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This document shows how to perform the analysis of the Toenail data presented in Komárek
and Lesaffre (2008) using the functions of the package glmmAK. To process the MCMC output,
we also extensively use the coda package (Plummer et al., 2006). It is assumed that the user
reads Komárek and Lesaffre’s paper first. In this manual, the same notation is used, often
without redefining it.

This manual especially supplements the help pages of the following functions of the package
glmmAK:� cumlogitRE,� summaryGspline1.

The user is encouraged to take a look on the manual pages of these functions first! You can try

> help(cumlogitRE, package = glmmAK, htmlhelp = TRUE)

> help(summaryGspline1, package = glmmAK, htmlhelp = TRUE)

1 Getting started

We start by loading the package, specifying the working directory and loading the data:

> library(glmmAK)

> root <- "/home/komarek/Rlib/glmmAK/Doc/"

> setwd(root)

> data(toenail)

Brief summary of the data:

> summary(toenail)
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idnr infect trt time visit

Min. : 1.0 Min. :0.0000 Min. :0.0000 Min. : 0.000 Min. :1.000

1st Qu.:101.8 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.: 1.000 1st Qu.:2.000

Median :192.0 Median :0.0000 Median :1.0000 Median : 3.000 Median :4.000

Mean :189.8 Mean :0.2138 Mean :0.5089 Mean : 4.691 Mean :3.896

3rd Qu.:276.2 3rd Qu.:0.0000 3rd Qu.:1.0000 3rd Qu.: 8.893 3rd Qu.:6.000

Max. :383.0 Max. :1.0000 Max. :1.0000 Max. :18.500 Max. :7.000

2



2 Data and models

A longitudinal clinical trial in dermatology was set up to compare the efficacy of two oral
treatments for toenail infection (De Backer et al., 1998). In this manual, we will analyze
a dichotomized version of the degree of onycholysis which expresses the degree of separation of
the nail plate from the nail-bed (0 = absent or mild; 1 = moderate or severe). The response
was evaluated at seven visits (approximately on weeks 0, 4, 8, 12, 24, 36 and 48) and in total
937 and 971 measurements on 146 and 148 patients (N = 294), respectively are available in the
control group (itraconazole 200 mg/day) and in the treatment group (terbinafine 250 mg/day),
respectively. Let Yi,l represent the dichotomized onycholysis of the i-th subject at the l-th visit.
Further, let Trti denote the binary treatment indicator and Timei,l the visit time in months.
We will consider two PGM GLMM and two Normal GLMM’s.

2.1 PGM GLMM, not hierarchically centered

PGM GLMM, not hierarchically centered model is the following:

logit
{

P(Yi,l = 1 |β, bi)
}

= β1 + β2 Trti + β3 Timei,l + β4 Timei,l · Trti + bi, (1)

where

bi
i.i.d.∼

K
∑

j=−K

wj(a)N
(

τµj, (τσ)2
)

(i = 1, . . . ,N).

In a sequel, we will denote this model as PGM GLMM(nhc).

The results of this model are shown in Komárek and Lesaffre (2008).

2.2 PGM GLMM, hierarchically centered

PGM GLMM, hierarchically centered model is the following:

logit
{

P(Yi,l = 1 |β, bi)
}

= β2 Trti + β3 Timei,l + β4 Timei,l · Trti + bi, (2)

where

bi
i.i.d.∼ α +

K
∑

j=−K

wj(a)N
(

τµj, (τσ)2
)

(i = 1, . . . ,N).

In a sequel, we will denote this model as PGM GLMM(hc).

2.3 Normal GLMM, not hierarchically centered

Normal GLMM, not hierarchically centered model is the following:

logit
{

P(Yi,l = 1 |β, bi)
}

= β1 + β2 Trti + β3 Timei,l + β4 Timei,l · Trti + bi, (3)

where
bi

i.i.d.∼ N (0, d) (i = 1, . . . ,N).

In a sequel, we will denote this model as Normal GLMM(nhc).

The results of this model are shown in Komárek and Lesaffre (2008).
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2.4 Normal GLMM, hierarchically centered

Normal GLMM, hierarchically centered model is the following:

logit
{

P(Yi,l = 1 |β, bi)
}

= β2 Trti + β3 Timei,l + β4 Timei,l · Trti + bi, (4)

where
bi

i.i.d.∼ N (α, d) (i = 1, . . . ,N).

In a sequel, we will denote this model as Normal GLMM(hc).

2.5 Remarks

From the probabilistic point of view, PGM GLMM(nhc) is indeed equivalent to PGM GLMM(hc)
and Normal GLMM(nhc) is equivalent to Normal GLMM(hc).
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3 Specification of the prior distributions

Choices for the prior distributions are passed as list objects to the function cumlogitRE. In
this Section, we create objects holding the prior information for considered models.

3.1 Prior for the fixed effects β

In all models, we will assume that the prior distribution for the components of the vector of
fixed effects β is a product of independent normal distributions N (0, 10 000):

> prior.fixed <- list(mean = 0, var = 10000)

3.2 Prior for the parameters of the penalized Gaussian mixture in the PGM

GLMM’s

For the PGM GLMM’s (1) and (2), the following choices of the parameters defining the PGM
will be used: K = 15, that is, 2 · 15 + 1 = 31 knots. Further, the distance between the two
consecutive knots will be δ = 0.3, that is, the knots are

µ = {µ−15, . . . , µ15} = {jδ : j = −15, . . . , 15} = {−4.5, −4.2, . . . , 4.2, 4.5}.

The basis standard deviation σ will be equal to 0.2.

The prior distribution for the transformed PGM weights a will be the intrinsic Gaussian Markov
random field (IGMRF) based on the 3rd order (CARorder=3) differences between the consecu-
tive weights, i.e.,

p(a |λ) ∝ exp
{

−λ

2

K
∑

j=−K+3

(

aj − 3aj−1 + 3aj−2 − aj−3

)2
}

.

For the smoothing hyperparameter λ a gamma prior Gamma(1, 0.005) will be used. The
transformed weights a will be updated using the slice sampling of Neal (2003). All above
information is stored in a list:

> prior.gspline.Slice <- list(K = 15, delta = 0.3, sigma = 0.2, CARorder = 3,

+ Ldistrib = "gamma", Lequal = FALSE, Lshape = 1, LinvScale = 0.005,

+ AtypeUpdate = "slice")

Alternatively, it is possible to update the transformed weights a jointly using a Metropolis-
Hastings step based on a normal proposal constructed using a Taylor expansion of log

{

p(a | · · · )
}

around the mode located with one Newton-Raphson step starting from the current value of a,
see Rue and Held (2005) for more details. In that case, the component AtypeUpdate has to be
modified:

> prior.gspline.Block <- list(K = 15, delta = 0.3, sigma = 0.2, CARorder = 3,

+ Ldistrib = "gamma", Lequal = FALSE, Lshape = 1, LinvScale = 0.005,

+ AtypeUpdate = "block")
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3.3 Prior for the remaining parameters of the random effects distribution

in the PGM GLMM’s

In both PGM GLMM’s (1) and (2) we still have to specify prior choices for the PGM scale
parameter τ , in the PGM GLMM(hc) (2) we also have to specify the prior distribution for the
PGM location α. We will use the following priors:

τ−2 ∼ Gamma(1, 0.005), α ∼ N (0, 10 000),

which in the case of the PGM GLMM(nhc) is in R specified as

> prior.random.gspl.nhc <- list(Ddistrib = "gamma", Dshape = 1, DinvScale = 0.005)

and in the case of the PGM GLMM(hc) as

> prior.random.gspl.hc <- list(Mdistrib = "normal", Mmean = 0, Mvar = 10000,

+ Ddistrib = "gamma", Dshape = 1, DinvScale = 0.005)

Alternatively, one can assume the uniform prior for the PGM scale parameter τ which is often
prefered to the gamma prior, see Gelman (2006) for the discussion of this point. For example,
the prior distribution

τ ∼ Unif(0, 100)

is specified in the following way:

> prior.random.gspl.nhc.Unif <- list(Ddistrib = "sduniform", Dupper = 100)

3.4 Prior for the parameters of the random effects distribution in the Nor-

mal GLMM’s

In both Normal GLMM’s (3) and (4) we have to specify prior distribution for the variance d of
the random intercept and in the Normal GLMM(hc) (4) also the prior for the mean α of the
random intercept. We will use the following priors:

d−1 ∼ Gamma(1, 0.005), α ∼ N (0, 10 000),

which in the case of the Normal GLMM(nhc) is in R specified as

> prior.random.norm.nhc <- list(Ddistrib = "gamma", Dshape = 1, DinvScale = 0.005)

and in the case of the Normal GLMM(hc) as

> prior.random.norm.hc <- list(Mdistrib = "normal", Mmean = 0, Mvar = 10000,

+ Ddistrib = "gamma", Dshape = 1, DinvScale = 0.005)

Similarly like above, one can assume the uniform prior for the random intercept standard
deviation

√
d. For example, the prior distribution

√
d ∼ Unif(0, 100)

is specified in the following way:

> prior.random.norm.nhc.Unif <- list(Ddistrib = "sduniform", Dupper = 100)
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4 MCMC simulation

Having specified the prior distribution we are almost ready to start the MCMC simulation to
sample from the posterior distribution of the model parameters.

4.1 Directories to store the chains

For each considered model, we create one directory as a subdirectory of root/chToenail which
will afterwards be used to store the sampled chains. Creation of directories can of course be
performed outside R as well.

> if (!("chToenail" %in% dir(root))) dir.create(paste(root, "chToenail",

+ sep = ""))

> dirNames <- c("PGM_nhc", "PGM_hc", "Normal_nhc", "Normal_hc")

> dirPaths <- paste(root, "chToenail/", dirNames, "/", sep = "")

> for (i in 1:length(dirPaths)) {

+ if (!(dirNames[i] %in% dir(paste(root, "chToenail", sep = ""))))

+ dir.create(dirPaths[i])

+ }

> names(dirPaths) <- c("PGM_nhc", "PGM_hc", "Normal_nhc", "Normal_hc")

That is, the chains for considered models will be stored in the following directories:

> print(dirPaths)

PGM_nhc

"/home/komarek/Rlib/glmmAK/Doc/chToenail/PGM_nhc/"

PGM_hc

"/home/komarek/Rlib/glmmAK/Doc/chToenail/PGM_hc/"

Normal_nhc

"/home/komarek/Rlib/glmmAK/Doc/chToenail/Normal_nhc/"

Normal_hc

"/home/komarek/Rlib/glmmAK/Doc/chToenail/Normal_hc/"

4.2 Matrix of covariates

To pass the covariates to the function cumlogitRE, we have to create a matrix which will
contain only the covariates involved in the fitted model. That is, from the original data, we
have to take the treatment indicator, time values and create an interaction between treatment
and time. We will store the covariates in the matrix iXmat:

> iXmat <- data.frame(trt = toenail$trt,

+ time = toenail$time,

+ trt.time = toenail$trt * toenail$time)
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4.3 Length of the MCMC

The length of the MCMC simulation will be passed to the function cumlogitRE as a list:

> nsimul <- list(niter = 4000, nthin = 100, nburn = 2000, nwrite = 100)

With this specification, we will perform in total 4000 iterations out of which 2000 iterations
will be a burn-in period. Further, we will thin the sample and store only every 100th value.
Finally, the iteration count will increase every 100 iterations. That is, for inference, we will
have chains of length 2000.

Remark: In the paper Komárek and Lesaffre (2008), longer MCMC simulation was used to
derive the results presented there.

4.4 Running MCMC

At this stage, we have specified all the information to start the MCMC simulation by calling
the function cumlogitRE for each considered model. Be aware that this can take some time,
according to the length of the MCMC specified.

PGM GLMM(nhc)

> fit.PGM.nhc <- cumlogitRE(y = toenail$infect, x = iXmat,

+ cluster = toenail$idnr, intcpt.random = TRUE, hierar.center = FALSE,

+ C = 1, drandom = "gspline", prior.fixed = prior.fixed,

+ prior.random = prior.random.gspl.nhc, prior.gspline = prior.gspline.Slice,

+ nsimul = nsimul, store = list(prob = FALSE, b = TRUE),

+ dir = dirPaths["PGM_nhc"])

Simulation started on Thu May 31 11:02:34 2007

Iteration 2000

Burn-up finished on Thu May 31 11:20:09 2007 (iteration 2000)

Iteration 4000

Simulation finished on Thu May 31 11:38:06 2007 (iteration 4000)

PGM GLMM(hc)

> fit.PGM.hc <- cumlogitRE(y = toenail$infect, x = iXmat,

+ cluster = toenail$idnr, intcpt.random = TRUE, hierar.center = TRUE,

+ C = 1, drandom = "gspline", prior.fixed = prior.fixed,

+ prior.random = prior.random.gspl.hc, prior.gspline = prior.gspline.Slice,

+ nsimul = nsimul, store = list(prob = FALSE, b = TRUE),

+ dir = dirPaths["PGM_hc"])

Simulation started on Thu May 31 11:38:06 2007

Iteration 2000

Burn-up finished on Thu May 31 11:55:33 2007 (iteration 2000)

Iteration 4000

Simulation finished on Thu May 31 12:11:51 2007 (iteration 4000)
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Normal GLMM(nhc)

> fit.Normal.nhc <- cumlogitRE(y = toenail$infect, x = iXmat,

+ cluster = toenail$idnr, intcpt.random = TRUE, hierar.center = FALSE,

+ C = 1, drandom = "normal", prior.fixed = prior.fixed,

+ prior.random = prior.random.norm.nhc,

+ nsimul = nsimul, store = list(prob = FALSE, b = TRUE),

+ dir = dirPaths["Normal_nhc"])

Simulation started on Thu May 31 12:11:51 2007

Iteration 2000

Burn-up finished on Thu May 31 12:26:44 2007 (iteration 2000)

Iteration 4000

Simulation finished on Thu May 31 12:41:42 2007 (iteration 4000)

Normal GLMM(hc)

> fit.Normal.hc <- cumlogitRE(y = toenail$infect, x = iXmat,

+ cluster = toenail$idnr, intcpt.random = TRUE, hierar.center = TRUE,

+ C = 1, drandom = "normal", prior.fixed = prior.fixed,

+ prior.random = prior.random.norm.hc,

+ nsimul = nsimul, store = list(prob = FALSE, b = TRUE),

+ dir = dirPaths["Normal_hc"])

Simulation started on Thu May 31 12:41:42 2007

Iteration 2000

Burn-up finished on Thu May 31 12:55:55 2007 (iteration 2000)

Iteration 4000

Simulation finished on Thu May 31 13:09:58 2007 (iteration 4000)
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5 Basic posterior computation

In this Section, we compute posterior summary statistics for regression coefficients β and
moments of the distribution of random effects.

5.1 Reading the chains into coda objects

Using the commands below, it is possible to read all sampled chains and store them as coda
mcmc objects. It is possible to skip some values at the beginning of the chains by setting the
argument skip to a positive value.

> chPGM.nhc <- glmmAK.files2coda(dir = dirPaths["PGM_nhc"], drandom = "gspline",

+ skip = 0)

> chPGM.hc <- glmmAK.files2coda(dir = dirPaths["PGM_hc"], drandom = "gspline",

+ skip = 0)

> chNormal.nhc <- glmmAK.files2coda(dir = dirPaths["Normal_nhc"],

+ drandom = "normal", skip = 0)

> chNormal.hc <- glmmAK.files2coda(dir = dirPaths["Normal_hc"], drandom = "normal",

+ skip = 0)

5.2 Reading only needed chains

On this place, we will read only the chains that will be worked out now, that is the chains for
regression coefficients β and the chains for the moments of the random intercept distribution.
We will use the function scanFH which is a customized version of the R base function scan. All
chains will be stored as coda mcmc objects.

PGM GLMM(nhc)
The chains we need now will be stored in the object chPGM.nhc. Note that the chain stored in
the file betaRadj.sim, column “(Intercept)”, is the chain for

γ1 = β1 + E(b) = β1 + τβ∗

1 , where β∗

1 =
K

∑

j=−K

wj(a)µj ,

which is the mean intercept value. Similarly, the chain stored in the file varRadj.sim, column
“varR.1” is the chain for

d = var(b) = τ2 d∗, where d∗ =

K
∑

j=−K

wj(a)(µj − β∗

1)2 + σ2.

> iters <- scanFH(paste(dirPaths["PGM_nhc"], "iteration.sim", sep = ""))

> betaF <- scanFH(paste(dirPaths["PGM_nhc"], "betaF.sim", sep = ""))

> betaRadj <- scanFH(paste(dirPaths["PGM_nhc"], "betaRadj.sim", sep = ""))

> varRadj <- scanFH(paste(dirPaths["PGM_nhc"], "varRadj.sim", sep = ""))

> chPGM.nhc <- mcmc(data.frame(Trt = betaF[, "trt"],

+ Time = betaF[, "time"],

+ Trt.Time = betaF[, "trt.time"],
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+ Meanb = betaRadj[, "(Intercept)"],

+ SDb = sqrt(varRadj[, "varR.1"])),

+ start = iters[1, 1])

> rm(list = c("iters", "betaF", "betaRadj", "varRadj"))

PGM GLMM(hc)
The chains we need now will be stored in the object chPGM.hc. Note that the chain stored in
the file betaRadj.sim, column “(Intercept)”, is the chain for

γ1 = E(b) = α + τβ∗

1 , where β∗

1 =

K
∑

j=−K

wj(a)µj ,

which is the mean intercept value. Similarly, the chain stored in the file varRadj.sim, column
“varR.1” is the chain for

d = var(b) = τ2 d∗, where d∗ =
K

∑

j=−K

wj(a)(µj − β∗

1)2 + σ2.

> iters <- scanFH(paste(dirPaths["PGM_hc"], "iteration.sim", sep = ""))

> betaF <- scanFH(paste(dirPaths["PGM_hc"], "betaF.sim", sep = ""))

> betaRadj <- scanFH(paste(dirPaths["PGM_hc"], "betaRadj.sim", sep = ""))

> varRadj <- scanFH(paste(dirPaths["PGM_hc"], "varRadj.sim", sep = ""))

> chPGM.hc <- mcmc(data.frame(Trt = betaF[, "trt"],

+ Time = betaF[, "time"],

+ Trt.Time = betaF[, "trt.time"],

+ Meanb = betaRadj[, "(Intercept)"],

+ SDb = sqrt(varRadj[, "varR.1"])),

+ start = iters[1, 1])

> rm(list = c("iters", "betaF", "betaRadj", "varRadj"))

Normal GLMM(nhc)
The chains we need now will be stored in the object chNormal.nhc.

> iters <- scanFH(paste(dirPaths["Normal_nhc"], "iteration.sim", sep = ""))

> betaF <- scanFH(paste(dirPaths["Normal_nhc"], "betaF.sim", sep = ""))

> varR <- scanFH(paste(dirPaths["Normal_nhc"], "varR.sim", sep = ""))

> chNormal.nhc <- mcmc(data.frame(Trt = betaF[, "trt"],

+ Time = betaF[, "time"],

+ Trt.Time = betaF[, "trt.time"],

+ Meanb = betaF[, "(Intercept)"],

+ SDb = sqrt(varR[, "varR.1.1"])),

+ start = iters[1, 1])

> rm(list = c("iters", "betaF", "varR"))

Normal GLMM(hc)
The chains we need now will be stored in the object chNormal.hc.
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> iters <- scanFH(paste(dirPaths["Normal_hc"], "iteration.sim", sep = ""))

> betaF <- scanFH(paste(dirPaths["Normal_hc"], "betaF.sim", sep = ""))

> betaR <- scanFH(paste(dirPaths["Normal_hc"], "betaR.sim", sep=""))

> varR <- scanFH(paste(dirPaths["Normal_hc"], "varR.sim", sep = ""))

> chNormal.hc <- mcmc(data.frame(Trt = betaF[, "trt"],

+ Time = betaF[, "time"],

+ Trt.Time = betaF[, "trt.time"],

+ Meanb = betaR[, "(Intercept)"],

+ SDb = sqrt(varR[, "varR.1.1"])),

+ start = iters[1, 1])

> rm(list = c("iters", "betaF", "betaR", "varR"))

5.3 Basic posterior summary statistics

Basic posterior summary statistics can be obtained using the coda summary function for objects
of class mcmc:

PGM GLMM(nhc)

> summary(chPGM.nhc)

Iterations = 2001:4000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 2000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

Trt 0.3774 0.44109 0.009863 0.022469

Time -0.3885 0.04546 0.001017 0.001768

Trt.Time -0.1246 0.07072 0.001581 0.003021

Meanb -1.6255 0.65222 0.014584 0.065039

SDb 3.5959 0.57588 0.012877 0.062029

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

Trt -0.5333 0.09603 0.3826 0.66917 1.21108

Time -0.4799 -0.41982 -0.3868 -0.35607 -0.30455

Trt.Time -0.2664 -0.16980 -0.1249 -0.07544 0.01188

Meanb -3.1081 -2.00434 -1.5222 -1.16930 -0.60400

SDb 2.7817 3.16391 3.4718 3.92456 4.96336

PGM GLMM(hc)
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> summary(chPGM.hc)

Iterations = 2001:4000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 2000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

Trt 0.3153 0.40439 0.009042 0.025264

Time -0.3891 0.04504 0.001007 0.002327

Trt.Time -0.1236 0.07070 0.001581 0.002793

Meanb -1.5742 0.65475 0.014641 0.076459

SDb 3.5261 0.64641 0.014454 0.078697

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

Trt -0.5288 0.04498 0.3089 0.58201 1.08908

Time -0.4793 -0.41861 -0.3881 -0.35751 -0.30694

Trt.Time -0.2638 -0.17121 -0.1222 -0.07584 0.01278

Meanb -3.0730 -1.87187 -1.4623 -1.14067 -0.62062

SDb 2.6909 3.08263 3.3738 3.78198 5.08547

Normal GLMM(nhc)

> summary(chNormal.nhc)

Iterations = 2001:4000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 2000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

Trt -0.1539 0.59813 0.0133747 0.019375

Time -0.3961 0.04465 0.0009985 0.001108

Trt.Time -0.1363 0.06766 0.0015130 0.001673

Meanb -1.6516 0.44893 0.0100384 0.018702

SDb 4.0557 0.38298 0.0085637 0.010389

2. Quantiles for each variable:

13



2.5% 25% 50% 75% 97.5%

Trt -1.3806 -0.5444 -0.1262 0.25189 0.978046

Time -0.4884 -0.4260 -0.3947 -0.36614 -0.313543

Trt.Time -0.2664 -0.1821 -0.1352 -0.08926 -0.007678

Meanb -2.5755 -1.9364 -1.6320 -1.34609 -0.846362

SDb 3.3640 3.7857 4.0345 4.31133 4.851494

Normal GLMM(hc)

> summary(chNormal.hc)

Iterations = 2001:4000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 2000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

Trt -0.1744 0.60828 0.0136014 0.030140

Time -0.3954 0.04438 0.0009924 0.001482

Trt.Time -0.1376 0.06679 0.0014934 0.001957

Meanb -1.6177 0.43686 0.0097685 0.016118

SDb 4.0529 0.39050 0.0087319 0.012886

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

Trt -1.4295 -0.5576 -0.1565 0.23817 1.001406

Time -0.4858 -0.4240 -0.3937 -0.36463 -0.311575

Trt.Time -0.2733 -0.1824 -0.1390 -0.09699 -0.001745

Meanb -2.5021 -1.9068 -1.6202 -1.30989 -0.798895

SDb 3.3827 3.7719 4.0328 4.30002 4.910623

5.4 Bayesian P-values

Bayesian P-values as defined in Komárek and Lesaffre (2008) can be computed as follows:

PGM GLMM(nhc)

> BPvalue(chPGM.nhc)

Trt Time Trt.Time Meanb SDb

0.379 0.000 0.073 0.001 0.000
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PGM GLMM(hc)

> BPvalue(chPGM.hc)

Trt Time Trt.Time Meanb SDb

0.436 0.000 0.081 0.002 0.000

Normal GLMM(nhc)

> BPvalue(chNormal.nhc)

Trt Time Trt.Time Meanb SDb

0.812 0.000 0.042 0.000 0.000

Normal GLMM(hc)

> BPvalue(chNormal.hc)

Trt Time Trt.Time Meanb SDb

0.782 0.000 0.048 0.000 0.000

5.5 Highest posterior density intervals

Highest posterior density intervals can be computed using the coda function HPDinterval:

PGM GLMM(nhc)

> HPDinterval(chPGM.nhc, prob = 0.95)

lower upper

Trt -0.5045359 1.225775590

Time -0.4742923 -0.298992154

Trt.Time -0.2669074 0.009167199

Meanb -3.0537721 -0.588356092

SDb 2.7044487 4.718175998

attr(,"Probability")

[1] 0.95

PGM GLMM(hc)

> HPDinterval(chPGM.hc, prob = 0.95)
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lower upper

Trt -0.5337152 1.08519798

Time -0.4810197 -0.30866403

Trt.Time -0.2484443 0.02599017

Meanb -2.8806432 -0.50490536

SDb 2.6311318 4.89183144

attr(,"Probability")

[1] 0.95

Normal GLMM(nhc)

> HPDinterval(chNormal.nhc, prob = 0.95)

lower upper

Trt -1.4416230 0.91341958

Time -0.4884610 -0.31354845

Trt.Time -0.2679827 -0.01188050

Meanb -2.5777225 -0.84851893

SDb 3.3472936 4.83321265

attr(,"Probability")

[1] 0.95

Normal GLMM(hc)

> HPDinterval(chNormal.hc, prob = 0.95)

lower upper

Trt -1.3653932 1.034800950

Time -0.4861970 -0.311615474

Trt.Time -0.2588812 0.009385655

Meanb -2.5021196 -0.798933491

SDb 3.3475170 4.853173190

attr(,"Probability")

[1] 0.95

The chains can be further processed using the coda package to check for convergence, draw
plots, etc. We will skip this in this manual to concentrate more on the issues specific for the
glmmAK package.
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6 Estimation of the random intercept density in the PGM mod-

els

The estimate of the random intercept density in the PGM models can be summarized using
the pointwise posterior summary statistics (mean, median, quantiles). To compute these from
the sampled chains, we use the function summaryGspline1.

6.1 Standardized version

Firstly, we summarize the standardized version of the random intercept density. That is, when
computing the posterior statistics, the random intercept density at each iteration is standardized
first to have zero mean and unit variance and summarized afterwards. The pointwise posterior
summary statistics will be computed in a grid of points stored in the variable grid. Besides
computing pointwise posterior mean, we will also compute pointwise posterior 2.5%, 25%, 50%,
75% and 97.5% quantiles. We will also store the value of the density at each iteration. Note that
variables knots and sigma determine the PGM knots µ−K , . . . , µK and basis standard deviation
σ, respectively. Computed posterior summary statistics for the random intercept density will
be stored in objects stPGM.nhc and stPGM.hc for PGM GLMM(nhc) and PGM GLMM(hc)
model, respectively.

> knots <- seq(-4.5, 4.5, by=0.3)

> sigma <- 0.2

> grid <- seq(-2, 4.5, length=300)

>

> ### PGM GLMM(nhc)

> stPGM.nhc <- summaryGspline1(x=grid, mu=knots, sigma=sigma, standard=TRUE,

+ probs=c(0.025, 0.25, 0.5, 0.75, 0.975),

+ values=TRUE, dir=dirPaths["PGM_nhc"])

>

> ### PGM GLMM(hc)

> stPGM.hc <- summaryGspline1(x=grid, mu=knots, sigma=sigma, standard=TRUE,

+ probs=c(0.025, 0.25, 0.5, 0.75, 0.975),

+ values=TRUE, dir=dirPaths["PGM_hc"])

Computed posterior summary statistics and values of the density at each iteration can be
plotted as follows, see Figure 1 for the results. The example code below applies for the PGM
GLMM(nhc) model.

> par(bty = "n", mar = c(4, 4, 1, 1) + 0.1)

> layout(matrix(c(1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14),

+ ncol = 4, byrow = TRUE))

>

> ### Posterior mean

> plot(stPGM.nhc$summary$x, stPGM.nhc$summary$Mean, type = "l",

+ xlab = "b[st]", ylab = "g(b[st])", col = "blue")

>

> ### Posterior median and 2.5%, 97.5% quantiles
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> plot(stPGM.nhc$summary$x, stPGM.nhc$summary[, "97.5%"], type = "l",

+ lty = 2, xlab = "b[st]", ylab = "g(b[st])", col = "red")

> lines(stPGM.nhc$summary$x, stPGM.nhc$summary[, "2.5%"], lty = 2, col = "red")

> lines(stPGM.nhc$summary$x, stPGM.nhc$summary[, "50%"], lty = 1, col = "blue")

>

> ### Sampled densities at selected iterations

> ylim <- c(0, 2.8)

> for (iters in c(1, 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 1900, 2000)){

+ plot(stPGM.nhc$summary$x, stPGM.nhc$values[iters, ], type = "l",

+ xlab = "", ylab = "", col = "darkblue", ylim = ylim)

+ title(main = paste("Iteration ", iters, sep = ""))

+ }

6.2 Unstandardized version

Unstandardized versions of the random intercept, i.e., taking into account the fixed intercept
β1 in the PGM GLMM(nhc) or the location α in the PGM GLMM(hc) and the scale parameter
τ are computed and stored in objects PGM.nhc, PGM.hc as follows.

As before, we specify the PGM knots µ−K , . . . , µK , basis standard deviation σ and a grid of
values where we want to evaluate the random intercept density:

> knots <- seq(-4.5, 4.5, by = 0.3)

> sigma <- 0.2

> grid <- seq(-10, 13, length = 300)

When computing the unstandardized density the chains for the PGM shift and scale τ must
be given. In the PGM GLMM(nhc), the shift is given by the fixed intercept β1, and its chain
is stored in the file betaF.sim, column “(Intercept)”. In the PGM GLMM(hc), the shift is
given by the PGM location parameter α and its chain is stored in the file betaR.sim, column
“(Intercept)”. The chain for the PGM scale parameter τ is obtained as a square root of the
column “varR.1” in the file varR.sim.

Computation for the PGM GLMM(nhc) model proceeds in the following way:

> shift.nhc <- scanFH(paste(dirPaths["PGM_nhc"], "betaF.sim", sep = ""))[, "(Intercept)"]

> scale.nhc <- sqrt(scanFH(paste(dirPaths["PGM_nhc"], "varR.sim", sep = ""))[, "varR.1"])

> PGM.nhc <- summaryGspline1(x=grid, mu=knots, sigma=sigma, standard=FALSE,

+ intcpt=shift.nhc, scale=scale.nhc,

+ probs=c(0.025, 0.25, 0.5, 0.75, 0.975),

+ values=TRUE, dir=dirPaths["PGM_nhc"])

Computation for the PGM GLMM(nhc) model proceeds in the following way:

> shift.hc <- scanFH(paste(dirPaths["PGM_hc"], "betaR.sim", sep = ""))[, "(Intercept)"]

> scale.hc <- sqrt(scanFH(paste(dirPaths["PGM_hc"], "varR.sim", sep = ""))[, "varR.1"])

> PGM.hc <- summaryGspline1(x=grid, mu=knots, sigma=sigma, standard=FALSE,

+ intcpt=shift.hc, scale=scale.hc,

+ probs=c(0.025, 0.25, 0.5, 0.75, 0.975),

+ values=TRUE, dir=dirPaths["PGM_hc"])
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Figure 1: PGM GLMM(nhc): Pointwise posterior mean (upper left panel), 2.5%, 50%,
97.5% quantile (upper right panel) of the standardized random intercept density and selected
sampled values of this density.
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Computed posterior summary statistics and values of the density at each iteration can be
plotted similarly as in the standardized case. See Figure 2 for the results. The example below
applies for the PGM GLMM(nhc) model.

> par(bty = "n", mar = c(4, 4, 1, 1) + 0.1)

> layout(matrix(c(1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14),

+ ncol = 4, byrow = TRUE))

>

> ### Posterior mean

> plot(PGM.nhc$summary$x, PGM.nhc$summary$Mean, type = "l",

+ xlab = "b", ylab = "g(b)", col = "blue")

>

> ### Posterior median and 2.5%, 97.5% quantiles

> plot(PGM.nhc$summary$x, PGM.nhc$summary[, "97.5%"], type = "l",

+ lty = 2, xlab = "b", ylab = "g(b)", col = "red")

> lines(PGM.nhc$summary$x, PGM.nhc$summary[, "2.5%"], lty = 2, col = "red")

> lines(PGM.nhc$summary$x, PGM.nhc$summary[, "50%"], lty = 1, col = "blue")

>

> ### Sampled densities at selected iterations

> ylim <- c(0, 1)

> for (iters in c(1, 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 1900, 2000)){

+ plot(PGM.nhc$summary$x, PGM.nhc$values[iters, ], type = "l",

+ xlab = "", ylab = "", col = "darkblue", ylim = ylim)

+ title(main = paste("Iteration ", iters, sep = ""))

+ }
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Figure 2: PGM GLMM(nhc): Pointwise posterior mean (upper left panel), 2.5%, 50%, 97.5%
(upper right panel) quantile of the (unstandardized) random intercept density and selected
sampled values of this density.
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7 Summary for the values of individual random effects

Sampled values of the individual random effects are stored in the files b.sim. Posterior mean
and quantiles can be used to infer on the individual random effects.

In this manual, we will show the results for the PGM GLMM(nhc) only. The results for the
remaining models would have been obtained analogically. Note that we will compute posterior
summary for β1 + bi (i = 1, . . . , N), that is for random intercepts shifted by the fixed intercept
value.

Firstly, we extract from the original data identification numbers of the patients and divide also
these id numbers into two groups according to the treatment.

> IDNR <- unique(toenail$idnr)

> IDNR0 <- unique(subset(toenail, trt == 0)$idnr)

> IDNR1 <- unique(subset(toenail, trt == 1)$idnr)

> index.tr0 <- (1:length(IDNR))[IDNR %in% IDNR0]

> index.tr1 <- (1:length(IDNR))[IDNR %in% IDNR1]

Now, we read the sampled values of random intercepts and shift them by the sampled fixed inter-
cepts β1. Note that the sampled fixed intercept values are stored in the column “(Intercept)”
of the file betaF.sim.

> beta1.PGMnhc <- scanFH(paste(dirPaths["PGM_nhc"], "betaF.sim", sep = ""))[, "(Intercept)"]

> b.PGMnhc <- scanFH(paste(dirPaths["PGM_nhc"], "b.sim", sep = "")) + beta1.PGMnhc

> colnames(b.PGMnhc) <- IDNR

We continue by computing posterior mean and median for the individual values of random
effects:

> bMean.PGMnhc <- apply(b.PGMnhc, 2, mean)

> bMedian.PGMnhc <- apply(b.PGMnhc, 2, median)

Finally, we will plot histograms of the posterior means and medians of the random effects, see
Figures 3.

> xlim <- c(-5, 9)

> ylim <- c(0, 0.55)

> layout(matrix(c(0, 1, 1, 0, 2, 2, 3, 3, 0, 4, 4, 0, 5, 5, 6, 6),

+ ncol = 4, byrow = TRUE))

> par(bty = "n", mar = c(4, 4, 4, 1) + 0.1)

>

> ### Histograms of posterior means

> hist(bMean.PGMnhc, prob = TRUE, xlab = "beta1+b", ylab = "Density",

+ col = "seagreen3", xlim = xlim, ylim = ylim, main = "Posterior mean (all patients)")

> hist(bMean.PGMnhc[index.tr0], prob = TRUE, xlab = "beta1+b", ylab = "Density",

+ col = "skyblue4", xlim = xlim, ylim = ylim, main = "Control")

> hist(bMean.PGMnhc[index.tr1], prob = TRUE, xlab = "beta1+b", ylab = "Density",

+ col = "skyblue4", xlim = xlim, ylim = ylim, main = "Treatment")
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>

> ### Histograms of posterior medians

> hist(bMedian.PGMnhc, prob = TRUE, xlab = "beta1+b", ylab = "Density",

+ col = "seagreen3", xlim = xlim, ylim = ylim, main = "Posterior median (all patients)")

> hist(bMedian.PGMnhc[index.tr0], prob = TRUE, xlab = "beta1+b", ylab = "Density",

+ col = "skyblue4", xlim = xlim, ylim = ylim, main = "Control")

> hist(bMedian.PGMnhc[index.tr1], prob = TRUE, xlab = "beta1+b", ylab = "Density",

+ col = "skyblue4", xlim = xlim, ylim = ylim, main = "Treatment")
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Figure 3: PGM GLMM(nhc): Histogram of the posterior means and posterior medians of
individual random intercepts shifted by the fixed intercept β1.
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