
not available. We can do that efficiently with function complete.cases of R: complete.cases

> DFA <- DFA[complete.cases(DFA), ]

Calling head again, we can see that complete.cases did its job right:

> head(DFA)

event time neuron lN.1 i1
436 0 1.740 1 0.004 0.216
437 0 1.744 1 0.008 0.216
438 0 1.748 1 0.012 0.216
439 0 1.752 1 0.016 0.216
440 0 1.756 1 0.020 0.216
441 0 1.760 1 0.024 0.216

We can moreover check that isi did its job correctly by looking at a well chosen part of
DFA, like the one starting at index 14169:

event time neuron lN.1 i1
14604 0 58.412 1 0.012 0.016
14605 1 58.416 1 0.016 0.016
14606 0 58.420 1 0.004 0.016
14607 1 58.424 1 0.008 0.016
14608 0 58.428 1 0.004 0.008
14609 0 58.432 1 0.008 0.008
14610 1 58.436 1 0.012 0.008
14611 0 58.440 1 0.004 0.012

2.6 Variables transformation

A crucial ingredient for efficient smoothing spline estimation is an a “reasonably” uni-
form distribution of the independent variables (or predictors). But as Fig. 5 shows our
independent variables, lN.1 and i1 are not uniformly distributed.
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Figure 5: Empirical cumulative distribution function of lN.1 and i1.

> with(DFA, plot(ecdf(lN.1), pch = "."))

> with(DFA, lines(range(lN.1), c(0, 1), col = 2, lty = 2))

> with(DFA, plot(ecdf(i1), pch = "."))

> with(DFA, lines(range(i1), c(0, 1), col = 2, lty = 2))

In the sequel we will adopt the slightly extrem “mapping to uniform” approach, that is,
we are going to estimate a smooth version of the cumulative distribution function (cdf )
and use it to transform our independent variables. The STAR function doing this job is
mkM2U. It can be called on part of the data set in order to perform a mapping of the
other part independent of the (mapped) data. For our two variables lN.1 and i1 we
call: mkM2U

> m2u1 <- mkM2U(DFA, "lN.1", 0, 28.5)

> m2ui <- mkM2U(DFA, "i1", 0, 28.5, maxiter = 200)

The results of these two commands are two mapping functions that we can now use to
generate the “mapped to uniform” variables, e1t and i1t:

> DFA <- within(DFA, e1t <- m2u1(lN.1))

> DFA <- within(DFA, i1t <- m2ui(i1))

Fig. 6 shows us that our mapping worked properly.
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Figure 6: Empirical cumulative distribution function of e1t and i1t.
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Figure 7: Time evolution of event and i1t. A box filter of 0.5 s has been applied

2.7 Variables evolution

Before going further it can be a good idea to look at the (time) evolution of the variables.
In order to do that quickly we are going to use the default time series objects provided
by R and created with function ts. Looking at e1t should not be too interesting since
this variable is starting at zero following an event and increases linearly thereafter. We
will therefore look at our event and i1t variables. In order to have a clearer picture
we are going to box-filter the variables using function filter with a widow length of 0.5 s
(that is, 125 indexes, since we used a bin width of 4 ms). We will also map i1t onto a
normal random variable and we get Fig. 7 : ts filter

> DFAts <- ts(with(DFA, cbind(event, qnorm(i1t))), start = DFA$time[1],

+ delta = diff(DFA$time[1:2]))

> plot(filter(DFAts, rep(1/125, 125)))

Fig. 7 does not exhibit any clear trend in the graphed variables, confirming thereby our
former stationary discharge conclusion. Depending on the data at hand it can clearly be
a good idea to try out several filter window lengths.
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2.8 Fitting and testing models

Since we are going to use nonparametric model estimation procedures and since we want
to have meaningful goodness of fit tests we will systematically fit a given model to one
half of the data and test it on the other half before switching the fit and test data parts
and repeating the procedure.

2.8.1 Model fit: the straightforward approach

We are going to fit our models using function gssanova of package gss. The most straight-
forward way to fit the model of Eq. (6) to the first half of our data set is: gssanova

> GF1e <- gssanova(event ~ e1t * i1t, data = subset(DFA, time <=

+ 29.5), family = "binomial", seed = 20061001)

The time needed to carry out this fit on the present machine is, 92.11 s5

2.8.2 Time transformation and goodness of fit

We will asses the quality of our model by evaluating the intensity process of the part
of the data taht we did not use fro model estiamtion. This intensity process will then
be used to performed a time transformation as proposed by Ogata [1988] after which
a new counting process will be obtained. If our model is good this process should be
the realization of a homogenous Poisson process with rate 1. The latter process is then
the null hypothesis against which we are going to test Pouzat and Chaffiol. The time
transformation is simply performed with function %tt% of STAR. It is called as follows: %tt%

> tt.GF1e <- GF1e %tt% subset(DFA, time > 29.5)

Object tt.GF1e is an object of class CountingProcessSamplePath for which a sum-
mary method exists providing a quick numeric summary of how appropriate the model
is:

> tt.GF1e.summary <- summary(tt.GF1e)

> tt.GF1e.summary

*** Test of uniformity on the time axis
Prob. of the Kolmogorov statistic under H0: 0.25209

*** Wiener process test
Inside 95% domain: TRUE , inside 99% domain: TRUE

*** Berman test
Prob. of the Kolmogorov statistic under H0: 0.11301

*** Renewal test
5For reference, it takes 88.23 s on an Intel Core2 Duo P9500 at 2.53 GHz with 4 GB of RAM, running

Ubuntu 9.04, R-2.9.1 link to the ATLAS version of BLAS (version 3.8.3) everything being compiled with
gcc 4.3.3.
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Figure 8: Ogata’s tests battery applied to the time transformed second half of neuron
1 spike train (from data set: e060824spont) using model GF1e fitted on the first half.
See Pouzat and Chaffiol for a description of the plots.

Inside 95% domain: FALSE , inside 99% domain: TRUE
Maximum lag: 24

*** Variance vs "time" with 5 time windows:
1 window out at 95% level
0 window out at 99% level

*** The object contains 262 events.

Notice that the last two commands could be combined in a single one by typing:

> (tt.GF1e.summary <- summary(tt.GF1e))

The quality of the model can also be assest by calling the plot method for CountingPro-
cessSamplePath objects as shown on Fig. 8:

> plot(tt.GF1e.summary, which = c(1, 2, 4, 6))

Looking at Fig. 8 we would conclude that the model is satisfying.
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2.8.3 Exchanging fitting and testing part

In order to fully validate our model we are going to exchange the fitting and testing part,
that is, fit the same model as before to the last half of the data set before testing it on
the first half:

> GF1l <- gssanova(event ~ e1t * i1t, data = subset(DFA, time >

+ 29.5), family = "binomial", seed = 20061001)

The total time taken by our two fits is: 194.68 s. We now perform the same series of
tests than before but this time on the early part of the data set:

> tt.GF1l <- GF1l %tt% subset(DFA, time <= 29.5)

> (tt.GF1l.summary <- summary(tt.GF1l))

*** Test of uniformity on the time axis
Prob. of the Kolmogorov statistic under H0: 0.44026

*** Wiener process test
Inside 95% domain: TRUE , inside 99% domain: TRUE

*** Berman test
Prob. of the Kolmogorov statistic under H0: 0.14104

*** Renewal test
Inside 95% domain: FALSE , inside 99% domain: TRUE
Maximum lag: 24

*** Variance vs "time" with 4 time windows:
0 window out at 95% level
0 window out at 99% level

*** The object contains 240 events.

> plot(tt.GF1l.summary, which = c(1, 2, 4, 6))

Looking at Fig. 9 we would conclude again that the model is satisfying.

2.8.4 Doing two fits at once with a multi-core CPU

See the long version of the vignette on the STAR web site6.

2.8.5 Trying a simpler model

We have just explored a model containing an “interaction” term between variable e1t
and variable i1t. Since the latter gives good fits it is interesting to try simplifying it to
see if a model without interaction would not give as good results we proceed as follows:

6http://sites.google.com/site/spiketrainanalysiswithr/
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Figure 9: Ogata’s tests battery applied to the time transformed first half of neuron 1
spike train (from data set: e060824spont) using model GF1l fitted on the second half.
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> GF2e <- gssanova(event ~ e1t + i1t, data = subset(DFA, time <=

+ 29.5), family = "binomial", seed = 19731004)

> tt.GF2e <- GF2e %tt% subset(DFA, time > 29.5)

> (tt.GF2e.summary <- summary(tt.GF2e))

*** Test of uniformity on the time axis
Prob. of the Kolmogorov statistic under H0: 0.24169

*** Wiener process test
Inside 95% domain: TRUE , inside 99% domain: TRUE

*** Berman test
Prob. of the Kolmogorov statistic under H0: 0.07561

*** Renewal test
Inside 95% domain: TRUE , inside 99% domain: TRUE
Maximum lag: 24

*** Variance vs "time" with 5 time windows:
2 windows out at 95% level
1 window out at 99% level

*** The object contains 262 events.

> GF2l <- gssanova(event ~ e1t + i1t, data = subset(DFA, time >

+ 29.5), family = "binomial", seed = 19731004)

> tt.GF2l <- GF2l %tt% subset(DFA, time <= 29.5)

> (tt.GF2l.summary <- summary(tt.GF2l))

*** Test of uniformity on the time axis
Prob. of the Kolmogorov statistic under H0: 0.12505

*** Wiener process test
Inside 95% domain: TRUE , inside 99% domain: TRUE

*** Berman test
Prob. of the Kolmogorov statistic under H0: 0.05779

*** Renewal test
Inside 95% domain: TRUE , inside 99% domain: TRUE
Maximum lag: 24

*** Variance vs "time" with 4 time windows:
1 window out at 95% level
0 window out at 99% level

*** The object contains 240 events.

The fit diagnostic plots are shown on Fig. 10. Since the simpler model also looks
good, the question becomes: Which one should we choose?

2.9 Model selection

One way to compare two alternative models is to look at the probability they give to data
which were not the data used to fit them. This can be done with function predictLogProb of
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Figure 10: Ogata’s tests battery applied to the time transformed neuron 1 spike train
(from data set: e060824spont) using model GF2. Left column, fit first half, test second
half (compare with Fig. 8). Right column, fit second half, test first (compare with Fig. 9).
The first tests (upper right) of Fig. 8 and 9 are not shown here but are “passed” (i.e.,
within the confidence bands).
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STAR which returns the log probability of some data (passed as the second argument to
the function) under some model (passed as the first argument). Here the log probability
of our data using the simpler model is: predictLogProb

> (GF2.logProb <- predictLogProb(GF2e, subset(DFA, time > 29.5)) +

+ predictLogProb(GF2l, subset(DFA, time <= 29.5)))

[1] -1775.852

[1] -1775.852

> (GF1.logProb <- predictLogProb(GF1e, subset(DFA, time > 29.5)) +

+ predictLogProb(GF1l, subset(DFA, time <= 29.5)))

[1] -1763.006

[1] -1763.006

Since the most complex model (with interaction) gives a higher probability than the less
complex one (without interaction) I would go ahead and keep the former.

2.10 Plotting results

2.10.1 Quick visualization of the model terms

Before looking at the model terms effect we would normaly refit our selected model to
the full data set in orer to have better estimates with7:

> GF1f <- gssanova(event ~ e1t * i1t, data = DFA, family = "binomial",

+ seed = 20061001)

We use here the fit obtained from the first half of the data set (GF1e). A plot of the
terms is then quickly generated with the plot method for gssanova objects:

> plot(GF1e, nr = 3, nc = 1)

2.10.2 Use of quickPredict and its associated methods

A finner control of the plots can be obtained with the quickPredict function of STAR and
of its associated plot, contour, image and persp methods. The easiest way to fine tune a
term effect plot with STAR is to generate a quickPredict object containing the term effect
first. For the first two terms, e1t and i1t of our model this is done simply with: quickPredict

> term.e1t <- quickPredict(GF1e, "e1t")

or, using the binary operator version, %qp%: %qp%

7We do not do it in this short version but the results are presented in the “long” version of the STAR
web site.
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Figure 11: Effects of the 3 terms of the selected model for neuron 1 of data set
e060824spont. The abscissa scale corresponds to the percentiles of the variables. The
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> term.i1t <- GF1e %qp% "i1t"

We can then call the plot method for quickPredict objects and get basic plots. We can
also pass additional arguments to these methods in order to fine tune the output. An-
other thing we can do is get a plot of the term effects on the “native” scale instead of
the “probability” scale. To do that we can use the qFct attribute of our “mapping to
uniform” functions (Sec. 2.6). What we have to transform is the xx element of our two
quickPredict objects, term.e1t and term.i1t:

> term.e1 <- term.e1t

> term.e1$xx <- attr(m2u1, "qFct")(term.e1$xx)

> term.i1 <- term.i1t

> term.i1$xx <- attr(m2ui, "qFct")(term.i1$xx)

We can then use the plot method to get Fig. 12:

> plot(term.e1t, xlab = "Probability scale", ylab = expression(eta[1]),

+ main = "Elapsed time since last spike")

> plot(term.e1, xlab = "Time (s)", ylab = expression(eta[1]), panel.first = grid(col = 1),

+ main = "Elapsed time since last spike")

> plot(term.i1t, xlab = "Probability scale", ylab = expression(eta[i1]),

+ main = "Last ISI")

> plot(term.i1, xlab = "Time (s)", ylab = expression(eta[i1]),

+ main = "Last ISI", panel.first = grid(col = 1))

The quickPredict object corresponding to the interaction term of the model, e1t:i1t,
is also easily obtained:

> term.e1ti1t <- GF1e %qp% "e1t:i1t"

We can call the image, contour persp methods on the resulting object. If we want to go
to the native scale for the plot, the best way is to use the changeScale function of STAR: changeScale

> term.e1i1 <- changeScale(term.e1ti1t, attr(m2u1, "qFct"), attr(m2ui,

+ "qFct"))

The following commands: image, contour,
persp

> image(term.e1ti1t)

> contour(term.e1ti1t, add = TRUE)

> contour(term.e1ti1t, levels = seq(-2, 2, 0.5), labcex = 1.5,

+ col = 2)

> contour(term.e1ti1t, what = "sd", levels = seq(-0.4, 0.4, 0.1),

+ col = 1, lty = 2, add = TRUE)

> persp(term.e1ti1t, theta = -10, phi = 30)

> persp(term.e1i1, theta = -25, phi = 30, xlab = "time since last (s)",

+ ylab = "last isi (s)", main = "")

lead to the plots shown on Fig. 13.
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2.10.3 Looking at the intensity process of the two models

We conclude the analysis of the spike train of neuron 1 from the e060824spont data
set by looking at the intensity process obtained with our two models (with and without
interaction) on a small part of the spike train. We first get the predicted value of fδ of
Eq. (9) on the logit scale for the second half of the second half of the data set using the
fit obtained from the first half:

> eta1.e <- predict(GF1e, newdata = subset(DFA, time > 29.5))

> eta2.e <- predict(GF2e, newdata = subset(DFA, time > 29.5))

We then convert eta1.e and eta2.e into proper frequencies:

> tigol <- function(x) exp(x)/(1 + exp(x))

> lambda1.e <- tigol(eta1.e)/0.004

> lambda2.e <- tigol(eta2.e)/0.004

Then a plot showing the intensity process of the two models is obtained with the following
commands:

> with(subset(DFA, time > 29.5), plot(time, lambda1.e, xlim = c(30.5,

+ 32), type = "l", col = 2, xlab = "Time (s)", ylab = expression(lambda ~

+ "(Hz)"), ylim = c(0, 50), lwd = 2))

> with(subset(DFA, time > 29.5), lines(time, lambda2.e, xlim = c(30.5,

+ 32), col = 4, lty = 2, lwd = 2))

> with(subset(DFA, time > 29.5), rug(time[event == 1], lwd = 2))

> legend(30.5, 45, c("with interaction", "without interaction"),

+ col = c(2, 4), lty = c(1, 2), lwd = c(2, 2), bty = "n")

The results appears on Fig. 14. Notice that the intensity process of the “best model”
(with interaction) is almost always larger than the one of the other model just before
the spike while it tends to be smaller in between the spikes. In other words the best
model predicts a lower event probability when there is actually no event and a larger
probability when there are events.

2.11 Checking the necessity of variable transformations

See the long version of the vignette on the STAR web site8.

3 Software versions used for this vignette

The versions of R and of the other packages used in this tutorial are obtained with
function sessionInfo:

8http://sites.google.com/site/spiketrainanalysiswithr/
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Figure 14: The intensity process of the two considered models, with (red, continuous)
and without (blue, dashed) interactions between the elapsed time since the last spike
and the last isi . The first half (≤ 29.5 s) of the data set (e060824spont) was fitted with
both models.
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R version 2.9.2 (2009-08-24)
x86_64-unknown-linux-gnu

locale:
LC_CTYPE=fr_FR.UTF-8;LC_NUMERIC=C;LC_TIME=fr_FR.UTF-8;LC_COLLATE=fr_FR.UTF-8;LC_MONETARY=C;LC_MESSAGES=fr_FR.UTF-8;LC_PAPER=fr_FR.UTF-8;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=fr_FR.UTF-8;LC_IDENTIFICATION=C

attached base packages:
[1] splines tools stats graphics grDevices utils datasets
[8] methods base

other attached packages:
[1] STAR_0.3-2 gss_1.0-5 R2HTML_1.59-1 mgcv_1.5-5
[5] survival_2.35-4

loaded via a namespace (and not attached):
[1] grid_2.9.2 lattice_0.17-25 nlme_3.1-93
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