
Classes of map objects available in adehabitat

Clément Calenge

May 10, 2005

Contents

1 Package objective 2

2 The storage mode of raster maps in adehabitat 3
2.1 Single maps : the class "asc" . 3
2.2 Multiple raster maps in a unique object: the class "kasc" 7
2.3 Basic operations with maps of classes "asc" and "kasc" 10

2.3.1 Introduction . 10
2.3.2 Getting a component of an object of class "kasc" 12
2.3.3 Converting a map of type "factor" into several maps of distances 13
2.3.4 Mathematical morphology . 13
2.3.5 Computing buffers around points . 14
2.3.6 Finding habitat features at every points . 16
2.3.7 Counting the number of points in each pixel of a map 17
2.3.8 Counting the number of points in each cell of a virtual grid 19
2.3.9 Copying attributes of a map into a matrix with the same dimensions 19
2.3.10 Maps of different areas . 20
2.3.11 The multivariate analysis of objects of class "kasc" 21
2.3.12 Diminishing the resolution of a map . 25
2.3.13 Subsetting an area . 26
2.3.14 Other operations . 29

3 The storage mode of vector maps in adehabitat 30
3.1 Description of the class "area" . 30
3.2 Conversion between raster and vector maps . 31
3.3 Using masks . 33

4 Conclusion 37

5 Acknowledgements 38

1

Chapter 1

Package objective

This package was primarily developed for the analysis of radio-tracking data. Common analyses
are available for home-range estimation or study of habitat selection. However, adehabitat has
been useful in other fields, such as biogeography (Spichiger et al., 2004, The geographical zonation
in the Neotropics of tree species characteristic of the Paraguay-Paraná Basin, Journal of Bio-
geography, 31, 1489-1501). Basically, this package was developed to provide an interface between
Geographic Information Systems (G.I.S.) and the R package ade4, useful for the multivariate
analysis of ecological data (Chessel et al., 2004, The ade4 package - I : One table methods, R
News, 4/1, 5-10).

Roughly speaking, the functions available in this package are general enough to provide useful
tools to ecologists who want to match one or several sets of points (animals, plant species, etc.)
with a set of raster maps. Some basic GIS operations are available (labeling of connected features,
spatial join of a set of points with a set of maps, etc.). In this document, we present the different
classes of objects used in adehabitat to store maps.

First of all, you need to load the package:
> library(adehabitat)

2

Chapter 2

The storage mode of raster maps
in adehabitat

2.1 Single maps : the class "asc"

Two kinds of maps must be distinguished in geographical analysis (see Figure 2.1):

• the vector maps divide the area into a set of polygons of various sizes, with different at-
tributes;

• the raster maps divide the area of interest into a set of square cells, the pixels, all of the
same size, each pixel having a value for the mapped variable.

Figure 2.1: (left) a vector map; (right) a raster map.

Only raster maps can be imported in R with adehabitat. When vector maps are to be im-
ported into R , you may consider the wonderful package maptools. Wildlife scientists often prefer
to work with raster maps, because several environmental variables are often under study. With
raster maps, all the pixels have the same shape and the same area. This equal importance of the
sampling units makes easier the analyses of such multivariate data.

Raster maps may be either of type numeric (a numerical variable is mapped, e.g. the eleva-
tion) or of type factor (a categorical variable is mapped, e.g. the vegetation type). Both types
of maps are handled with adehabitat.

3

These maps are stored in R as matrices of class "asc". Each cell of the matrix corresponds to
a pixel of the map. These maps have attributes related to the position and the resolution of the
map (see Figure 2.2):

• xll : the x coordinate of the centre of the lower left pixel of the map;

• yll : the y coordinate of the centre of the lower left pixel of the map;

• cellsize : the size of the side of a pixel on the studied map.

Figure 2.2: Detail of a raster map of class "asc" illustrating the attributes related to its position
and its resolution.

Two other attributes are related to the mapped variables

• type : either "numeric" or "factor";

• levels : if the type of the map is "factor", the levels of the factor are considered.

Objects of class "asc" can be created using the function as.asc. We generate here a map with
random numbers (Figure 2.3):
> mat <- matrix(rnorm(10000), 100, 100)

> asc <- as.asc(mat)

> image(asc)

> box()

However, the most common way to create objects of class "asc" is to import Arcview ASCII
raster files (files with the extension “.asc”), with the function import.asc(). For example, ade-
habitat contains a raster map named “elevation.asc” in the directory “ascfiles”. The path for this
file can be obtained with the command:
> (path.to.file <- paste(system.file(package = "adehabitat"), "ascfiles/elevation.asc",

+ sep = "/"))

[1] "C:/Rdev/R-2.1.0/library/adehabitat/ascfiles/elevation.asc"

Of course, this path may vary from one machine to another. The map is then imported into R
(Figure 2.4):
> el <- import.asc(path.to.file)

> image(el, main = "Elevation")

4

Figure 2.3: An object of class "asc" generated with as.asc() on a matrix of random numbers.

Figure 2.4: A raster map of type "numeric" imported into R with the function import.asc()(Map
of the elevation at Puéchabon, South of France).

5

Conversely, the exportation of a matrix of class "asc" can be done using
the function export.asc():

> export.asc(el, "toto.asc")

For factor maps, it is also necessary to define the levels of the variable. For example, consider
the map “aspect.asc”, located in the directory “ascfiles” of the package. This map describes the
aspect of the study area, and has four levels (North, East, West, South). However, these levels
are not stored in the ASCII raster file:
> (path.to.map <- paste(system.file(package = "adehabitat"), "ascfiles/aspect.asc",

+ sep = "/"))

[1] "C:/Rdev/R-2.1.0/library/adehabitat/ascfiles/aspect.asc"

> asp <- import.asc(path.to.map, type = "factor")

> levels(asp)

[1] "1" "2" "3" "4"

It is therefore necessary to specify the labels associated with each level of the variable when
importing a factor map:
> asp <- import.asc(path.to.map, type = "factor", lev = c("North",

+ "East", "West", "South"))

> levels(asp)

[1] "North" "East" "West" "South"

Another way of specifying the levels of the factor map is to export the theme table from Ar-
cview. To proceed, select the theme in Arcview, then choose the menu Theme -> Table, and
finally export the table as a delimited text file from the menu File -> Export. The file “aspect.txt”
is located in the directory “ascfile” of the package:

> (path.to.table <- paste(system.file(package = "adehabitat"),

+ "ascfiles/aspect.txt", sep = "/"))

[1] "C:/Rdev/R-2.1.0/library/adehabitat/ascfiles/aspect.txt"

> file.show(path.to.table)

This text file has three columns, which are separated by commas.

"Value","Count","NewField1"

1,537,North

2,1504,East

3,1262,South

4,1076,West

The first column gives the levels of the map, and the third column gives the corresponding
labels (The second column is no interest for our purpose). This file may then be specified when
importing the map:
> asp <- import.asc(path.to.map, type = "factor", lev = path.to.table,

+ levnb = 1, labnb = 3)

> levels(asp)

[1] "North" "East" "South" "West"

> co <- colasc(asp, North = "blue", East = "yellow", West = "orange",

+ South = "red")

6

colasc() links a vector of colors with each level of asp. Then, the map is displayed (Figure
2.5):
> image(asp, clfac = co)

> legend(696662, 3166028, legend = levels(asp), fill = co)

Figure 2.5: A raster map of type "factor" imported into R with the function import.asc()(map
of the aspect at Puéchabon, South of France).

Finally, there are other ways to create objects of class "asc": the functions asc2im() and
im2asc() provide an interface with the class "im" of the package spatstat.The functions spixdf2kasc(),
kasc2spixdf(), and asc2spixdf() provide an interface with spatial classes of the package sp.

Note: The central place of this class of objects in adehabitat arises from the large avail-
ability of Arcview GIS among ecologists (http://www.esri.com/). The class "asc" origi-
nates from the ASCII raster maps created by Arcview GIS (under the File menu: Export Data
source). Note, however, that the format coming from other GIS softwares may be converted
to ASCII raster maps using the free software Landserf, downloadable at the following URL:
http://www.soi.city.ac.uk/~jwo/landserf/.

2.2 Multiple raster maps in a unique object: the class "kasc"

Ecologists are usually interested in several environmental variables. Therefore, they have to deal
with a collection of K raster maps of the same area. These maps often have the same attributes
(same number of rows and of columns, same resolution, same coordinates for the lower left pixel).
Such a collection of maps may be stored in objects of class "kasc".

This class inherits from the class "data.frame". Each column of this data frame corresponds
to the map of one variable, with one row per pixel of the map (Figure 2.6).

Thus, all sub-setting rules that are applied to the class "data.frame" can also be applied to
the class "kasc". Objects of class "kasc" have the same attributes as objects of the class "asc"
(described in the previous section), but they also have two additional attributes:

• nrow: the number of rows of the raster map. Warning! the number of rows of the map is
equal to the number of columns of the matrix of class "asc" coding this map;

7

http://www.esri.com/
http://www.soi.city.ac.uk/~jwo/landserf/

Figure 2.6: A data frame of the class "kasc" is created from several raster maps of class "asc".
Note that when the mapped area does not fit the whole map (which is the case here), this leads
to a considerable amount of missing values in the object of class kasc.

8

• ncol: the number of columns of the raster map. Warning! the number of columns of the
map is equal to the number of rows of the matrix of class "asc" coding this map.

An example of object of class "kasc" is provided in the data set puechabon. The component
named kasc of this list is a map of class "kasc":
> data(puechabon)

> kasc <- puechabon$kasc

> image(kasc)

The image returned by these instructions is displayed Figure 2.7.

Figure 2.7: Example of object of class "kasc" (maps of Elevation, Slope, Aspect and Herbaceous
cover at Puéchabon, South of France).

The most common way to create objects of class "kasc" is to use the function as.kasc(). In
this example, don’t forget that the maps el and asp have already been imported in the previous
section. Note that each element of the list passed to the function as.kasc should be named:
> (obj <- as.kasc(list(Elevation = el, Aspect = asp)))

Raster map of class "kasc":

Cell size: 100

Number of rows: 121

Number of columns: 111

Variables measured:

1. Elevation: numeric

9

2. Aspect: factor

2.3 Basic operations with maps of classes "asc" and "kasc"

2.3.1 Introduction

We describe here some basic operations that can be done on maps with adehabitat. We mainly
use the data set puechabon available in the package adehabitat. This data set stores information
on the use of space by four wild boars (Sus scrofa) monitored by radio-tracking in the South of
France (see the help page of this data set for further information and source). We use here the
components: (i) puechabon$kasc, an object of class "kasc" that describes several variables on the
study area; and (ii) puechabon$locs, a data frame containing the coordinates of the relocations
of the wild boars resting sites in summer, as well as information on wild boars in factors Name,
Sex, Age. We first load the data set:
> data(puechabon)

> puechabon$kasc

Raster map of class "kasc":

Cell size: 100

Number of rows: 121

Number of columns: 111

Variables measured:

1. Elevation: numeric

2. Aspect: factor

3. Slope: numeric

4. Herbaceous: numeric

> puechabon$locs[1:4,]

Name Age Sex X Y Date

1 Brock 2 1 699889 3161559 930701

2 Brock 2 1 700046 3161541 930703

3 Brock 2 1 698840 3161033 930706

4 Brock 2 1 699809 3161496 930707

A general view of the data is displayed using (Figure 2.8):
> el <- getkasc(puechabon$kasc, "Elevation")

> opar <- par(mfrow = c(2, 2), mar = c(0, 0, 4, 0))

> for (i in levels(puechabon$locs$Name)) {

+ image(el, main = paste("Wild boar named", i), axes = FALSE)

+ points(puechabon$locs[puechabon$locs$Name == i, c("X", "Y")],

+ pch = 16)

+ }

> par(opar)

In this section, we also use another data set, chamois. This data set stores locations of chamois
(Rupicapra rupicapra) during the hunting seasons of two years (1992 and 1997), collected in the
Chartreuse mountain (French Alps) by census operations (see the help page of this data set for
further information and source). This list has two elements: (i) chamois$map, an object of class
"kasc" that describes three habitat variables on the study area; and (ii) chamois$locs, a data
frame containing the coordinates of the locations of the chamois. We also load this data set:
> data(chamois)

> chamois$map

10

Figure 2.8: Distribution of the relocations of four wild boars monitored using radio-tracking at
Puéchabon, South of France).

11

Raster map of class "kasc":

Cell size: 50

Number of rows: 353

Number of columns: 353

Variables measured:

1. Vegetation: factor

2. Disteco: numeric

3. Slope: numeric

> chamois$locs[1:4,]

X Y

72 862793.5 2038625

180 867550.2 2047080

17 872687.6 2046367

277 866479.5 2043730

A general view of the data is displayed using (Figures 2.9):
> sl <- getkasc(chamois$map, "Slope")

> image(sl, main = "Distribution of chamois occurrences in the Chartreuse mountain")

> points(chamois$locs, pch = 16)

Figure 2.9: Distribution of Chamois occurrences collected during two years (1992 and 1997) by
census operation in the Chartreuse mountain (French Alps).

2.3.2 Getting a component of an object of class "kasc"

Several functions in adehabitat return objects of class "kasc". For example, the user can convert
one of the variables of the object of class "kasc" into a matrix of class "asc", either for further
analyses or for exportation toward a Geographic Information System. This is done with the help
of the function getkasc(). For example, using the class object "kasc" of the data set puechabon:

> kasc <- puechabon$kasc

> (el <- getkasc(kasc, "Elevation"))

12

Raster map of class "asc":

Cell size: 100

Number of rows: 121

Number of columns: 111

Type: numeric

el is the map of the elevation on the area. It is displayed in Figure 2.4.

2.3.3 Converting a map of type "factor" into several maps of distances

In some cases, It may be desired to compute map of distances to patches belonging to the different
levels of a map of class "asc" and of type "factor". For example, if the habitat selection by an
animal is studied with a map of vegetation (with different levels: woods, open areas, crops, etc.),
it may be desirable to take into account the fact that the animal select one habitat type (e.g.
crops, for feeding) while staying close to another type (e.g. woods, for protection). In such cases,
one may prefer to work with a set of map of distances to the habitat types, rather than with a
single map of type "factor".

The function distfacmap() performs this operation. For example, we use the map of the
"Aspect" at Puéchabon (See Figure 2.5). One can compute the distance to the patches of each
level (NorthEast, SouthEast, NorthWest, SouthWest; Figure 2.10):
> image(distfacmap(getkasc(puechabon$kasc, "Aspect")))

Figure 2.10: The distance to each level of the map of the Aspect at Puéchabon, South of France

2.3.4 Mathematical morphology

Some basic operations of mathematical morphology are available in adehabitat. Erosion and
dilatation can be performed with the function morphology(). For example, using the map el
created in the previous section:
> er8 <- morphology(el, operation = "erode", nt = 8)

> di8 <- morphology(el, operation = "dilate", nt = 8)

The maps er8 and di8 are objects of class "asc", with pixels taking the value 1 if they belong
to the mapped features, and missing values otherwise. The argument nt of the function indicates
the number of times that the operation is to be processed (See Figure 2.11):

13

> image(di8, col = "black")

> image(el, col = "gray", add = TRUE)

> image(er8, col = "white", add = TRUE)

> arrows(704295, 3159355, 706588, 3157294, col = "red", lwd = 2,

+ code = 1)

> text(706240, 3156738, "Boundary of the study area")

Figure 2.11: Example of morphological operations performed on the maps of the data set puech-
abon with the function morphology(). Buffer areas of 800 m have been defined inside and outside
the study area.

2.3.5 Computing buffers around points

This operation, somewhat related to the previous one, can be processed using the function
buffer(). For example, consider the component locs of the data set puechabon. This data
frame contains the coordinates of the relocations of wild boars monitored using radio-tracking.
Also consider the map el, created in the section 2.3.2:
> data(puechabon)

> puechabon$locs[1:4,]

Name Age Sex X Y Date

1 Brock 2 1 699889 3161559 930701

2 Brock 2 1 700046 3161541 930703

3 Brock 2 1 698840 3161033 930706

4 Brock 2 1 699809 3161496 930707

A map of the relocations on the study area (Figure 2.12) is obtained with:
> image(el)

> points(puechabon$locs[, c("X", "Y")], pch = 16)

Here, the four wild boars are not distinguished. A buffer of 500 m is computed around each
point (e.g. to take into account the lack of precision in the relocations, or to define areas that are
available to the animals; Figure 2.13) :
> bu <- buffer(puechabon$locs[, c("X", "Y")], el, 500)

> image(bu)

> points(puechabon$locs[, c("X", "Y")], pch = 16)

14

Figure 2.12: Relocations of 4 wild boars monitored using radio-tracking at Puéchabon (South of
France).

Figure 2.13: A buffer of 500 m around all relocations of the four boars monitored using radio-
tracking. The buffer is computed using the function buffer().

15

Note, that the map el could have been replaced by an object of class "kasc" to compute the
same buffer (you may try to perform this operation by replacing el by puechabon$kasc). The
map bu is an object of class "asc", with pixels taking the value 1 if they belong to the mapped
features, and missing values otherwise. It is easy after that to multiply the maps el and bu to
measure the elevation in the neighbouring of the relocations (Figure 2.14). Thus:
> bubis <- bu * el

> mean(as.vector(bubis), na.rm = TRUE)

[1] 232.4520

> sd(as.vector(bubis), na.rm = TRUE)

[1] 69.06259

> image(bubis)

Figure 2.14: The elevation within 500 m from all relocations of the four wild boars monitored at
Puéchabon (South of France) using radio-tracking.

Note that buffers can also be computed around lines, with the function buffer.line() (see
the help page of this function).

2.3.6 Finding habitat features at every points

This operation can be processed using the function join.asc(). For example, using the map el
and the component locs of the data set puechabon, it is possible to determine the elevation at
each wild boar relocation in puechabon$locs:
> vec <- join.asc(puechabon$locs[, c("X", "Y")], el)

> length(vec)

[1] 119

> nrow(puechabon$locs)

[1] 119

> vec[1:10]

[1] 108 172 121 113 101 127 102 108 104 151

16

vec contains the elevation of each relocation in puechabon$locs. It can further be used in
statistical analyses, e.g. to study habitat selection by the boars. The function join.kasc()
matchs one set of points with several maps (i.e. an object of class kasc):
> df <- join.kasc(puechabon$locs[, c("X", "Y")], puechabon$kasc)

> nrow(df)

[1] 119

> nrow(puechabon$locs)

[1] 119

> df[1:10,]

Elevation Aspect Slope Herbaceous

1 108 NorthWest 19.39472 0.2

2 172 NorthWest 23.67911 0.2

3 121 NorthEast 20.16249 0.2

4 113 NorthWest 22.39815 0.2

5 101 NorthWest 14.97099 0.2

6 127 NorthWest 16.82134 0.2

7 102 NorthEast 18.14621 0.2

8 108 NorthWest 18.08812 0.2

9 104 NorthEast 21.24609 0.2

10 151 NorthWest 29.24554 0.2

Each row of df gives the habitat composition for each relocation in locs.

2.3.7 Counting the number of points in each pixel of a map

This operation can be processed using count.points(). Consider again the map el and the wild
boars relocations puechabon$locs:
> (cp <- count.points(puechabon$locs[, c("X", "Y")], el))

Raster map of class "asc":

Cell size: 100

Number of rows: 121

Number of columns: 111

Type: numeric

> image(cp)

> box()

cp contains the number of relocations in each pixel of the map (Figure 2.15). It can be coerced
into vector for a further analysis of the counts. When several sets of points are available (for
example the locations of several animals monitored by radio-tracking, or several sets of species
occurrences on the same area), the function count.points.id() counts, for each set, the number
of points in each pixel of the map (Figure 2.16). For example, for the relocations of the wild boars
puechabon$locs, the animals identity is indicated in the column Name:
> (cp <- count.points.id(puechabon$locs[, c("X", "Y")], puechabon$locs$Name,

+ el))

Raster map of class "kasc":

Cell size: 100

Number of rows: 121

Number of columns: 111

Variables measured:

1. Brock: numeric

2. Calou: numeric

3. Chou: numeric

4. Jean: numeric

> image(cp)

17

Figure 2.15: The number of wild boars relocations inside each pixel of the raster map el (numbered
with the function count.points()).

Figure 2.16: The number of relocations of each wild boar inside each pixel of the raster map el
(computed with the function count.points.id()).

18

2.3.8 Counting the number of points in each cell of a virtual grid

This operation is very similar to the previous one, except that in this case, the raster map is not
available to the analyst. Consider only the wild boars relocations puechabon$locs. A virtual
grid can be superposed to the study area using the function ascgen() (for “asc generator”). For
example, the chosen cell size of the grid is 500 m (Figure 2.17):
> hihi <- ascgen(xy = puechabon$locs[, c("X", "Y")], cellsize = 500)

> image(hihi)

> box()

Figure 2.17: The number of wild boars relocations inside each cell of a virtual grid generated with
the function ascgen.

The function ascgen() is useful to define “virtual grids”, when no objects of class "asc" are
available initially. The name of the animals monitored are available in the column Name of the
object puechabon$locs. Once the virtual grid hihi has been defined, the number of relocations
of each animal falling in each cell of the grid can be drawn using the function count.points.id()
(Figure 2.18):
> tmpbis <- count.points.id(xy = puechabon$locs[, c("X", "Y")],

+ id = puechabon$locs$Name, hihi)

> image(tmpbis)

2.3.9 Copying attributes of a map into a matrix with the same dimen-
sions

The function getascattr() is extremely useful when one is working with objects of class "asc".
For example, we want to divide the elevation of the study area (stored in the object el created
in section 2.3.2) into two intervals (lower than 200 m a.s.l., and upper than 200 m a.s.l.). This
operation can be done by typing the following commands:
> el <- getkasc(puechabon$kasc, "Elevation")

> elcat <- el < 200

> class(elcat)

[1] "matrix"

> names(attributes(elcat))

19

Figure 2.18: The number of wild boars relocations inside each cell of a virtual grid, for each boar.

[1] "dim"

Note that the result is not an object of class "asc". Further, all the attributes of the map
(cellsize, xll, yll, see above) have been lost. The function getascattr() copies the at-
tributes of an object of class "asc" into a matrix of the same dimensions (Figure 2.19):
> (elcat <- getascattr(el, elcat, type = "factor", lev = c("> 200 m",

+ "< 200 m")))

Raster map of class "asc":

Cell size: 100

Number of rows: 121

Number of columns: 111

Type: factor

> image(elcat)

> legend(698000, 3165000, levels(elcat), fill = rainbow(2))

The function getkascattr() is an extension of the function getascattr() for objects of class
"kasc".

2.3.10 Maps of different areas

It often occurs that the different maps available to an ecologist do not cover exactly the same area
(see Figure 2.20). Although the maps have the same dimension, some pixels have values measured
for some variables, while other variables are not mapped at this place; the mapped area is not
exactly the same for all variables. Most analyses do not deal with these “partially missing pixels”.
The function managNAkasc() sets to NA all the pixels that are not mapped for all variables.

The following example renders even clearer this point:
> kasc <- puechabon$kasc

> el <- getkasc(kasc, "Elevation")

> sl <- getkasc(kasc, "Slope")

> el[el < 200] <- NA

> tmp <- as.kasc(list(Elevation = el, Slope = sl))

> image(tmp)

Note that the two maps in tmp do not cover the same area (Figure 2.21);

20

Figure 2.19: The elevation at Puéchabon divided into two classes (< 200 m and > 200 m, see
text).

> tmp <- managNAkasc(tmp)

> image(tmp)

And now, the two maps are covering exactly the same area (Figure 2.22).

2.3.11 The multivariate analysis of objects of class "kasc"

As objects of class "kasc" store the information about several environmental variables, a multi-
variate analysis can generate a global view of the area. Actually, the class "kasc" is a middle step
between the data frames and the maps. However, the object kasc contains a lot of missing values
(the pixels where the variables are not mapped). The functions kasc2df() and df2kasc() are
intended to convert an object of class "kasc" into an object of class "data.frame", and conversely.
The following example renders this point clearer:
> data(puechabon)

> kasc <- puechabon$kasc

> toto <- kasc[1:10,]

> class(toto) <- "data.frame"

> toto

Elevation Aspect Slope Herbaceous

1 NA <NA> NA NA

2 NA <NA> NA NA

3 NA <NA> NA NA

4 NA <NA> NA NA

5 NA <NA> NA NA

6 NA <NA> NA NA

7 NA <NA> NA NA

8 NA <NA> NA NA

9 NA <NA> NA NA

10 NA <NA> NA NA

To have an idea of the structures of the variables on the study area, it is necessary to remove
these missing values (cf Figure 2.6 and 2.20), as the functions available in the R package ade4 do
not deal with the missing values:
> huhu <- kasc2df(kasc)

> names(huhu)

21

Figure 2.20: The use of managNAkasc: A list of objects of class "asc" is available, but the areas
mapped are not the same for the three variables, even if the maps cover the same area. The
function as.kasc converts this list into a data frame of class "kasc" (see Figure 2.6). Then, the
function managNAkasc sets to NA all the pixels that are not mapped for all the variables.

22

Figure 2.21: Two maps (elevation and slope) of Puéchabon stored in the object tmp. Note that
the two maps do not cover the same area.

Figure 2.22: The maps of elevation and slope at Puéchabon. Only areas with elevation > 200 m
a.s.l. are mapped.

23

[1] "index" "tab"

> huhu$index[1:4]

[1] 2017 2018 2019 2020

> huhu$tab[1:4,]

Elevation Aspect Slope Herbaceous

2017 68 SouthWest 1.548994 0

2018 69 SouthWest 1.118594 0

2019 70 SouthWest 1.358634 0

2020 70 SouthWest 1.724311 0

The data frame huhu$tab contains the pixels for which the mapped variables are not missing,
and the vector huhu$index contains the indices of the rows of the object kasc that are not missing.
This vector can be used to back-transform the data frame into an object of class "kasc" (see Figure
2.23).

Figure 2.23: The rationale behind the functions kasc2df and df2kasc.

Once the object of class "kasc" has been transformed into a data frame, a multivariate analysis
can be done. For example, we keep all the continuous variables (Aspect through out) to compute
a Principal Component Analysis:
> huhutabAspect <- NULL

> (pc <- dudi.pca(huhu$tab, scannf = FALSE, nf = 2))

Duality diagramm

class: pca dudi

$call: dudi.pca(df = huhu$tab, scannf = FALSE, nf = 2)

$nf: 2 axis-components saved

$rank: 3

eigen values: 1.449 0.8475 0.7036

vector length mode content

24

1 $cw 3 numeric column weights

2 $lw 4379 numeric row weights

3 $eig 3 numeric eigen values

data.frame nrow ncol content

1 $tab 4379 3 modified array

2 $li 4379 2 row coordinates

3 $l1 4379 2 row normed scores

4 $co 3 2 column coordinates

5 $c1 3 2 column normed scores

other elements: cent norm

Then, the first two principal axes can be mapped by the function df2kasc(), using as argument
the index vector previously returned by the function kasc2df() (Figure 2.24):
> map <- df2kasc(pc$li, huhu$index, kasc)

> image(map)

Figure 2.24: Map of the pixels scores in the principal component analysis of the variables elevation,
slope and herbaceous cover (Puéchabon, South of France).

2.3.12 Diminishing the resolution of a map

Since R is not a Geographic Information System, it is current that the maps imported into objects
of class asc or kasc are too large, and require too much memory for R . This is the case when

25

high-resolution maps cover a large area. However, a high resolution is not necessarily of major
importance in Ecology. Indeed, the ecological studies are often carried out at a given scale, and
the precision of the data collected is often linked to this scale. For example, if the distribution of a
species is to be studied at the continental scale, it is not essential to have maps with a pixel size of
10 metres. When such cases occur, the function lowres() can be used to diminish the resolution
of the map. We use here the data set chamois, described and loaded in the section 2.3.1:
> (kasc <- chamois$map)

Raster map of class "kasc":

Cell size: 50

Number of rows: 353

Number of columns: 353

Variables measured:

1. Vegetation: factor

2. Disteco: numeric

3. Slope: numeric

> (si1 <- object.size(kasc))

[1] 7478324

The maps of the area are displayed on Figure 2.25:
> image(kasc)

Sometimes, we need to get a less precise resolution for a map. For instance, the map kasc
is rather large and we want to diminish the resolution to 200 m instead of 50 m. So we merge
together all pixels contained in a square of 4*4 adjacent pixels of side length 50 m into one pixel
of side length 200 m :
> (m <- lowres(kasc, np = 4))

Raster map of class "kasc":

Cell size: 200

Number of rows: 88

Number of columns: 88

Variables measured:

1. Vegetation: factor

2. Disteco: numeric

3. Slope: numeric

> image(m)

The size of the maps is diminished here:
> (si2 <- object.size(m))

[1] 466380

> (si1 - si2)/si1

[1] 0.9376358

This results in a large economy of memory (reduction of 93%), without erasing the main
features of the area.

2.3.13 Subsetting an area

This operation is somewhat related to the previous one. In some cases, it may be useful to work
on a smaller portion of the study area. This can be achieved using the function subsetmap(). For
example, we subset the map of the Chartreuse mountain, to work on a smaller portion of the map
(Figure 2.27):

26

Figure 2.25: Maps of the Chartreuse mountain, in the French Alps (data set chamois). The
resolution of the map is of 50 m.

27

Figure 2.26: Same maps as in Figure 2.25, but with a resolution diminished to 200 m.

28

> data(chamois)

> slope <- getkasc(chamois$map, "Slope")

> def.par <- par(no.readonly = TRUE)

> layout(matrix(c(1, 1, 1, 1, 1, 1, 1, 1, 2), ncol = 3, byrow = TRUE))

> par(mar = c(0, 0, 0, 0))

> image(slope, axes = FALSE)

> box()

> x <- c(863603.8, 867286.5)

> y <- c(2042689, 2045797)

> polygon(x = c(x[1], x[2], x[2], x[1]), y = c(y[1], y[1], y[2],

+ y[2]), lwd = 2)

> sl2 <- subsetmap(slope, xlim = x, ylim = y)

> par(mar = c(0, 0, 2, 0))

> image(sl2, axes = FALSE, main = "Reduced map")

> box()

> par(def.par)

Figure 2.27: The use of the function subsetmap() allows to select a part of a given map (delimited
by a rectangle), and to store it in another map (labelled “reduced map” in this figure)

In this case, the limits of the new maps were specified in x and y. Alternatively, when no limits
are indicated for the new maps, the user is asked to click on the old map to delimit the upper-left
and the bottom-right corners of the new map (try it!). This function can be used on both "asc"
and "kasc" maps.

2.3.14 Other operations

The list presented here does not include all the functions available in adehabitat but provides the
most frequent basic operations that can be done with the package. Numerous other basic functions
are available to the user for programming purposes. For example, the function labcon() can be
used to label connected features. The function getXYcoords() can be used to get the coordinates
of the rows and the columns of pixels on the maps. We recommend the user to have a look to the
help pages of these functions (type help.start(), then choose packages, and finally adehabitat),
and especially to the examples for a better view of what can be done with the package.

29

Chapter 3

The storage mode of vector maps
in adehabitat

3.1 Description of the class "area"

The class "area" is a class that has been developed in the R package ade4. This is the only class
of vector maps that can be used with adehabitat. The most simple way to create such objects
is to use the function as.area(). The data set elec88 of the package ade4 contains an object
that can be converted to this class. The data frame elec88$area contains the coordinates of the
boundaries of the French departments:
> data(elec88)

> ar <- elec88$area

> ar[1:5,]

V1 V2 V3

1 D1 432 213

2 D1 442 199

3 D1 448 204

4 D1 448 219

5 D1 451 227

This data frame has three columns. The first variable is a factor defining the polygons. The
second and third variables are the x and y coordinates of the polygon vertices in the order where
they are found. This format is the standard input to as.area():
> ar <- as.area(ar)

> plot(ar)

The object ar is now a data frame of class "area".

Many functions in adehabitat return or require objects of class "area". Thus, the functions
mcp() (to compute the minimum convex polygon home range), getverticeshr() (to compute the
kernel home range), or getcontour() (to compute the contour polygon of a raster object) return
this class of object. This class can also be used in many graphical functions of the R packages
ade4 and adehabitat, to overlay vector maps and other types of information (e.g. s.label(),
plot.traj(), etc.).

Note: The polygons stored in the object may or may not overlap each other. For example, in the
data set elec88, displayed previously, the mapped features are the French departments. Since one
given location always belongs to only one department, the polygons defined in the object ar do
not overlap each other. However, in other objects of class "area", the polygons do overlap. For
example, let us consider the data set puechabon, presented in the section 2.3.1:

30

Figure 3.1: Map of France, stored in R as an object of class "area"

> data(puechabon)

> lo <- puechabon$locs

> cp <- mcp(lo[, c("X", "Y")], lo[, "Name"])

> class(cp)

[1] "area" "data.frame"

The object cp contains the coordinates of the vertices of the home ranges of the four wild
boars monitored using radio-tracking, computed as the minimum convex polygon encompassing
all relocations. These home ranges may be mapped using the function plot.area() (Figure 3.2).
Since these animals are not territorial, their home-range overlap each other:
> opar <- par(mar = c(0, 0, 0, 0))

> plot(cp, colp = NULL)

> points(puechabon$locs[, c("X", "Y")], pch = 16, col = as.numeric(puechabon$locs$Name))

> box()

> par(opar)

It is then possible to export an object of class "area" toward a GIS software using the
function area2dxf(). This function exports an object of class "area" to the DXF file format
(http://www.autodesk.com/techpubs/autocad/acad2000/dxf/). The DXF file format can be
read by nearly all GIS softwares. Using the object cp, previously defined:

> area2dxf(cp, file = "myfile.dxf")

This command creates a new file in your working directory, named “myfile.dxf”, that can be
read into a GIS. The help page of this function explains how variables measured for each polygon
can be exported in the DXF file (e.g. exportation of the proportion of tree cover inside each home
range).

3.2 Conversion between raster and vector maps

Several functions are available to allow the conversion between raster and vector maps. First, the
function getcontour() can be used to convert the connected features of an object of class "asc"
into polygons. Consider the example of the data set puechabon:

31

http://www.autodesk.com/techpubs/autocad/acad2000/dxf/

Figure 3.2: Overlapping polygons stored in an object of class area (home ranges of 4 wild boars
monitored using radio-tracking at Puéchabon). The relocations of the boars are also displayed.

> el <- getkasc(puechabon$kasc, "Elevation")

> cont.el <- getcontour(el)

> class(cont.el)

[1] "area" "data.frame"

> nlevels(cont.el[, 1])

[1] 1

The object cont.el is an object of class "area". There is only one connected feature on the
map el, and this is transformed into one polygon (Figure 3.3):
> image(el)

> polygon(cont.el[, 2:3], lwd = 3)

Note that more complex maps can also be used. On the other hand, the converse operation
(rasterization of vector polygons) is also possible, using the functions mcp.rast() and hr.rast().
The function mcp.rast() converts only one polygon to raster (i.e. a data frame with two columns,
the x-y coordinates of the vertices of the polygon), whereas the function hr.rast() converts an
object of class "area" to raster. For example, using the data set puechabon:
> lo <- puechabon$locs

> kasc <- puechabon$kasc

> cp <- mcp(lo[, c("X", "Y")], lo[, "Name"])

We define again cp, an object of class area containing the vertices of the wild boars home
ranges (see above). We transform this object into a raster map of class "kasc", using the function
hr.rast():
> (rast <- hr.rast(cp, kasc))

Raster map of class "kasc":

Cell size: 100

Number of rows: 121

Number of columns: 111

Variables measured:

1. Brock: numeric

2. Calou: numeric

32

Figure 3.3: The boundaries of the Puéchabon area stored as an object of class "area" (computed
using the function getcontour()). The vertices of the polygon are the centres of the pixels located
on the boudary of the mapped area.

3. Chou: numeric

4. Jean: numeric

> def.par <- par(no.readonly = TRUE)

> layout(matrix(c(1, 1, 2, 4, 3, 5), 2, 3))

> par(mar = c(0, 0, 4, 0))

> plot(cp, colp = NULL)

> points(puechabon$locs[, c("X", "Y")], pch = 16, col = as.numeric(puechabon$locs$Name))

> box()

> for (i in names(rast)) {

+ image(getkasc(rast, i), main = paste("Wild boar named", i),

+ axes = FALSE)

+ polygon(cont.el[, 2:3])

+ box()

+ }

> par(def.par)

The resulting object is an object of class "kasc", with one column per level of the factor
lo$Name. Each map in this object corresponds to the (raster) home-range of one animal (Figure
3.4).

3.3 Using masks

The use of masks is a common operation in GIS. A mask allows to specify on a map the limits of
a small area, where the subsequent statistical analyses are to be done. The mask is a map of class
"asc", that should contain missing values for those areas where processing should not occur and
any value for the cells to be processed. We illustrate here an example of use of masks, because it
implies knowledge of the functions described previously. A new function, setmask(), is introduced
here. First, consider the map of elevation at Puechabon and the polygon pol, which delimits the
plateau (see Figure 3.5):
> el <- getkasc(puechabon$kasc, "Elevation")

> pol <- data.frame(x = c(700658, 699222, 698342, 698643, 700427,

+ 701029), y = c(3160768, 3160676, 3159402, 3158336, 3158869,

33

Figure 3.4: left: the home ranges of the four wild boars monitored by radio-tracking, stored as
an object of class "area"; right: the rasterized home-ranges, stored in an object of class "kasc"
(computed using the function hr.rast()).

34

+ 3159657))

> image(el)

> polygon(pol, lwd = 2)

Figure 3.5: The map of elevation at Puéchabon (South of France). The polygon delimits the
plateau of Puéchabon.

We rasterize the polygon, to define a mask, and we use the resulting map as argument for the
function setmask() to keep areas mapped inside the polygon (Figure 3.6):
> pr <- mcp.rast(pol, el)

> masked.kasc <- setmask(puechabon$kasc, pr)

> image(masked.kasc, xlim = c(696999, 702373), ylim = c(3156784,

+ 3162297))

Note that in this case, the coordinates of the masking polygon were available. When the user
wants to click on the map to define himself a masking polygon, it is straightforward to write a
function using the function locator() of the base package. For example, the following function
is intended to achieve this aim (try it, to defined your own polygon in the example above). The
argument x is the number of vertices of the polygon:
> def.pol <- function(x) {

+ toto <- locator(1)

+ for (i in 2:x) {

+ tutu <- locator(1)

+ toto$x <- c(toto$x, tutu$x)

+ toto$y <- c(toto$y, tutu$y)

+ lines(toto$x, toto$y)

+ }

+ polygon(toto)

+ return(toto)

+ }

35

Figure 3.6: The maps of the plateau of Puéchabon (South of France), after the use of the function
setmask, to mask areas outside the limits of the plateau.

36

Chapter 4

Conclusion

We have presented here the main classes of map objects available in adehabitat. Numerous more
specific functions are available to analyse data related to the spatial distribution of animals. These
functions concern:

1. the estimation of the home range of animals, using the kernel method (kernelUD()), the min-
imum convex polygon (mcp()), the nearest neighbour convex hull (NNCH()), or the brownian
bridge kernel (kernelbb());

2. the exploration of autocorrelated locations in radio-tracking analysis, using:

• the computation of turning angles (angles());

• the computation of travel speeds (speed()) ;

• the computation of the Schoener’s ratio (schoener()) ;

3. The analysis of habitat selection, using :

• selection ratios (wi());

• compositional analysis (compana());

• habitat suitability maps (algorithm DOMAIN: domain(); Mahalanobis distances: ma-
hasuhab(); Resource Selection Functions may also be computed with the function
glm() of the package base and the functions presented in this tutorial);

• multivariate analyses relying on the concept of ecological niche (ENFA: enfa(); K-select
analysis: kselect(); niche analysis, from the package ade4: niche()).

We encourage the reader look at the help page of these functions.

Note that the package also contains several functions allowing conversion of classes asc, kasc,
traj and area toward the spatial classes of the package sp.

We hope that this package will be useful to biologists concerned by the analysis of the space
use by animals.

37

Chapter 5

Acknowledgements

I warmly thank Anne-Béatrice Dufour and Mathieu Basille (Laboratoire de Biométrie, University
of Lyon, France) for their useful comments on earlier drafts of this manuscript. I am also grateful
to Mathieu Garel, Gaelle Darmon, Jodie Martin, Bram Van Moorter (Laboratoire de Biométrie,
University of Lyon, France), Cyrille Chatelain (Conservatoires et Jardins Botaniques de Genève,
Switzerland), Jason Law (University of Michigan, USA) and Sander Oom (University of the Wit-
watersrand, South Africa) who tested adehabitat and advised me about the improvements to
bring to the package.

38

	Package objective
	The storage mode of raster maps in adehabitat
	Single maps : the class "asc"
	Multiple raster maps in a unique object: the class "kasc"
	Basic operations with maps of classes "asc" and "kasc"
	Introduction
	Getting a component of an object of class "kasc"
	Converting a map of type "factor" into several maps of distances
	Mathematical morphology
	Computing buffers around points
	Finding habitat features at every points
	Counting the number of points in each pixel of a map
	Counting the number of points in each cell of a virtual grid
	Copying attributes of a map into a matrix with the same dimensions
	Maps of different areas
	The multivariate analysis of objects of class "kasc"
	Diminishing the resolution of a map
	Subsetting an area
	Other operations

	The storage mode of vector maps in adehabitat
	Description of the class "area"
	Conversion between raster and vector maps
	Using masks

	Conclusion
	Acknowledgements

