depmixS4: An R-package for fitting mixture
models on mixed multivariate data with Markov
dependencies

Ingmar Visser & Maarten Speekenbrink*
Department of Psychology, University of Amsterdam
i.visser@Quva.nl
Department of Psychology, University College London
m.speekenbrink@ucl.ac.uk

March 25, 2008

Abstract

depmixS4 implements a general framework for definining and fitting
hidden Markov mixture model in the R programming language (R De-
velopment Core Team, 2007). This includes standard Markov models,
latent/hidden Markov models, and latent class and finite mixture dis-
tribution models. The models can be fitted on mixed multivariate data
with multinomial and/or gaussian distributions. Parameters can be esti-
mated subject to general linear constraints. Parameter estimation is done
through an EM algorithm or by a direct optimization approach with gradi-
ents using the Rdonlp2 optimization routine when contraints are imposed
on the parameters. A number of illustrative examples are included.

*Correspondence concerning this manual should be adressed to: Ingmar Visser, Depart-
ment of Psychology, University of Amsterdam, Roetersstraat 15, 1018 WB, Amsterdam, The
Netherlands

Contents
1 Introduction

2 Dependent mixture models
2.1 Likelihood
2.2 Computational considerations
2.3 Parameter estimation L.

3 Using depmixS4
3.1 Example data: speed oL
3.2 Definingmodels
3.3 Transition matrix and initial state probabilities
3.4 Fittingmodels oo
3.5 Fixing and constraining parameters

S UL Ul

[ClEN BEN I RN o]

1 Introduction

Markov and latent Markov models are frequently used in the social sciences,
in different areas and applications. In psychology, they are used for modelling
learning processes, see Wickens (1982), for an overview, and Schmittmann et al.
(2006) for a recent application. In economics, latent Markov models are com-
monly used as regime switching models, see e.g. Kim (1994) and Ghysels (1994).
Further applications include speech recognition (Rabiner, 1989), EEG analysis
(Rainer and Miller, 2000), and genetics (Krogh, 1998). In those latter areas
of application, latent Markov models are usually referred to as hidden Markov
models.

The depmixS4 package was motivated by the fact that Markov models are
used commonly in the social sciences, but no comprehensive package was avail-
able for fitting such models. Common programs for Markovian models include
Panmark (Van de Pol et al., 1996), and for latent class models Latent Gold
(Vermunt and Magidson, 2003). Those programs are lacking a number of im-
portant features, besides not being freely available. There are currently some
packages in R that handle hidden Markov models but they lack a number of
features that we needed in our research. In particular, depmixS4 was designed
to meet the following goals:

1. to be able to handle parameter estimates subject to general linear (in)equality
constraints

2. to be able to fit transition models with covariates, i.e., to have time-
dependent transition matrices

3. to be able to include covariates in the prior or initial state probabilities of
models

4. to allow for easy extensibility, in particular, to be able to add new response
distributions, both univariate and multivariate, and similarly to be able
to allow for the addition of other transition models, e.g., continuous time
observation models

Although depmixS4 is designed to deal with longitudinal or time series data,
for say T" > 100, it can also handle the limit case with 7' = 1. In those cases,
there are no time dependencies between observed data, and the model reduces
to a finite mixture model, or a latent class model. Although there are other
specialized packages to deal with mixture data, one specific feature that we
needed ourselves which is to the best of our knowledge not available in other
packages is the possibility to include covariates on the prior probabilities of class
membership. In the next section, an outline is provided of the model and the
likelihood equations.

Acknowledgements

Ingmar Visser was supported by an EC Framework 6 grant, project 516542
(NEST). Maarten Speekenbrink was supported by the ESRC Centre for Eco-
nomic Learning and Social Evolution (ELSE). Han van der Maas provided the
speed-accuracy data Maas et al. (2005) and thereby neccessitated implementing
models with time-dependent covariates. Brenda Jansen provided the balance

scale data set (Jansen, 2001) which was the perfect opportunity to test the co-
variates on the prior model parameters. The examples in the help files use both
of these data sets.

2 Dependent mixture models

The data considered here, has the general form O1,..., 07, Of,..., 0%, ...,
OX., ..., 0% for an m-variate time series of length 7. As an example, consider

a time series of responses generated by a single subject in a reaction time ex-
periment. The data consists of three variables, reaction time, accuracy and a
covariate which is a pay-off factor which determines the reward for speed and ac-
curacy. These variables are measured on 168, 134 and 137 occasions respectively
(in Figure 1 the first part of this series is plotted).

speed

08 50 55 6.0 65 7.0

corr
0.4

Pacc

00 02 04 0.6 0mBO

0 50 100 150

Time

Figure 1: Reaction times, accuracy and pay-off values for the first series of
responses in dataset speed.

The latent Markov model is commonly associated with data of this type,
albeit usually only multinomial variables are considered. However, common
estimation procedures, such as those implemented in Van de Pol et al. (1996)
are not suitable for long time series due to underflow problems. In contrast,
the hidden Markov model is typically only used for ‘long’ univariate time series.
In the next section, the likelihood and estimation procedure for the hidden
Markov model is described, given data of the above form. These models are
called dependent mixture models because one of the authors (Ingmar Visser)
thought it was time for a new name for these models.

The dependent mixture model is defined by the following elements:

1. a set S of latent classes or states S;, i =1,...,n,

2. matrices A; of transition probabilities a;;¢ for the transition from state
S; to state S; at time ¢,

3. a set By of observation functions b?() that provide the conditional prob-
abilities of observations OF associated with latent state Sj,

4. a vector 7 of latent state initial probabilities ;

When transitions are added to the latent class model, it is more appropriate to
refer to the classes as states. The word class is rather more associated with a
stable trait-like attribute whereas a state can change over time.

2.1 Likelihood

The log-likelihood of hidden Markov models is usually computed by the so-called
forward-backward algorithm (Baum and Petrie, 1966; Rabiner, 1989), or rather
by the forward part of this algorithm. Lystig and Hughes (2002) changed the
forward algorithm in such a way as to allow computing the gradients of the log-
likelihood at the same time. They start by rewriting the likelihood as follows (for
ease of exposition the dependence on the model parameters is dropped here):

T
Ly = Pr(0y,...,07) = [[Pr(001,...,0; 1), (1)
t=1

where Pr(0;|OQp) := Pr(0O;). Note that for a simple, i.e. observed, Markov
chain these probabilities reduce to Pr(0¢O1,...,0:_1) = Pr(0:0O;-1). The
log-likelihood can now be expressed as:

T
Ir =Y 1og[Pr(04|0y, ..., 0;_1)]. (2)

t=1

To compute the log-likelihood, Lystig and Hughes (2002) define the following
(forward) recursion:

¢1(j) := Pr(01,51 = j) = m;b;(01) (3)
&¢(j) == Pr(O¢, Sy = j|O1,...,0:-1)
al (4)
Zcbt 1(0)aizbi (04)] x (®4-1) 7",

where &, = Zf\il ¢+(7). Combining ®; = Pr(0:|0q,...,0:_1), and equa-
tion (2) gives the following expression for the log-likelihood:

T
= log,. (5)
t=1

2.2 Computational considerations

From equations (3-4), it can be seen that computing the forward variables, and
hence the log-likelihood, takes O(T'n?) computations, for an n-state model and
a time series of length T

2.3 Parameter estimation

Parameters are estimated in depmixS4 using the EM algorithm or through the
use of a general Newton-Raphson optimizer. The EM algorithm however has
some drawbacks. First, it can be slow to converge towards the end of opti-
mization (although it is usually faster than direct optimization at the start, so
possibly a combination of EM and direct optimization is fastest). Second, ap-
plying constraints to parameters can be problematic; in particular, EM can lead
to wrong parameter estimates when applying constraints. Hence, in depmixS4,
EM is used by default in unconstrained models, but otherwise, direct optimiza-
tion is done using Rdonlp2 Tamura (ry.tamura@gmail.com); Spellucci (2002),
because it handles general linear (in)equality constraints, and optionally also
non-linear constraints.

3 Using depmixS4

Two steps are involved in using depmixS4 which are illustrated below with
examples:

1. model specification with function depmix

2. model fitting with function fit

3.1 Example data: speed

Throughout this manual a data set called speed is used. It consists of three
time series with three variables: reaction time, accuracy, and a covariate Pacc
which defines the relative pay-off for speeded and accurate responding. The
participant in this experiment switches between fast responding at chance level
and relatively slower responding at a high level of accuracy.

Interesting hypotheses to test are: is the switching regime symmetric? Is
there evidence for two states or does one state suffice? Is the guessing state
actually a guessing state, i.e., is the probability of a correct response at chance
level (0.5)7

3.2 Defining models

A dependent mixture model is defined by the number of states, and by the
response distribution functions, and can be created with the depmix-function
as follows (see the help files for other options):

mod <- depmix(rt~1, data=speed, nstates=2)

Above code illustrates the simplest case of a univariate time series without
covariates; besides providing the data, the only other necessity is to specify the
desired number of states. Note that the rt’s are modelled here with a Gaussian
distribution as that is the default family option in depmixS4. A multivariate
model can be specified by providing a list of formulae rather than a single one
as above:

mod <- depmix(list(rt~1,corr~1), data=speed, nstates=2,
family=list(gaussian() ,multinomial())

Here it is also necessary to provide the family functions for each of the
responses. Currently, the gaussian() and multinomial() are implemented.

The function depmix returns an object of class depmix which has its own
summary function providing the parameter values of the model. The object
consists of three main parts: the prior model, which specifies the initial state
probabilities, the transition models, specifying the transition probabilities for
each state, and the response models, specifying the densities for each response
and each state. See the help files for further details.

Except in simple cases, starting values can be a problem in latent Markov
models, and so in general it’s best to provide them if you have a fairly good idea
of what to expect. Providing starting values is done through three arguments:
respstart, trstart, and instart, for response related parameters, transition pa-
rameters and prior parameters, respectively. The use of setpars reveals the
ordering of parameters that should be used:

mod <- depmix(list(rt~1,corr~1), data=speed, nstates=2,
family=1list(gaussian() ,multinomial())
setpars (mod, 1 :npar (mod))

See the paragraph on parameter numbering below for further details.

3.3 Transition matrix and initial state probabilities

The transition matrix is parametrized as a list of multinomial logistic models.
The initial state probabilities are similarly parametrized as a multinomial logis-
tic model. Both models use a base category parametrization, meaning that the
parameter for the base category is fixed at zero. The default base category is the
first state. Hence, for example, for a 3-state model, the initial state probability
model would have three parameters of which the first is fixed at zero and the
other two are freely estimated.

Covariates can be specified using a one-sided formula as in the following
example:

mod <- depmix(list(rt~1,corr~1), data=speed, nstates=2,
transition="Pacc)

Note that this can be done for the initial state probabilities by specifying
prior= X1, where X1 is the desired covariate. The result of this is that the
transition probabilities are now dependent on the covariate Pacc (which is an
experimenter controlled variable to induce switching between guessing and ac-
curate responding).

3.4 Fitting models

Fitting models is done using the function fit. The standard call only requires
a model object of class depmix:

mod <- depmix(list(rt~1,corr~1), data=speed, nstates=2,
family=1list(gaussian() ,multinomial())
fmod <- fit(mod)

The function returns an object of class depmix.fitted which extends the
depmix class, adding convergence information and possibly information about
constraints if these were applied. The function provides some online output on
the progress of the optimization, the precise form of the output depends on the
optimization method chosen.

Class depmix and depmix.fitted have logLik, AIC and BIC methods to
provide fit statistics.

3.5 Fixing and constraining parameters

Constraining and fixing parameters is done using the conpat argument to the
depmix.fit-function, which specifies for each parameter in the model whether
it’s fixed (0) or free (1 or higher). Equality constraints can be imposed by having
two parameters have the same number in the conpat vector. When only fixed
values are required the fixed argument can be used instead of conpat, with
zeroes for fixed parameters and other values (ones e.g.) for non-fixed parameters.
Fitting the models subject to these constraints is handled by the optimization
routine donlp2.

Parameter numbering When using the conpat and fixed arguments, com-
plete parameter vectors should be supplied, i.e., these vectors should have length
of the number of parameters of the model, which can be obtained by calling
npar (object). Parameters are numbered in the following order:

1. the prior model parameters
2. the parameters for the transition models

3. the response model parameters per state (and subsequently per response
in the case of multivariate time series)

To see the ordering of parameters use the following:
mod <- setpars(mod, value=1:npar(mod))mod

To see which parameters are fixed (by default only baseline parameters in
the multinomial logistic models for the transition models and the initial state
probabilities model:

mod <- setpars(mod,
getpars (mod,which="fixed"))mod

References

L. E. Baum and T. Petrie. Statistical inference for probabilistic functions of
finite state Markov chains. Annals of Mathematical Statistics, 67:1554—40,
1966.

Eric Ghysels. On the periodic structure of the business cycle. Journal of Busi-
ness and Economic Statistics, 12(3):289-298, 1994.

Brenda Jansen. Development of reasoning on the balance scale task: Psychome-
tric assessment of cognitive strategies. PhD thesis, University of Amsterdam,
Department of Psychology, 2001.

Chang-Jin Kim. Dynamic linear models with Markov-switching. Journal of
FEconometrics, 60:1-22, 1994.

Anders Krogh. An introduction to hidden Markov models for biological se-
quences. In S. L. Salzberg, D. B. Searls, and S. Kasif, editors, Computational
methods in molecular biology, chapter 4, pages 45—63. Elsevier, Amsterdam,
1998.

Theodore C. Lystig and James P. Hughes. Exact computation of the observed
information matrix for hidden markov models. Journal of Computational and
Graphical Statistics, 2002.

Han L. J. van der Maas, Conor V. Dolan, and Peter C. M. Molenaar. Phase
transitions in the trade-off between speed and accuracy in choice reaction
time tasks. Manuscript in revision, 2005.

R Development Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria, 2007.
URL http://www.R-project.org. ISBN 3-900051-07-0.

Lawrence R. Rabiner. A tutorial on hidden Markov models and selected appli-
cations in speech recognition. Proceedings of IEEE, T7(2):267-295, 1989.

Gregor Rainer and Earl K. Miller. Neural ensemble states in prefrontal cor-
tex identified using a hidden Markov model with a modified em algorithm.
Neurocomputing, 32-33:961-966, 2000.

Verena D. Schmittmann, Ingmar Visser, and Maartje E. J. Raijmakers. Mul-
tiple learning modes in the development of rule-based category-learning task
performance. Neuropsychologia, 44(11):2079-2091, 2006.

Peter Spellucci. Donlp2. 2002. URL
http://www.netlib.org/ampl/solvers/donlp2/.

Ryuichi Tamura(ry.tamura@gmail.com). Rdonlp2: an R extension li-
brary to wuse Peter Spelluci’s DONLP2 from R., 2007. URL

http://arumat.net/Rdonlp2/. R package version 0.3-1.

Frank Van de Pol, Rolf Langeheine, and W. De Jong. PANMARK 3. Panel
analysis using Markov chains. A latent class analysis program [User manual].

Voorburg: The Netherlands, 1996.

Jeroen K. Vermunt and Jay Magidson. Latent Gold 3.0 [Computer program and
User’s Guide]. Belmont (MA), USA, 2003.

Thomas D. Wickens. Models for Behavior: Stochastic processes in psychology.
W. H. Freeman and Company, San Francisco, 1982.

