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Abstract

The lme4 package uses sparse matrix technology and clever likelihood-
decompositions to fit linear, generalized, and nonlinear mixed-effects
models. The amer package extends lme4’s scope to include generalized
additive mixed models (GAMM). This vignette summarizes the main
ideas behind additive models and their representation in the form of a
mixed model, describes the modifications to lmer necessary for fitting
GAMMs and presents some examples with real data.
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1 Additive Models

In many applications, the assumption of a linear dependence of the response
on predictor variables is inappropriate. Modelling smooth functions of an
unknown shape, that is, models of the form

y =
S∑
s=1

fs(xs) + ε; ε ∼ Nn(0, σ2
εIn)

where fs(·) is some smooth function of a covariate xi, which can also be
multidimensional (e.g. surface estimation), requires solving 3 problems not
encountered in linear modelling:

1. the smooth function has to be represented somehow

2. the degree of smoothness of the function must be controllable

3. the amount of smoothness most appropriate should be selected in a
data-driven way

Spline smoothing addresses the first issue by assuming that fs(xs) can
be approximated by a linear combination of ds basis functions Bj(xs), j =
1, . . . , ds:

fs(xs) ≈ Bsδs; Bs =

 B1(xs1) . . . Bds(xs1)
...

...
B1(xsn) . . . Bds(xsn)


This obviously leads back to a linear modelling context. For ease of notation
we set S = 1 and drop the subscript s in the following.

The second issue, controlling the roughness or “wiggliness” of the esti-
mated function, is a variant of the bias-variance tradeoff problem: using too
few basis functions may not allow the fitted curve to accurately represent the
shape of the function, leading to biased estimation, while using too many
will result in an overly close interpolation of the measured data points — the
estimated curve represents random noise along with the underlying structure.
Penalized spline smoothing (Eilers and Marx, 1996) addresses this problem
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by choosing a sufficient number of knots (e.g. 10-40) to ensure the neces-
sary flexibility of the fit and by introducing an additional penalty term, a
function of the spline coefficients δ, that quantifies the roughness of the es-
timated function. For a broad class of spline bases, the resulting criterion is
a penalized least squares criterion,

min
δ

(
‖y−Bδ‖2 +

1

λ
δ′Kδ

)
, (1)

where K is a penalty matrix and λ is the smoothing parameter controlling
the amount of penalization, i.e. the tradeoff between fidelity to the data and
complexity of the fit. The elements in K are determined by the spline basis
that is used to generate B and the roughness penalty desired by the analyst
(usually penalizing (local) deviations of the fitted function from a constant,
linear, or a quadratic polynomial).

Example: TP-Basis
A simple example of basis functions is the truncated powers (TP) basis. A
TP-Basis of degree p, with d basis functions for a covariate x and fixed
knots κ1, . . . , κd−p consists of a constant term, p global polynomial terms
x1, . . . ,xp and p−d truncated polynomials (x−κi)p+, i = 1, . . . , d−p, where
(y)+ = y I(y > 0):

B =
[
x0 x1 . . . xp (x− κ1)

p
+ . . . (x− κd−p)p+

]
The penalty for the TP-Basis penalizes deviations of the fitted function from
a p-degree polynomial:

K = diag(0p+1,1d−p).

The penalty term δ′Kδ is simply the sum of squares of the p− d coefficients
for the truncated polynomials.
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2 Mixed model representation of an additive

model

The third issue, selecting the amount of smoothness most appropriate in a
data-driven way, then reduces to estimation of the smoothing parameter λ,
which controls the smoothness of the estimated function. The penalized least
squares problem is reformulated as a mixed model in which the smoothing
parameter becomes a variance component. This is achieved by a decom-
position of the spline coefficients into an unpenalized part and a penalized
part:

δ = Uβ + Pb

where U , d× p, is a basis of the p-dimensional nullspace of the penalization
matrix K and U and P have the following properties (Kneib, 2006, ch. 5.1):

1. The composed matrix [UP ] has full rank to make the transformation
above a one-to-one transformation. This also implies that both U and
P have full column rank.

2. U and P are orthogonal, i. e. UP ′ = 0

3. U ′KU = 0, so that β is unpenalized by K

4. P ′KP = I, so that the penalty for b reduces to ‖b‖2

The decomposition is not unique. It can always be based on the spectral
decomposition of K. With

K = [Λ+Λ0]′
[

Γ+ 0
0 0

]
[Λ+Λ0],

where Λ+ is the matrix of the eigenvectors associated with the positive eigen-
values diag(Γ+), and Λ0 are the eigenvectors associated with the zero eigen-
values, the decomposition is

U = Λ0,

P = L(L′L)−1

with L = Λ+Γ
1/2
+ .
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Using

Bδ = B(Uβ + Pb) = Xuβ +Zpb (2)

and δ′Kδ = (Uβ + Pb)′K(Uβ + Pb)

= b′P ′KPb+ β′U ′KUβ = b′b,

the penalized least squares criterion (1) can be rewritten as

min
δ

(
‖y −Bδ‖2 +

1

λ
δ′Kδ

)
= (3)

min
β,b

(
‖y −Xuβ +Zpb‖2 +

1

λ
‖b‖2

)
.

Example: TP-Basis
Since the penalty matrix K = diag(0p+1,1d−p) of the TP-Basis has such an
easy structure, the decomposition into the unpenalized part and the penalized
part of the spline coefficients δ is trivial: Xu contains the first p+ 1 columns
of B with the constant term and the polynomials, while Zp contains the d−p
columns with the truncated polynomial terms:

B = [XuZp]

Xu =
[
x0 x1 . . . xp

]
Zp =

[
(x− κ1)

p
+ . . . (x− κd−p)p+

]
For given λ, minimizing (3) over (β′, b′)′ is equivalent to BLUP-estimation

(Ruppert et al., 2003, ch. 4.5.3) in a linear mixed model with

y = Xuβ +Zpb+ ε; ε ∼ Nn(0, σ2
εIn); b ∼ Nd−p(0, σ

2
ελId−p).

To see this, multiply the expression in (3) with 1
2σ2

ε
: For given λ and σ2

ε , it is
equivalent to maximizing

L(β, b|λ, σ2
ε) ∝ exp

(‖y −Xuβ −Zpb‖2 + 1
λ
‖b‖2

−2σ2
ε

)
,

which is the likelihood of the model above. In effect, the reformulation as a
mixed model above allows for the estimation of smoothing parameters with
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ML- or REML-methodology. All this applies as well for the generalized case
with non-gaussian responses.

This model formulation can be extended to include multiple smooth
terms, other random effects and a linear predictor in the classical sense of lin-
ear regression: Just concatenate the unpenalized parts of the smooth terms
to the design matrix of the fixed effects and the penalized parts of the smooth
effects to the design matrix of the random effects.
For a mixed additive model

y = Xβ+
L∑
l=1

Zlbl +
S∑
s=1

f(xs) + ε;

[
b
ε

]
∼ N∑

ql+n

(
0, σ2

ε

[
Ω−1
b 0
0 In

])
with fixed effects design X, L random effects designs Zl each with ql param-
eters and random effects b = [b1, . . . , bL] ∼ N∑

ql(0, σ
2
εΩ
−1
b ) and S smooth

terms, we can write
y = X̃β̃+ Z̃b̃+ ε

with concatenated design matrices

X̃ = [XXu,1 . . .Xu,S] ; Z̃ = [Z1 . . .ZLZp,1 . . .Zp,S]

and Cov(b̃) = Cov



b
b1
...
bS


 = σ2

ε


Ω−1
b 0 . . . 0

0 λ1Id1−p1
...

...
. . . 0

0 . . . 0 λsIdS−pS


The parameter vector for the fixed effects is stacked in the same fashion as the
one for the random effects. A minor additional complication arises from the
fact that usually every matrix Xu,s, s = 1, . . . , S for the unpenalized parts
of the smooth terms will contain an intercept column. They are removed
in order to avoid a rank deficient design matrix X̃. This also solves the
identifiability issues common to additive models (Wood, 2006a, ch. 3.3).

2.1 Variability Estimation

The convenience functions getF and plotF to extract or plot estimated func-
tion values f̂(x) offer both MCMC-based or approximate frequentist variabil-
ity bands. MCMC-based intervals (option interval="MCMC" in getF, plotF)
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are pointwise HPD-intervals. They are based on samples from lme4’s mcmc-

samp and may not be very reliable yet. 1

The frequentist variability estimates (option interval="RW" in getF, plotF)
condition on the value of the estimated variance / smoothing parameters and
use the bias-adjusted covariance of f̂(x) derived in Ruppert et al. (2003, ch.
6.4, eq. (6.13)). See section 3.5 for an example. I plan to include bootstrap-
based variability estimates in future versions.

3 Examples

In this section, I fit some exemplary datasets to illustrate the capabilities of
amer. I demonstrate how to fit simple semiparametric or additive models,
how to use the by-option of the basis-generating function to fit group-specific
smooths, how to use the allPen-option of the basis-generating function to fit
subject- or cluster-specific smooth terms where all subject-level coefficients
are penalized (i.e. the coefficients asssociated with Xu are treated as random
effects as well), and how to use the varying-option to fit varying-coefficient
models. Most of the examples are adapted from Crainiceanu et al. (2005).

3.1 Generalized Additive Model

Let’s first have a look at data on wages and union membership for 534 workers
described in Berndt (1991). The model assumes that the probability of union
membership of worker i (yi = 1 if member) depends on his or her hourly wages
xi:

P (yi = 1) = logit−1(f(xi))

f(xi) = β0 + β1xi +
K−1∑
k=1

bk(xi − κk)+

bk ∼ N(0, σ2
f )

1 Check the traceplots by calling xyplot(attr(getF(<MyModel>, inter-
val="MCMC"),"mcmc")), see section 3.5 for an example.
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We use the default linear TP-Basis with the default number of basis function
(K = 15) by calling the tp-function:

> u1 <- amer(UNION ~ tp(WAGE), family = binomial, data = union)

By default, tp uses equally spaced knots to generate the basis functions. If
the covariate distribution is as non-uniform as here (see Figure 1), quantile-
based knots are often a better choice:

> K <- 15
> degree <- 1
> knots <- quantile(union$WAGE, probs = (2:(K - degree +
+ 1))/(K - degree + 2))
> u2 <- amer(UNION ~ tp(WAGE, knots = knots), family = binomial,
+ data = union)

> print(u2, corr = F)

Generalized additive mixed model fit by the Laplace approximation
Formula: UNION ~ tp(WAGE, knots = knots)

Data: union
AIC BIC logLik deviance
483 496 -238 477

Random effects:
Groups Name Variance Std.Dev.
f.WAGE tp 0.202 0.449

Number of obs: 534, groups: f.WAGE, 14

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.961 0.727 -1.32 0.186
WAGE.fx1 1.837 0.890 2.06 0.039 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note amer’s naming convention for the smooth function: The group name
of the variance component associated with a smooth function of a covariate
x is f.x, instead of the covariate name, amer gives the name of the basis
generating function. The names of the columns in the n × p design matrix
Xu for the unpenalized part of the smooth are given by x.fx1, x.fx2 to
x.fxp. Figure 1 shows the plots produced by calls to plotF.
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The following code generates figure 1:

> par(mfrow = c(1, 2))
> plotF(u1, trans = plogis, rug = F, ylim = c(0, 0.4),
+ auto.layout = F)
> with(union, points(WAGE, jitter(0.4 * UNION, factor = 0.15),
+ cex = 0.5))
> plotF(u2, trans = plogis, rug = F, ylim = c(0, 0.4),
+ auto.layout = F)
> with(union, points(WAGE, jitter(0.4 * UNION, factor = 0.15),
+ cex = 0.5))
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Figure 1: Fitted probability of union membership versus hourly wages, with
conditional 90% CI and jittered observations. Left panel: Equidistant-knots,
right panel: quantile-based knots
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3.2 Separate smooths for levels of a factor: Using the
by-option

We use data on coronary sinus potassium concentration measurements for 36
dogs. The dogs were divided into 4 treatment groups, and the measurements
for each dog were taken every two minutes from 1 to 13 minutes after occlu-
sion (i.e. an artificially induced heart attack). The data was first published
in Grizzle and Allen (1969) and previously analysed in Crainiceanu et al.
(2005). Figure 2 shows the observed concentrations for all 36 dogs split up
into the treatment groups. The group-averages seem to have quite different
time trends, with different degrees of nonlinearity, so we fit an additive mixed
model with group-specific smooth functions fg(t)(g = 1, . . . , 4) of time and
random intercepts b0 for the different dogs:

yij = β0g(i) + fg(i)(tij) + b0i + εij

fg(i)(tij) = β1g(i)tij +
K−1∑
k=1

bfg(i)k(tij − κk)+

bfg(i)k ∼ N(0, σ2
g(i))

b0i ∼ N(0, σ2
b0)

εij ∼ N(0, σ2
ε)

Note that we estimate separate spline coeffificient variances σ2
g , g = 1, . . . , 4

for the 4 treatment groups.

The model is specified in amer using the by-option:

> data(dog)
> d1 <- amer(y ~ -1 + group + tp(time, by = group) + (1 |
+ dog), data = dog)

> print(d1, corr = F)

Additive mixed model fit by REML
Formula: y ~ -1 + group + tp(time, by = group) + (1 | dog)

Data: dog
AIC BIC logLik deviance REMLdev
383 432 -177 342 355

Random effects:
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Groups Name Variance Std.Dev.
dog (Intercept) 0.24870 0.499
f.time.group4 tp 0.00547 0.074
f.time.group3 tp 0.05706 0.239
f.time.group2 tp 0.00000 0.000
f.time.group1 tp 0.17814 0.422
Residual 0.15063 0.388

Number of obs: 252, groups: dog, 36; f.time.group4, 14; f.time.group3, 14; f.time.group2, 14; f.time.group1, 14

Fixed effects:
Estimate Std. Error t value

group1 4.3528 0.6008 7.24
group2 3.5529 0.1644 21.61
group3 4.3806 0.4380 10.00
group4 4.0446 0.2365 17.10
time.group1.fx1 0.1737 0.4230 0.41
time.group2.fx1 -0.0329 0.0465 -0.71
time.group3.fx1 0.5452 0.3080 1.77
time.group4.fx1 0.2285 0.1433 1.60

Note amer’s naming convention for smooth functions with a by-argument:
The group name of the variance component associated with a smooth function
of a covariate x at level L of the grouping factor by is f.x.byL. The names of
the columns in the n× p design matrix Xu,L for the unpenalized part of the
smooth for level L are given by x.byL.fx1, x.byL.fx2 to x.byL.fxp.

12



time

y

3.0

3.5

4.0

4.5

5.0

5.5

6.0

0.0 0.2 0.4 0.6 0.8 1.0

● ●
●

● ●
●

●

●
●

● ●

●
●

●

●
●

● ●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●
●

●
● ●

●

●
●

●
●

●
●

●

●
●

●
● ●

●
●

●

●

●

1

● ●
●

● ●

●

●

●
●

● ●
●

●
●

●
●

●
●

●

● ●
●

● ● ●
●

● ●

●
●

●

●

● ●
●

●

●

●
●

● ● ●

● ● ●
●

●

● ●

●
●

●
●

●
● ●

●
●

● ●
●

●
●

●
●

●
●

●

● ●

2

●
●

● ●

●
●

●

●
● ●

● ●
●

●

●
●

●
●

●
● ●

●
●

●

●

●

●

●
● ●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

3

0.0 0.2 0.4 0.6 0.8 1.0

3.0

3.5

4.0

4.5

5.0

5.5

6.0

●

● ●

●
● ●

●
●

●

●
● ●

●
●

●

●

●

●

●

●
●

● ●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

● ●

●

●
●

●
●

●
● ●

●

●
●

●

4

Figure 2: dog data: coronary sinus potassium concentrations for 36 dogs in
4 treatment groups
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The following code generates figure 3:

> layout(cbind(matrix(1, ncol = 2, nrow = 2), matrix(2:5,
+ ncol = 2, nrow = 2)))
> par(mar = c(3, 2.8, 2.8, 0.8), mgp = c(2, 1, 0))
> plotF(d1, ylim = range(dog$y), interval = "none", legend = "topleft",
+ level = 0.95, auto.layout = F, lwd = 3)
> d1.RW <- getF(d1, interval = "RW")
> for (i in 1:4) {
+ plot(0, 0, ylim = range(dog$y), xlim = c(0, 1), ylab = "y",
+ xlab = "time")
+ sub <- subset(dog, group == i)
+ lapply(split(sub, sub$dog, drop = T), function(x) lines(x$time,
+ x$y, col = "lightgrey", lty = 2, lwd = 0.5))
+ matlines(d1.RW[[1]][[i]][, 1], d1.RW[[1]][[i]][,
+ -1], type = "l", lty = c(1, 3, 3), col = i, lwd = 2.5)
+ }
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Figure 3: Left panel: Estimated groupwise smooths for the coronary sinus
potassium data; Right panels: Estimated groupwise smooths with pointwise
90% CIs and observed data (grey dashes)
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3.3 Subject- or cluster-specific smooths: Using the allPen-
option

It is also possible to allow smooth subject-specific deviations from the group-
specific curves. We fit this model with random intercepts and slopes for the
dogs. The model is now

yij = βg(i) + fg(i)(tij) + fi(tij) + εij

fg(i)(tij) = βg(i)1tij +
K∑
k=1

bfg(i)k(tij − κk)+

fi(tij) = b0i + b1itij +
K∑
k=1

bfik(tij − κk)+

bfg(i)k ∼ N(0, σ2
g(i))

bfik ∼ N(0, σ2
f )

(b0i, b1i)
′ ∼ N2(0,D)

εij ∼ N(0, σ2
ε)

We still estimate separate spline coefficient variances σ2
g , g = 1, . . . , 4 for the

4 treatment groups, but only one common spline coeffificient variance σ2
f

for all the subject-specific smooth functions. We assume an unstructured
covariance matrix D for the subject-specific random intercepts and slopes
(b0i, b1i).

The model is specified in amer by using the by-option in combination with
allPen = TRUE. To keep the dimension of the model reasonable, we use only
k= 5 basis functions per dog:

> d2 <- amer(y ~ -1 + group + tp(time, k = 5, by = dog,
+ allPen = T) + tp(time, by = group), data = dog)

> print(d2, corr = F)

Additive mixed model fit by REML
Formula: y ~ -1 + group + tp(time, k = 5, by = dog, allPen = T) + tp(time, by = group)

Data: dog
AIC BIC logLik deviance REMLdev
348 408 -157 301 314
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Random effects:
Groups Name Variance Std.Dev. Corr
f.time.dog tp 0.04051 0.2013
u.time.dog (Intercept) 0.25259 0.5026

time.dog.fx1 0.00468 0.0684 1.000
f.time.group4 tp 0.00587 0.0766
f.time.group3 tp 0.05887 0.2426
f.time.group2 tp 0.00000 0.0000
f.time.group1 tp 0.20025 0.4475
Residual 0.09588 0.3096

Number of obs: 252, groups: f.time.dog, 144; u.time.dog, 36; f.time.group4, 14; f.time.group3, 14; f.time.group2, 14; f.time.group1, 14

Fixed effects:
Estimate Std. Error t value

group1 4.3168 0.5797 7.45
group2 3.5742 0.1774 20.15
group3 4.3174 0.4179 10.33
group4 4.0878 0.2389 17.11
time.group1.fx1 0.1453 0.4000 0.36
time.group2.fx1 -0.0115 0.0773 -0.15
time.group3.fx1 0.5039 0.2861 1.76
time.group4.fx1 0.2715 0.1436 1.89

By specifying allPen = TRUE, a random intercept for the by-variable is au-
tomatically included in the model. Also note amer’s naming convention for
smooth functions of a covariate x with a by-argument and allPen = TRUE:
For the random effects associated with Xu, the group name of the variance
component is u.x.by. The factor u.x.by is of course the same as by, the
renaming is done for technical reasons.

Especially for spline bases with a higher dimensional nullspace of the
penalty it may not be feasible or desirable to estimate an unstructured co-
variance matrix D. By setting the diag-option to TRUE in the specification
of a smooth term with allPen = TRUE, we can enforce uncorrelated random
effects for the coefficients associated with Xu:

> d3 <- amer(y ~ -1 + group + tp(time, k = 5, by = dog,
+ allPen = T, diag = T) + tp(time, k = 5, by = group),
+ data = dog)

> print(d3, corr = F)
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Additive mixed model fit by REML
Formula: y ~ -1 + group + tp(time, k = 5, by = dog, allPen = T, diag = T) + tp(time, k = 5, by = group)

Data: dog
AIC BIC logLik deviance REMLdev
348 405 -158 301 316

Random effects:
Groups Name Variance Std.Dev.
f.time.dog tp 0.0409 0.202
u.time.dog time.dog.fx1 0.0000 0.000
u.time.dog (Intercept) 0.2000 0.447
f.time.group4 tp 0.0176 0.133
f.time.group3 tp 0.2017 0.449
f.time.group2 tp 0.0000 0.000
f.time.group1 tp 0.6588 0.812
Residual 0.0970 0.311

Number of obs: 252, groups: f.time.dog, 144; u.time.dog, 36; f.time.group4, 4; f.time.group3, 4; f.time.group2, 4; f.time.group1, 4

Fixed effects:
Estimate Std. Error t value

group1 4.3666 0.3375 12.94
group2 3.5742 0.1621 22.05
group3 4.3521 0.3029 14.37
group4 4.0829 0.2039 20.03
time.group1.fx1 0.1769 0.2448 0.72
time.group2.fx1 -0.0116 0.0746 -0.16
time.group3.fx1 0.5256 0.2148 2.45
time.group4.fx1 0.2676 0.1247 2.15
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3.4 Varying coefficient models: Using the varying-option

Another class of models that can be fitted with amer are varying coefficient
models. They are used to model smoothly varying regression coefficents, i.e.
models in which the effect of a covariate z varies smoothly over the range of
another covariate x (· denotes elementwise multiplication.):

y = β(x) · z + ε

β(x) = f(x) ≈Xuβ+Zpb

⇒ β(x) · z ≈ (Xu · z)β+ (Zp · z)b

This class of models can be fitted by simply scaling the design matrices for
the spline of the effect-modifying covariate x (i.e. the varying coefficient)
with the values of the covariate z. A slight complication arises: for all other
classes of models, we drop the intercept column in Xu so that the model is
identifiable. That is unnecessary in this case, so the design matrix (Xu · z)
has 1 · z = z as its first column.

Let’s look at lattice’s ethanol data set as an example: Ethanol fuel was
burned in a single-cylinder engine. For various settings of the engine com-
pression (C) and the equivalence ratio (E, a measure of the richness of the
air and ethanol fuel mixture), the emissions of nitrogen oxides (NOx) were
recorded. We assume that, for a given equivalence ratio, the relationship be-
tween compression and emissions is linear with different intercepts (see figure
4).

The model we want to fit is

NOxi = f1(Ei) + f2(Ei)Ci + εi

f1(Ei) = β0 +X(E)
u β(E) +Z(E)

p b(E)

f2(Ei)Ci = X(EC)
u β(EC) +Z(EC)

p b(EC),

with the usual distributional assumptions about b(E), b(EC) and ε. The
command to fit this model in amer is simply

> e1 <- amer(NOx ~ tp(E, k = 20) + tp(E, k = 20, varying = C),
+ data = ethanol)

> print(e1, corr = F)
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Figure 4: Emissions of nitrogen oxides NOx for various engine compression
values C, split up according to equivalence ratio E. Lines are linear regression
estimates for the subgroups.
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Additive mixed model fit by REML
Formula: NOx ~ tp(E, k = 20) + tp(E, k = 20, varying = C)

Data: ethanol
AIC BIC logLik deviance REMLdev
15.9 33.2 -0.936 -10.2 1.87

Random effects:
Groups Name Variance Std.Dev.
f.E tp 1.286220 1.1341
f.EXC tp 0.000988 0.0314
Residual 0.030132 0.1736

Number of obs: 88, groups: f.E, 19; f.EXC, 19

Fixed effects:
Estimate Std. Error t value

(Intercept) 2.1807 2.0905 1.043
E.fx1 1.6448 1.3032 1.262
EXC.fx1 0.1324 0.0844 1.568
EXC.fx2 0.0273 0.0550 0.497

The fit is plotted in figure 5. Note amer’s naming convention for varying
coefficient models: For an effect-modifying covariate x and an effect-causing
covariate z, the function name is given as f.xXz, the unpenalized effects are
named xXz.fx1 to xXz.fxp. The first unpenalized effect corresponds to the
conventional regression coefficient for z, since Xu has z as its first column.
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3.5 Variability Bands: Using the RW- and MCMC-options

By default, amer’s plotF requests and plots approximate pointwise intervals
based on a bias-adjusted approximation of Cov((β̂, b̂− b)|σ̂2

b , σ̂
2
ε) (see 2.1).

These may underestimate the true variability since they ignore the uncer-
tainty in the estimated variance parameters. We can also use the results
from lme4’s mcmcsamp to construct MCMC-based variability bands. Figure
5 compares the frequentist, bias-adjusted variability bands (see 2.1) for the
estimated function values with pointwise HPD-Intervals based on 1000 draws
from mcmcsamp for the ethanol data. The latter are much wider since they
take into account the variability of the estimated variances, while the former
condition on the estimated variances.

Since mcmcsamp may not always work as expected, it is strongly recom-
mended to examine the returned MCMC-samples. They are available as the
mcmc-attribute of the value returned by getF or plotF. A quick visual inspec-
tion of the sampling paths can be done via xyplot, see figure 6. The MCMC
iterations show strange spikes after about 700 iterations with humongous
values drawn for the relative standard deviations e1@ST of the spline coef-
ficients. The marginal posterior densities for the variance components are
concentrated on values magnitudes larger than the REML estimates found
by the optimizer, with ridiculously long upper tails (which lead to erratic
sampling behaviour of the spline coefficients b and consequently enormous
HPD-Intervals for f̂(x)):

> e1.MCMCData <- as.data.frame(attr(e1.MCMC, "mcmc"))
> data.frame(c(fixef(e1), e1@ST, lme4:::sigma(e1)))

X.Intercept. E.fx1 EXC.fx1 EXC.fx2 tp tp.1 sigmaREML
tp 2.18 1.64 0.132 0.0273 6.53 0.181 0.174

> apply(e1.MCMCData, 2, quantile, probs = c(0.1, 0.25,
+ 0.5, 0.75, 0.9), na.rm = T)

(Intercept) E.fx1 EXC.fx1 EXC.fx2 ST1 ST2 sigma
10% -48.15 -28.17 -4.931 -2.778 0.00e+00 3.05e+01 0.123
25% -9.27 -6.17 -2.985 -1.640 6.28e+03 2.12e+08 0.130
50% 7.96 4.20 -0.629 -0.317 4.20e+10 6.36e+24 0.139
75% 49.78 27.92 0.354 0.231 4.46e+21 8.89e+52 0.154
90% 85.92 47.91 2.399 1.390 3.12e+35 1.22e+83 0.243
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The following code generates figure 5:

> par(mfrow = c(2, 2), mar = c(3, 2.8, 2.8, 0.8), mgp = c(2,
+ 1, 0))
> e1.RW <- plotF(e1, addConst = c(T, F), level = 0.95,
+ auto.layout = F)
> set.seed(12345)
> e1.MCMC <- plotF(e1, addConst = c(T, F), int = "MCMC",
+ sims = 1000, level = 0.95, auto.layout = F)

starting 1000 MCMC iterations for posterior intervals:
... done.
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Figure 5: Fits and 95% CIs/HPD-Intervals for the ethanol data. Upper
row: pointwise frequentist variability bands conditional on the estimated
variances. Lower row: pointwise HPD-Intervals based on 1000 draws (see
text) from mcmcsamp. Left column: Effect of equivalence ratio E. Right col-
umn: regression coefficient for compression C varying over E. By default, the
value of the varying coefficient function (right column) is evaluated for a co-
variate value of z = 1, so the plot for f.EXC can be interpreted directly as
β(E).
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⇒ we cannot blindly trust MCMC-intervals until mcmcsamp becomes more
stable.

> print(xyplot(attr(e1.MCMC, "mcmc")))
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Figure 6: Traceplot of the MCMC samples for model e1. Note the huge
values for ST.
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4 Implementation

4.1 What’s the point?

There is already a well-tested, well documented and versatile package mgcv

(Wood, 2006b) that fits generalized additive mixed models in R, so why
bother with yet another one?

� mgcv’s gamm uses the less stable and slower nlme-implementation of linear
mixed models, while amer relies on the more stable algorithm used in
lme4 (Bates and Maechler, 2009b) with its very fast sparse Matrix (Bates
and Maechler, 2009a) magic.

� mgcv’s gamm fits non-gaussian responses by calling MASS’s glmmPQL. The
PQL-approach for fitting generalized linear mixed models (GLMM) is
severely biased and often unstable. amer relies on the more precise
Laplace approximation implemented in lme4 for fitting GLMMs.

� asreml also offers additive models, but is limited to gaussian responses
(and isn’t free or open-source)

The drawbacks of using amer instead of mgcv’s gamm are that, as yet, it’s not
possible to include serial and/or spatial correlation structures or variance
functions for the residuals or specify covariance structures of the random
effects that aren’t either diagonal or unstructured (this will remain an issue
as long as lme4 doesn’t have that capability). Also, multidimensional smooths
are not yet implemented, but will hopefully be included in a future version.

4.2 Making lmer fit GAMMs

In its most current version (0.999375-31, at the time of writing), lme4 fits
mixed models

� for hierachical data structures (i.e. grouped data) and

� only admits either diagonal or unstructured covariances of the non-
scalar random effects for every level of grouping.
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In an additive mixed model, data are not grouped (the smoothing in-
troduces dependence between all the observation in the data) and, if the
reparametrization from Bδ to Xuβ +Zpb is not done, the precision matrix
K/λ for the penalized coefficients is in general not diagonal (and certainly
not unstructured) and not of full rank, so that an implementation of GAMMs
based on the unreprameterized representation is not possible without chang-
ing the underlying C-code of lme4.

Instead of making these changes to the underlying C, amer tricks lmer

into fitting additive models by setting up an unfit model object with the
structure of random and fixed effect design matrices necessary for the mixed
model representation (2) of the additive model, and then overwriting the
(precursor of) the Zt-slots with the penalized parts Zp of the reparameterized
spline bases. More precisely, the model object is set up by going through the
following steps for each smooth function:

1. Generate Xu and Zp according to the basis generating function (see
section 4.4) given for the smooth term,

2. replace smooth term in the original model formula with fixed effect
terms for the columns in Xu and a random intercept term for an arti-
ficial grouping factor that has as many levels as Zp has columns,

3. add the fixed effects in Xu and the artifical grouping factor to the
model frame,

4. set up, but do not fit this model with a call to lmer with option
doFit=FALSE, and finally

5. overwrite the design matrices for the random intercept of the artificial
grouping factor with Zp.

Some complications arise if the by- or allPen-option are used, but these steps
remain basically the same. The routine then hands back the modified unfitted
model to lmer_finalize or glmer_finalize for calling the optimization C-code
etc.
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4.3 Justification for using the TP-Basis

The TP-basis implemented in amer suffers from some serious flaws:

- It has an undesirable one-to-one mapping between the smoothness / differ-
entiability of the fit (TP of degree p ⇒ fit is p − 1-time continuous differ-
entiable), and the nullspace of the penalty (TP of degree p ⇒ nullspace is
a p-degree polynomial). This is different from, e.g., penalized B-Spline fits,
where the order of the difference penalty that determines the nullspace of
the penalty can be specified independently from the order of the spline bases
which determine the smoothness of the fit.

- the unbounded support (to the right of the knot) of the truncated polyno-
mials means that the values of the basis function can potentially become
huge.

- the columns inZp containing the truncated polynomials are severely collinear,
especially for closely spaced knots

However, similar collinearity in Zp is present for all other spline bases after the
mixed model reparametrization (2) described in section 2. This not well-known
fact and the fact that for all other spline bases I am aware of, the reparameterized
basis in Zp is no longer sparse, even if the original B was are the reasons why I
chose the TP-Basis as the default for amer: Since Zp is about 50% zeroes, amer
can take full advantage of the sparse matrix operations used in lme4.

4.4 Writing your own basis-generating function

It is fairly easy to implement your own basis generating function for use in amer.
Such a function only has to fullfill the following criteria:

� It has to have arguments

– x, a numeric variable used for the smooth function,

– by, a factor variable (default: NULL),

– allPen, (a logical),

– diag, (a logical),

– varying, a numeric variable (default: NULL).
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� It has to return a list with

– an entry named X, which contains the matrix Xu without the intercept
column (this can be a matrix with zero columns)

– an entry named Z, which contains the matrix Zp

– an attribute call, which contains the result of expand.call

The technical details of splitting up Xu and Zp for a possible by variable, naming
the columns in Xu etc. are performed by the utility function expandBasis.

As an example, let’s add a variant of the TP-Basis to amer’s repertoire –
let’s say we want to get rid of the undesirable one-to-one mapping between the
smoothness/differentiability of the fit and the null-space of the penalty of the TP-
Basis. We implement a simple basis-generating function tp2 that lets us specify the
dimensionality of the nullspace so that, for a TP-spline basis of degree p without
intercept (see above), we can specify the degree of the global polynomial that is
unpenalized. Let’s call this option dimU. If we let dimU= p, this corresponds to
the conventional TP-Penalty. If dimU< p, columns containing global polynomials
that would be in Xu for the conventional TP-Penalty are put in Zp instead.

The following code implements a rough draft of the idea, with the default
for using a quadratic TP-Basis (p=2) (s.t. the fitted function is continuously
differentiable, i.e. has no kinks) while penalizing deviations from linearity (dimU=
1):

> tp2 <- function(x, p = 2, k = 15, dimU = 1, by = NULL,
+ allPen = FALSE, diag = FALSE, varying = NULL,
+ knots = quantile(x,
+ probs = (2:(k - p + 1))/(k - p + 2)))
+ {
+ #dim. of nullspace can't be larger than p of TP-basis:
+ stopifnot(dimU <= p)
+
+ #always need this for the call attribute of the returned value:
+ call <- as.list(expand.call())
+ call$knots <- knots
+
+ #global polynomial trends (no intercept!):
+ X <- if (p > 0) {
+ outer(x, 1:p, "^")
+ } else {
+ matrix(nrow = length(x), ncol = 0)
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+ }
+
+ #TP-design for penalised part:
+ Z <- outer(x, knots, "-")^p * outer(x, knots, ">")
+
+ # adapt design for dimU option:
+ if (dimU != p) {
+ Xp <- X[, (1:p) > dimU, drop = F]
+ X <- X[, (1:p) <= dimU, drop = F]
+ Z <- cbind(Xp, Z)
+ }
+
+ res <- list(X = X, Z = Z)
+ attr(res, "call") <- as.call(call)
+ return(res)
+ }

We can now use this function to fit a continuously differentiable function with
penalized deviations from linearity to the dog data, but we have to tell amer to
look for smooth terms called tp2 in the basisGenerators-option:

> d4 <- amer(y ~ -1 + group + tp2(time, k = 5, p = 2, dimU = 1,
+ by = group) + (1 | dog), data = dog, basisGenerators = c("tp2"))

> print(d4, corr = F)

Additive mixed model fit by REML
Formula: y ~ -1 + group + tp2(time, k = 5, p = 2, dimU = 1, by = group) + (1 | dog)

Data: dog
AIC BIC logLik deviance REMLdev
374 423 -173 340 346

Random effects:
Groups Name Variance Std.Dev.
dog (Intercept) 0.249 0.499
f.time.group4 tp2 0.173 0.416
f.time.group3 tp2 2.096 1.448
f.time.group2 tp2 0.000 0.000
f.time.group1 tp2 34.867 5.905
Residual 0.150 0.387

Number of obs: 252, groups: dog, 36; f.time.group4, 4; f.time.group3, 4; f.time.group2, 4; f.time.group1, 4

Fixed effects:
Estimate Std. Error t value

group1 4.0891 0.2060 19.85
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group2 3.6021 0.1785 20.18
group3 3.5420 0.2117 16.73
group4 3.7040 0.1941 19.08
time.group1.fx1 0.1636 1.1119 0.15
time.group2.fx1 -0.0986 0.1389 -0.71
time.group3.fx1 2.1733 0.6108 3.56
time.group4.fx1 0.6959 0.3559 1.96

Figure 7 shows a comparison of the fit with 5 basis functions of the tp2-function
to the fit of a conventional linear TP-basis.

The following code generates figure 7:

> d1.k5 <- amer(y ~ -1 + group + tp(time, k = 5, by = group) +
+ (1 | dog), data = dog)
> par(mfrow = c(1, 2))
> plotF(d1.k5, legend = "topleft", auto.layout = F)
> plotF(d4, legend = "none", auto.layout = F)
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Figure 7: Comparison of the results for tp(degree=1) (left panel) and
tp2(degree=2, dimU=1) (right panel) for the dog data.
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5 Open Issues

A to-do list for developping amer further:

� approximate frequentist CI’s for smooths with allPen=TRUE (should be easy,
only modify fctV)

� 2D-smooths (will mean major reworking of most utility functions called by
amerSetup as well as getF/PlotF)

� implementing (parametric/wild/...) bootstrap-CIs (could use lme4:::refit
and Ben Bolker’s mer.sim, maybe implement Kauermann/Claeskens/Opsomer(2008))

� implementing other spline bases, e.g. for cyclic functions

References

Douglas Bates and Martin Maechler. Matrix: Sparse and Dense Matrix Classes
and Methods, 2009a. URL http://CRAN.R-project.org/package=Matrix. R
package version 0.999375-30.

Douglas Bates and Martin Maechler. lme4: Linear mixed-effects models using S4
classes, 2009b. URL http://CRAN.R-project.org/package=lme4. R package
version 0.999375-31.

E. Berndt. The Practice of Econometrics: Classical and Contemporary. Addison
- Wesley, 1991.

C. Crainiceanu, D. Ruppert, and M.P. Wand. Bayesian analysis for penalized
spline regression using WinBUGS. Journal of Statistical Software, 14(14):1–24,
2005.

P.H.C. Eilers and B.D. Marx. Flexible smoothing with B-splines and penalties.
Statistical Science, 11(2):89–121, 1996.

J.E. Grizzle and D.M. Allen. Analysis of growth and dose response curves. Bio-
metrics, 25:357–381, 1969.

T. Kneib. Mixed model based inference in structured additive regression. PhD
thesis, LMU München, 2006.

30

http://CRAN.R-project.org/package=Matrix
http://CRAN.R-project.org/package=lme4


D. Ruppert, M.P. Wand, and R.J. Carroll. Semiparametric Regression. Cambridge
University Press, 2003.

S. Wood. Generalized Additive Models. Chapman and Hall, 2006a.

S. Wood. mgcv: Multiple Smoothing Parameter Estimation by GCV or UBRE,
2006b. URL http://www.maths.bath.ac.uk/~sw283/.

31

http://www.maths.bath.ac.uk/~sw283/

	Additive Models
	Mixed model representation of an additive model
	Variability Estimation

	Examples
	Generalized Additive Model
	Separate smooths for levels of a factor: Using the by-option
	Subject- or cluster-specific smooths: Using the allPen-option
	Varying coefficient models: Using the varying-option
	Variability Bands: Using the RW- and MCMC-options

	Implementation
	What's the point?
	Making lmer fit GAMMs
	Justification for using the TP-Basis
	Writing your own basis-generating function

	Open Issues

