JSUo {gamlss.dist}R Documentation

The original Johnson's Su distribution for fitting a GAMLSS

Description

This function defines the , a four parameter distribution, for a gamlss.family object to be used for a GAMLSS fitting using the function gamlss(). The functions dJSUo, pJSUo, qJSUo and rJSUo define the density, distribution function, quantile function and random generation for the the Johnson's Su distribution.

Usage

JSUo(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log")
dJSUo(x, mu = 0, sigma = 1, nu = 0, tau = 1, log = FALSE)
pJSUo(q, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE, log.p = FALSE)
qJSUo(p, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE, log.p = FALSE)
rJSUo(n, mu = 0, sigma = 1, nu = 0, tau = 1)

Arguments

mu.link Defines the mu.link, with "identity" link as the default for the mu parameter. Other links are "inverse", "log" and "own"
sigma.link Defines the sigma.link, with "log" link as the default for the sigma parameter. Other links are "inverse", "identity" and "own"
nu.link Defines the nu.link, with "identity" link as the default for the nu parameter. Other links are "inverse", "log" ans "own"
tau.link Defines the tau.link, with "log" link as the default for the tau parameter. Other links are "inverse", "identity" and "own"
x,q vector of quantiles
mu vector of location parameter values
sigma vector of scale parameter values
nu vector of skewness nu parameter values
tau vector of kurtosis tau parameter values
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x]
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number required

Details

The probability density function of the orininal Jonhson's SU distribution, (JSU), is defined as

f(y|mu,sigma,nu,tau)=tau/(sigma)*(1/(z^2+1)^.5)*(1/2*Pi)^(.5)exp(-.5r^2)

for 0<y<0, mu=(-Inf,+Inf), sigma>0, nu=(-Inf,+Inf) and tau>0. where z=(y-mu)/sigma, nu + tau* asinh(z).

Value

JSUo() returns a gamlss.family object which can be used to fit a Johnson's Su distribution in the gamlss() function. dJSUo() gives the density, pJSUo() gives the distribution function, qJSUo() gives the quantile function, and rJSUo() generates random deviates.

Warning

The function JSU uses first derivatives square in the fitting procedure so standard errors should be interpreted with caution. It is recomented to be used only with method=mixed(2,20)

Author(s)

Mikis Stasinopoulos d.stasinopoulos@londonmet.ac.uk and Bob Rigby r.rigby@londonmet.ac.uk

References

Johnson, N. L. (1954). Systems of frequency curves derived from the first law of Laplace., Trabajos de Estadistica, 5, 283-291.

Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.

Stasinopoulos D. M. Rigby R. A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.com/).

Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.

See Also

gamlss.family, JSU, BCT

Examples

JSU()   
plot(function(x)dJSUo(x, mu=0,sigma=1,nu=-1, tau=.5), -4, 15, 
 main = "The JSUo  density mu=0,sigma=1,nu=-1, tau=.5")
plot(function(x) pJSUo(x, mu=0,sigma=1,nu=-1, tau=.5), -4, 15, 
 main = "The JSUo  cdf mu=0, sigma=1, nu=-1, tau=.5")
# library(gamlss)
# data(abdom)
# h<-gamlss(y~cs(x,df=3), sigma.formula=~cs(x,1), family=JSUo, 
#          data=abdom, method=mixed(2,20)) 
# plot(h)

[Package gamlss.dist version 3.1-0 Index]