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1 Introduction

This package provides the implementation of the outlier detection method as
described in van der Loo (2009). Briefly, the method works as follows: given
a one-dimensional dataset y, with values y1, y2, . . . , yN which is assumed to
be drawn from a model distribution with cdf F (y|θ). A value yi is considered
an outlier when it’s value exceeds a certain limit `, which is computed as

`(ρ) = F−1
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Here, ρ is a parameter which is to be interpreted as the number of expected
observations above `, given N independent drawings. If the distribution of
the bulk of the dataset is adequately described by the model distribution,
a value ρ < 1 gives a resonable outlier limit `. The vector θ consists of the
distribution parameters, and they are estimated robustly from a subset of
the data between quantiles pmin and pmax, to be determined by the user.

The main purpose of the extremevalues package is to provide a function
which can detect outliers using the method described above. Additionally,
a plotfunction is provided for graphical analysis of the result. The package
supports four model distributions:

• Lognormal distribution

• Exponential distribution

• Pareto distribution

• Weibull distribution

• Normal distribution
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In this document we work through an example to familiarize the reader
with the use of the package. I refer to the R help files for a complete
description of the functions and to the reference mentioned above for a
better explanation of the methodology. In the third section an overview of
the package user and internal functions is given and the last section provides
an overview of the estimation procedures.

2 A quick example

Generate some lognormally distributed data:

> y <- 10^rnorm(100)

Let’s add an outlier:

> y <- c(y,1000)

And try to detect it.

> L <- getOutliers(y)

The number of detected outliers is given by L$nOut:

> L$nOut

[1] 1

The position of outliers in y are stored as an index:

> y[L$iOut]

[1] 1000

So our added outlier is retrieved. Note that actual results may differ since
y is generated randomly and may have other outliers.

To see what we have done, we can plot the results with:

outlierPlot(y,L,rho=0.5)

The resulting picture looks something like this:
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Here, the circles are the sorted y-values, plotted against their estimated
quantile values p. Outliers are indicated in red and the red line shows
the outlier limit `. The continuous line indcates the estimated cumulative
model distribution, in this case the (default) lognormal distribution. The
green area indicates which points have been used in the determination of
the moder estimate.

Now, let’s try use the exponential distribution:

> M <- getOutliers(y, pval=c(0.6,0.95), method="exponential")

The parameter pval controls which data is used in to estimate the model
distribution parameter(s). In this case all observed data between the 0.6
and 0.95 quantile are used. We can check the quality of the estimate from
the R2-value of the fit:

> M$R2

[1] 0.454511

> L$R2

[1] 0.8366899

As can be expected, the exponential distribution describes the observed data
less well than the lognormal distribution (since we generated lognormally
distributed data). The number of outliers is also larger:

> M$nOut

[1] 7
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3 Function listing

User functions

getOutliers Detect outliers
outlierPlot Plot detection results
rpareto Draw from pareto distribution
dpareto Pareto density function
qpareto Pareto quantile function
invErf Inverse error function

Internal functions

fitPareto Fit data to cumulative pareto distribution
fitLognormal Fit data to cumulative lognormal distribution
fitExponential Fit data to cumulative exponential distribution
fitWeibull Fit data to cumulative weibull distribution
fitNormal Fit data to cumulative normal distribution
getParetoLimit Determine outlier limit assuming pareto distribution
getLognormalLimit Determine outlier limit assuming lognormal distribution
getExponentialLimit Determine outlier limit assuming exponential distribution
getWeibullLimit Determine outlier limit assuming weibull distribution
getNormalLimit Determine outlier limit assuming normal distribution

4 Summary of fit procedures

A set of sorted real observations y = y1, y2, . . . yN so that y1 ≤ y2 ≤ . . . yN

can be interpreted as estimates for an underlying cdf yi = F−1(pi|θ) where
the pi may be estimated as

pi =
i − 1/2

N
. (2)

For the outlier detection method we use the vectors p = (pi|i ∈ Λ) and
(yi|i ∈ Λ) to estimate θ, where Λ is an index set given by

Λ = {i ∈ {1, 2, . . . , N}|pmin ≤ pi ≤ pmax}. (3)

For F is lognormal, pareto, weibull or normal, the parameters θ can be
estimated with regression on the pairs (pi, yi), so that

b = (A′A)−1A′x. (4)

Here, b is a 2D column vector containing functions of the estimated vector θ̂,
A is a N ×2 matrix containing functions of pi and x is a ND vector function
of y. Table 1 gives explicit expressions for the distributions mentioned above.

The cdf for the exponential distribution is given by 1− eλy, where λ can
be estimated as

λ̂ = −1′ · ln1 − p

1′ · y′ . (5)
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Table 1: Explicit expressions for four distributions.

Name F b A x

Lognormal 1
2 − 1

2erf{ ln y−µ√
2σ

} (µ̂, σ̂)′ [1,
√

2erf−1(2p − 1)] lny

Weibull 1 − e−(x/λ)k

(ln λ̂, k̂−1)′ [1, ln ln(1 − p)−1] lny

Pareto 1 − (ym

y )α (ln ŷm,−α̂−1)′ [1, ln(1 − p)] lny

Normal 1
2 − 1

2erf{ y−µ√
2σ
} (µ̂, σ̂)′ [1,

√
2erf−1(2p − 1)] y
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