hyperSpec Introduction

Claudia Beleites (cbeleites@units.it)
CENMAT, DMRN, University of Trieste

October 27, 2009

Contents
1 Introduction 2
1.1 Notation e e e e 3
2 Remarks on R 3
2.1 Generic Functions e e e 3
2.2 54 Classes Can be Extended at Runtime 3
2.3 Validity e 3
3 Loading the package 3
4 The structure of hyperSpec objects 5
5 Obtaining Basic Information about hyperSpec Objects 5
6 Creating a hyperSpec Object, Data Import and Export 6
6.1 ASCIIFiles e 6
6.2 Manufacturer Specific Import Functions 000 7
6.3 Matlab Files. oL 7
6.4 Creating a hyperSpec Object from Spectra Matrix and Wavelength Vector 7
7 Combining hyperspec Objects 7
8 Access to the data 8
8.1 Selecting and Deleting Spectrao 8
8.2 Accessing the Extra Data 9
8.3 Wavelengths and Spectral Axis L L 10
8.3.1 Wavelength Indices 10
8.3.2 Wavelength Axis Conversion 11
8.4 Fast Access to Parts of the hyperSpec Object 11
9 Plotting 11
9.1 Plotting Spectra 12
9.2 Calibration Plots, (Depth) Profiles, and Time Series Plots 13
9.3 Plotting False-Colour Maps e 13

cbeleites@units.it

10 Spectral (Pre)processing 14

10.1 Cutting the Spectral Range L o 14
10.2 Spectral Interpolation and Smoothing 0oL, 14
10.3 Background Correction Lo 15
10.4 Offset Correction o e 15
10.5 Baseline Correction o o o e 15
10.6 Intensity Calibration L 16
10.6.1 Correcting by a constant, e.g. Readout Bias 16
10.6.2 Correcting Wavelength Dependence 16
10.6.3 Spectra Dependent Correction 16
10.7 Normalization o e 16
10.8 Centering the Data o 17
10.9 Variance Scaling L e 17
10.10Multiplicative Scatter Correction (MSC) 17
10.11Spectral Arithmetic o 18
11 Data Analysis 18
11.1 Data Analysis Methods using a data.frame
e.g. Principal Component Analysis with prcomp 18
11.2 Data Analysis Methods using a matrix
e.g. Hierarchical Cluster Analysis. 18
11.3 Calculating group-wise Sum Characteristics
e.g. Cluster Mean Spectra 20
11.4 Splitting an Object o e 20

1 Introduction

hyperSpec is a R package that allows convenient handling of (hyper)spectroscopic data sets, i.e. data
sets comprising spectra together with further data on a per-spectrum basis. Likewise, the spectra
can be anything that is recorded over a common discretized axis, the wavelength axis. Throughout
the documentation of the package, the terms intensity and wavelength refer to the spectral ordinate
and abscissa, respectively.

However, hyperSpec works perfectly fine with any data that fits in that general scheme, so that the
three terms may also be used for:

wavelength: frequency, wavenumbers, chemical shift, Raman shift, 7, etc.

intensity: transmission, absorbance, %,

extra data: spatial information (spectral images, maps, or profiles), temporal information (ki-
netics, time series), concentrations (calibration series), class membership information, etc.
Note that there is no restriction on the number of extra data columns.

This vignette gives an introduction on basic working techniques using the R package hyperSpec. It
comes with three data sets,

chondro a Raman map of chondrocytes in cartilage,
flu a set of fluorescence spectra of a calibration series, and
laser a time series of an unstable laser emission

In this vignette, all three data sets are used in an intermixed way to illustrate appropriate procedures
for different tasks.

This document describes how to accomplish spectroscopic tasks. It does not give a complete reference
on particular functions. Therefore recommend to look up the used methods in R’s help system using
? command.

1.1 Notation

This vignette demonstrates working techniques mostly from a spectroscopic point of view: rather
than going through the functions provided by hyperSpec, it is organized more closely on spectroscopic
tasks. However, the functions discussed are printed on the margin for a fast overview.

In R, slots of a S4 class can be accessed directly by the @ operator. In this vignette, the notation
@xxx will thus mean “slot zxz of an object” see figure 1 on page 5).

Likewise, named elements of a list, like the columns of a data.frame, are accessed by the $ operator,
and $xxx will be used for “column zzx”, and as an abbreviation for “column zxx of the data.frame in
slot data of the object” see figure 1 on page 5) .

2 Remarks on R

2.1 Generic Functions
Generic Functions are functions that apply to a wide range of data types or classes, e.g. plot, print,
mathematical operators, etc. These functions can be implemented in a specialized way by each class.

hyperSpec implements with a variety of such functions, see table 1.

2.2 S4 Classes Can be Extended at Runtime

The concept of S4 classes offers more flexibility than the class concepts in many other programming
languages. Functions may be added or changed by the user in his workspace at any time. Neither
restart of R nor reloading of the package or anything the like is needed. At the same time, the
original function is not deleted, it is just masked by the user’s new function but stays accessible if
the change should be reverted.

This offers the opportunity of easily writing specialized functions that are adapted to specific tasks.

2.3 Validity

S4 classes have a mechanism to define and enforce that the data actually stored in the object is
appropriate for this class. In other words, there is a mechanism of validity checking.

The functions provided by hyperSpec check the validity of hyperSpec objects at the beginning, and
— if the validity could be broken by inappropriate arguments — also before leaving the function.

3 Loading the package

To load hyperSpec, use

> library (hyperSpec)

Table 1: Generic methods implemented by hyperSpec and some closely related functions. Emphasized
names indicate non-generic functions.

Function Explanation

new ("hyperSpec", ...), create and initialize an object
initialize

validObject validity checking

Display

print, show, summary print information about the object
plot plotting

Basic information

dim, ncol, nrow, nwl the dimensions of the object
dimnames, colnames,rownames names of the spectra, data columns, and both plus the names of the
wavelengths

Parts of the object

LIL ¢ extract parts of an object

[<-, [[<-, $<- assign parts of an object

labels, labels<- labels for axis annotations etc.

wl, wl<- wavelength axis

logbook, logentry logbook and adding logbook entries

Calculations on the spectra ma-

trix

+ = Lk WS Nk arithmetical operators work on $spc

> < == >= <= comparison operators work on $spc yielding a logic matrix
all.equal checking equality of hyperSpec objects on diffent levels

log, 1logl0, exp, etc. basic math functions work on $spc, see also: ? "hyperSpec Math"
min, max, range minimum, maximum, and range of the intensities in $spc

Combining and splitting

cbind, rbind, cbind2, rbind2, combine two objects by columns or rows
bind

split split an object into a list of objects
Vectorization of calibrations

apply apply a function row- or column-wise, calculate e.g. the mean spec-
trum or normalizhtion factors

aggregate (ave) calculate sum characteristics for groups of spectra, e.g. cluster mean
spectra. hyperSpec’s aggregate method covers also the functionality
of ave.

sweep “sweep” a sum characteristic over rows or columns, e. g. centre the data

by subtracting the mean spectrum.

Type conversion

Figure 1: The structure of the data in a hyperSpec object.

4 The structure of hyperSpec objects

hyperSpec is a S4 (or new-style) class. It has four so-called slots that hold the data:

Q@wavelength containing a numeric vector with the wavelength axis of the spectra.

@data a data.framewith the spectra and all further information belonging to the spectra
@label a list with appropriate labels (particularly for axis annotations)
@log a data.frame keeping track of what is done with the object

However, it is good practice to use the functions provided by hyperSpec to handle the objects rather
than accessing the slots directly. This also helps ensuring that proper (valid) objects are retained.

Most of the data is stored in @data. This data.frame has one special column, $spc. It is the
column that actually contains the spectra. The spectra are stored in a matrix inside this column, as
illustrated in figure 1. Even if there are no spectra, $spc must still be present but it can contain a
matrix with zero columns.

Slot @label contains an element for each of the columns in @data plus one holding the label for
the wavelength axis, .wavelength. The elements of the list may be anything suitable for axis
annotations, i.e. they should be either character strings or expressions for prettier axis annotations
(see figure 2 on page 12). To get familiar with expressions for axis annotation, see

> 7 plotmath
and

> demo (plotmath)

5 Obtaining Basic Information about hyperSpec Objects

As usual, the print and show methods display information about the object, and summary yields
some additional details about the data handling done so far:

> chondro

hyperSpec object
875 spectra
3 data columns
300 data points / spectrum
wavelength: tilde(nu)/cm”-1 [numeric 300] 602 606 ... 1798
data: (875 rows x 3 columns)
(1) y: y/(mu * m) [numeric 875] range -4.77 -3.77 ... 19.23
(2) x: x/(mu * m) [numeric 875] range -11.55 -10.55 ... 22.45
(3) spc: I / a.u. [matrix 875 x 300] range 80.04420 81.75761 ... 1858.881

> summary (chondro)

hyperSpec object
875 spectra
3 data columns
300 data points / spectrum

wavelength: tilde(nu)/cm”™-1 [numeric 300] 602 606 ... 1798
data: (875 rows x 3 columns)

(1) y: y/(mu * m) [numeric 875] range -4.77 -3.77 ... 19.23

(2) x: x/(mu * m) [numeric 875] range -11.55 -10.55 ... 22.45

(3) spc: I / a.u. [matrix 875 x 300] range 80.04420 81.75761 ... 1858.881
log:

short long date user

1 scan.txt.Renishaw 1list(... 2009-08-21 16:03:49 cb@cb

2 orderwl list(... 2009-08-21 16:03:49 cb@cb

3 spc.loess list(... 2009-08-21 16:04:17 cb@cb

The data set chondro consists of 875 spectra with 300 data points each, and 3 data columns: two
for the spatial information plus $spc. These informations can be directly obtained by
> nrow (chondro)

[11 875

> nwl (chondro)

[11 300

> ncol (chondro)

[1] 3

> dim (chondro)

nrow ncol nwl

875 3 300

The names of the columns in @data are accessed by

> colnames (chondro)

[1] ||yu Nyt "SpC"

Likewise, rownames returns the names assigned to the spectra, and dimnames yields a list of these
three vectors (including also the column names of $spc).

6 Creating a hyperSpec Object, Data Import and Export

6.1 ASCII Files

read.txt.long
read.txt.wide
Currently, hyperSpec provides four functions for general ASCII data import and export: write.txt.long

write.txt.wide
read.txt.long import long format ASCII files, i.e. one intensity value per row
read.txt.wide import wide format ASCII files, i.e. one spectrum per row
write.txt.long export long format ASCII files

write.txt.wide export wide format ASCII files

The import functions immediately return a hyperSpec object.

6.2 Manufacturer Specific Import Functions

Many spectrometer manufacturers provide a function to export their spectra into ASCII files. The
functions discussed in the previous section are written in a very general way, and are highly cus-
tomizable. I recommend wrapping these calls with the appropriate settings for your spectra format
in an import function. You may also consider contributing such import filters to hyperSpec: send
me (cheleites@units.it) the documented code (either .R 4 .Rd file or Roxygen commented .R).

For the long ASCII format written by Renishaw’s converter, a more optimized import function is
already available: scan.txt.Renishaw.

> paracetamol <- scan.txt.Renishaw ("paracetamol.txt", "spc")
> paracetamol

hyperSpec object
1 spectra
1 data columns
4064 data points / spectrum

wavelength: Delta * tilde(nu)/cm”-1 [numeric 4064] 96.7865 98.1432 ... 3200.07
data: (1 rows x 1 columns)
(1) spc: I / a.u. [AsIs matrix 1 x 4064] range 299.229 317.041 ... 49052.2

6.3 Matlab Files

Matlab files can be read and written using the package R.matlab[1], which is available at CRAN and
can be installed by install.packages ("R.matlab").

6.4 Creating a hyperSpec Object from Spectra Matrix and Wavelength Vector

Once the data is in R’s workspace, a hyperSpec object is created by:
spc <- new ("hyperSpec", spc = spectra.matrix, wavelength = wavelength.vector)
You will usually give the following arguments:

spc the spectra matrix
wavelength the wavelength axis vector
data the extra data

label a list with the proper labels. Do not forget the wavelength axis label in $.wavelength
and the spectral intensity axis label in $spc.

7 Combining hyperspec Objects

hyperspec Objects can be bound together, either by rows to append a new spectral range or by
columns to append new spectra

> cbind (chondro [, , 600 ~ 800], chondro [, , 1600 ~ 1800])

scan.txt.Renishaw

cbind rbind

mailto:cbeleites@units.it

hyperSpec object
875 spectra
3 data columns
101 data points / spectrum
wavelength: tilde(nu)/cm”™-1 [numeric 101] 602 606 ... 1798
data: (875 rows x 3 columns)
(1) y: y/(mu * m) [numeric 875] range -4.77 -3.77 ... 19.23
(2) x: x/(mu * m) [numeric 875] range -11.55 -10.55 ... 22.45
(3) spc: I / a.u. [matrix 875 x 101] range 80.04420 81.75761 ... 1541.625

> rbind (chondro [, , 600 ~ 800], chondro [, , 600 ~ 800])

hyperSpec object
1750 spectra
3 data columns
50 data points / spectrum
wavelength: tilde(nu)/cm”-1 [numeric 50] 602 606 ... 798
data: (1750 rows x 3 columns)
(1) y: y/(mu * m) [numeric 1750] range -4.77 -3.77 ... 19.23
(2) x: x/(mu * m) [numeric 1750] range -11.55 -10.55 ... 22.45
(3) spc: I / a.u. [matrix 1750 x 50] range 195.5281 212.0432 ... 729.5765

There is also a more general function, bind, taking the direction ("r" or "c") as first argument and
then all objects to bind either in separate arguments or in a list.

8 Access to the data

8.1 Selecting and Deleting Spectra

The extraction function []1 (or [[1], if the spectra matriz or the data.frame is needed rather than
a hyperSpec object) takes the spectra as first argument (For detailed help: 7 "["). It may be a
vector giving the indices of the spectra to extract (select), a vector with negative indices indicating
which spectra should be deleted, or a logical

> flu [1 : 3]

hyperSpec object
3 spectra
2 data columns
181 data points / spectrum
wavelength: lambda[fl]/nm [numeric 181] 405.0 405.5 ... 495
data: (3 rows x 2 columns)
(1) c: ¢ / (mg/l) [numeric 3] range 0.05 0.10 0.15
(2) spc: I / a.u. [AsIs matrix 3 x 181] range 27.15000 32.34467 ... 336.5057

> flu [-3]

hyperSpec object
5 spectra
2 data columns
181 data points / spectrum
wavelength: lambda[fl]/nm [numeric 181] 405.0 405.5 ... 495
data: (5 rows x 2 columns)
(1) c: ¢ / (mg/1) [numeric 5] range 0.05 0.10 0.20 0.25 0.30
(2) spc: I / a.u. [AsIs matrix 5 x 181] range 27.15000 32.34467 ... 677.4947

> chondro [chondro$y > 10]

hyperSpec object
350 spectra
3 data columns
300 data points / spectrum
wavelength: tilde(nu)/cm™-1 [numeric 300] 602 606 ... 1798
data: (350 rows x 3 columns)
(1) y: y/(mu * m) [numeric 350] range 10.23 11.23 ... 19.23
(2) x: x/(mu * m) [numeric 350] range -11.55 -10.55 ... 22.45
(3) spc: I / a.u. [matrix 350 x 300] range 88.98556 89.99474 ... 1745.724

8.2 Accessing the Extra Data

The second argument of the extraction functions [1 and [[1] specifies the (extra) data columns.
They can be given like any column specification for a data.frame, i. e. numeric, logical, or by a vector
of the column names:

> colnames (chondro)
[1] ||yu Nyt "SpC"

> chondro [[1 : 3, 1]]

y
1 -4.77

2 -4.77
3 -4.77

> chondro [[1 : 3, -3]]

y X
1 -4.77 -11.55
2 -4.77 -10.55
3 -4.77 -9.55

> chondro [[1 : 3, "x"]]

X
1 -11.55
2 -10.55
3 -9.55

> chondro [[1 : 3, ¢ (TRUE, FALSE, FALSE)]]

y
1 -4.77

-4.77
3 -4.77

N

To select one column, the $ operator is more convenient:

> flu$c

[1] 0.05 0.10 0.15 0.20 0.25 0.30

The extra data may also be set this way:

> flu$n <- list (1 : 6, label = "sample no.")

This function will append new columns, if necessary.

8.3 Wavelengths and Spectral Axis
8.3.1 Wavelength Indices

Spectra in hyperSpec have always discretized wavelength axes, they are stored in a matrix with
column corresponding to one wavelength. hyperSpec provides two conversion functions: i2wl re-
turns the wavelength corresponding to the given indices and wl2i calculates index vectors from
wavelengths.

If the wavelengths are given as a numeric vector, they are each converted to the corresponding
wavelength. In addition there is a more sophisticated possibility of specifying wavelength ranges
using a formula. The basic syntax is start ~ end. This yields a vector index of start : index of end.

The result of the formula conversion differs from the numeric vector conversion in three ways:

e The colon operator for constructing vectors accepts only integer numbers, the tilde (for formu-
las) does not have this restriction.

e If the vector does not take into account the spectral resolution, one may get only every nt*
point or repetitions of the same index:
> wl2i (flu, 405 : 410)
11 1 3 5 7 911
> wl2i (flu, 405 ~ 410)
[1] 1 2 3 4 5 6 7 8 9 10 11
> wl2i (chondro, 1000 : 1010)
[1] 100 101 101 101 102 102 102 102 102 103 103
> wl2i (chondro, 1000 ~ 1010)
[1] 100 101 102 103

e If the object’s wavelength axis is not ordered, the formula approach doesn’t work. In that
(rare) case, use orderwl first to obtain an object with ordered wavelength axis.

start and end may contain the special variables min and max that correspond to the lowest and
highest wavelengths of the object:
> wl2i (flu, min ~ 410)

[1] 1 2 3 4 5 6 7 8 910 11

Often, specifications like wavelength £n data points are needed. They can be given using complex
numbers in the formula. The imaginary part is added to the index calculated from the wavelength
in the real part:

10

wl2i i2wl

> wl2i (flu, 450 - 2i ~ 450 + 2i)
[1] 89 90 91 92 93
> wl2i (flu, max - 2i ~ max)

[1] 179 180 181
To specify several wavelength ranges, use a list containing the formulas and vectors':

> wl2i (flu, 450 - 2i ~ 450 + 2i)
[1] 89 90 91 92 93
> wl2i (flu, c¢ (min ~ 406.5, max - 2i ~ max))

[1] 1 2 3 4179 180 181

This mechanism also works for the wavelength arguments of [1, [[1], and plotspc.

8.3.2 Wavelength Axis Conversion

8.4 Fast Access to Parts of the hyperSpec Object

[l s. s..

hyperSpec comes with three abbreviation functions for easy access to the data:

x [[1] returns the spectra matrix (x$spc).

x [[i, , 111 the cut spectra matrix is returned if wavelengths are specified in .

™

[[i, j, 111 If data columns are selected (second index), the result is a data.frame.

™

[[i, , 111 <- Also, parts of the spectra matrix can be set (only indices for spectra and wave-
length are allowed for this function).

x [1, j] <- sets parts of x@data.
x $. returns the complete data.frame x@data, with the spectra in column $spc.
x $.. returns the extra data (x@data without x$spc).

x $.. < sets the extra data (x@data without x$spc). However, the columns must match exactly
in this case.

9 Plotting

hyperSpec comes with three predefined plotting functions.

plotspc plots the spectra, i. e. the intensities $spc over the wavelengths @wavelength.

plotmap plots a false colour map: a single value (e. g. average intensity or cluster membership) over
two data columns (default $x and $y).

plotc plots a time series or calibration plot: e.g. an intensity over a single other data column (like
concentration, depth, or time).

All three plus some more handy abbreviations are also accessible via plot: plot

1Formulas are combined to a list by c.

11

I/au.

100 300 500 700
I/au.
200 600 1000 1400

800
38 15 4 L 750
8 . 700
3

0 650

. s = 600

550

S . 04 of r 500
g 450

L A A
-10 -5 0 5 10 15 20

suml/a.u.
y/um

410 430 450 470 490 600 800 1000 1200 1400 1600 1800 005 010 015 020 025 030 fum
Aa/nm fem™ ¢/ (mgfl)

(a) (b) (c) (d)

Figure 2: Some example plots. (a)plotspc (£lu), (b)plot (chondro, "spcmeansd"), (c)plotc
(f1u), and (d)plotmap (chondro).

plot (flu, "spc") is equivalent to plotspc (f1lu)
plot (chondro, "spcmeansd") plots mean spectrum + 1 standard deviation

plot (chondro, "spcprctl") plots median, 16" and 84" percentile. This is similar to "spcmeansd".
Spectroscopic data frequently are not Gaussian distributed. The percentiles give a better idea
of the true distribution. They are also less sensitive to outliers.

plot (chondro, "spcprctl5") like "spcprctl” plus 5% and 95 percentile.

plot (chondro, "map") is equivalent to plotmap (chondro)

plot (flu, "c") is equivalent to plotc (flu)

plot (laser, "ts") plots a time series plot, equivalent to plotc (laser, use.c = "t")

plot (x, "depth") plots a depth profile plot, equivalent to plotc (laser, use.c = "z")

Figure 2 shows some example plots.

plot uses its second argument to determine which of the three specialized plot functions to call. All
further arguments are handed over to this function.

9.1 Plotting Spectra

plotspc
plotspc offers a variety of parameters for customized plots. To plot ...
with reversed abscissa use wl.reverse = TRUE
in different colours colours use col = vector.of.colours
dots instead of lines use lines.args = list (pch = 20, type = "p")
mass spectra use lines.args = list (type = "h")

particular wavelength ranges use wl.range = list (600 ~ 1800, 2800 ~ 3100)
If wl.range already contains indices: use wl.index = TRUE
Cut the wavelength axis appropriately with xoffset = 800

stacked spectra use stacked = TRUE
more spectra into an existing plot use add = TRUE

with different line at | = 0 use zeroline = list.of.arguments.to.abline. NULL suppresses
the line.

12

60

10000 20000 30000 40000 50000
y/um

20

as
" 30
2
x
20
5
15
o
10
L | e ... s
r r r r T r T r r ’ -10 -5 0 5 10 15 20

T T T T T T T T T T
30 3% 34 3 38 40 42 44 46 48 50 52 3200 3000 2800 1800 1600 1400 1200 1000 800 600 400

0

mz Ao x/um

(a) (b) (©)

Figure 3: Arguments to plotspc. (a) plot (fake.mass.spec, lines.args = list (type
= "h")) (b) plotspc (paracetamol, wl.range = ¢ (300 ~ 1800, 2800 ~ max), xoffset =
850, wl.reverse = TRUE) (c) plotmap with a factor, see section 11.2.

9.2 Calibration Plots, (Depth) Profiles, and Time Series Plots

plotc plots an intensity over one of the extra data columns. The abscissa uses column $c by
default, another column can be specified using use.c = name. The ordinate can be calculated as a
sum characteristic (with parameter func= function, defaulting to sum). If parameter z is given,
these values are used instead. z may be the name of an extra data column, or a numeric that should
be used directly.

To customize the plot, give any arguments that you would usually supply to plot as a list using
argument plot.args.

9.3 Plotting False-Colour Maps

plotmap uses levelplot, a lattice function. Therefore, in loops, functions, Sweave chunks, etc.
the lattice object needs to be printed explicitly by print (plotmap (object)) (R FAQ: Why do
lattice/trellis graphics not work?).

plotmap produces a 3d plot, with the z axis colour-coded. plotmap’s arguments z and y take the
name of extra data columns.

The colour-coded axis. Also z can be used to select one column of the extra data by name.
Alternatively, it may be a numeric or factor directly giving the values to be used. Each level of a
factor will have one colour. It is also possible to plot a sum characteristic of the spectra: supply
the function in argument func. The default setting is to plot the average intensity (no z and func=
mean).

To plot with a different palette, use trellis.args= 1list (col.regions = palette).

Conditioning. Lattice graphics have a concept of conditioning a plot. Instead of plotting all data
in one diagram, a diagram is produced for each of the groups specified by the condition. plotmap’s
argument cond takes he name of the extra data column used for conditioning. This could e.g. be a
column containing the sample number of a hyperSpec object that contains several samples.

13

plotc

plotmap

http://cran.r-project.org/doc/FAQ/R-FAQ.html#Why-do-lattice_002ftrellis-graphics-not-work_003f
http://cran.r-project.org/doc/FAQ/R-FAQ.html#Why-do-lattice_002ftrellis-graphics-not-work_003f

10 Spectral (Pre)processing

10.1 Cutting the Spectral Range

The extraction functions [] and [[1] can be used to cut the spectra: Their third argument
takes wavelength specifications as discussed above and also logicals (i.e. vectors specifying with
TRUE/FALSE for each column of $spc whether it should be included or not.

[] returns a hyperSpec object, [[1] the spectra matriz$spc (or the data.frame@data if data columns
were specified, too) only.

> flu [,, min ~ 408.5]

hyperSpec object
6 spectra
3 data columns
8 data points / spectrum

wavelength: lambda[fl]/nm [numeric 8] 405.0 405.5 ... 408.5

data: (6 rows x 3 columns)
(1) ¢c: ¢ / (mg/1l) [numeric 6] range 0.05 0.10 ... 0.3
(2) spc: I / a.u. [AsIs matrix 6 x 8] range 27.15000 32.34467 ... 256.8913
(3) n: sample no. [integer 6] range 1 2 ... 6

> flu [[,, ¢ (min ~ min + 2i, max - 2i ~ max)]]

405 405.5 406 494 494.5 495
[1,1] 27.15000 32.34467 33.37867 47.16267 46.41233 45.25633
[2,] 66.80133 63.71533 66.71200 96.60167 96.20600 94.61033
[3,] 93.14433 103.06767 106.19367 149.53900 148.52667 145.79333
[4,] 130.66367 139.99833 143.79767 201.48433 198.86733 195.86733
[5,] 167.26667 171.89833 177.47067 252.06567 248.06700 246.95200
[6,] 198.43033 209.45800 215.78500 307.51850 302.32550 294.64950

10.2 Spectral Interpolation and Smoothing

Frequently, a hyperSpec object needs to be interpolated onto a new wavelength axis. e.g. because
measurements resulted in slightly shifted wavelength axes. Or data from a grating spectrometer with
unequal data point spacing should be interpolated onto an evenly spaced wavelength axis. Also, the
spectra can be smoothed: reducing the spectral resolution allows to increase the signal to noise ratio.
For chemometric data analysis reducing the number of data points per spectrum may be crucial as
it reduces the dimensionality of the data.

hyperSpec provides two functions to change the wavelength axis of hyperSpec objects: spc.bin and
spc.loess.

spc.bin bins the spectral axis by averaging every by data points.

> plot (paracetamol, wl.range = ¢ (300 ~ 1800, 2800 ~ max), xoffset = 850)
> p <- spc.loess (paracetamol, c(seq (300, 1800, 2), seq (2850, 3150, 2)))
> plot (p, wl.range = c (300 ~ 1800, 2800 ~ max), xoffset = 850, col = "red", add = TRUE)

spc.loess applies R’s loess function for spectral interpolation. Figure 4 shows the result of inter-
polating from 300 to 1800 and 2850 to 3150 cm™ with 2 cm™ data point distance. This corresponds
to a spectral resolution of about 4 cm™, and the decrease in spectral resolution can be seen at the
sharp bands where the maxima are not reached (due to the fact that the interpolation wavelength
axis does not necessarily hit the maxima. The original spectrum had 4064 data points with unequal
data point spacing (between 0 and 1.4 cm™). The interpolated spectrum has 902 data points.

14

[1 [l

spc.bin
spc.loess

40000 50000
1 1
25000
1

I/a.u.
30000
|
I/au
20000
|

20000
1

10000
1
15000
1

10000
1

0
|

T T T T T T T T 4 T T T T T T T T T T T
400 600 800 1000 1200 1400 1600 1800 2800 3000 3200 1600 1610 1620 1630 1640 1650 1660 1670

AV/em™ AV/em™

Figure 4: Smoothing interpolation by spc.loess with new data point spacing of 2 cm™. The
magnification on the right shows how interpolation may cause a loss in signal.

10.3 Background Correction

To subtract a background spectrum of each of the spectra in an object, use sweep (spectra, 2,
background.spectrum, "-").

10.4 Offset Correction

Calculate the offsets and sweep them off the spectra:

> offsets <- apply (chondro, 1, min)
> chondro.offset.corrected <- sweep (chondro, 1, offsets, "-")

10.5 Baseline Correction

hyperSpec comes with two functions to fit polynomial baselines.

spc.fit.poly fits a polynomial baseline of the given order. A least-squares fit is done so that the
function may be used on rather noisy spectra. However, the user must supply an object that is cut
appropriately. Particularly, the supplied wavelength ranges are not weighted.

spc.fit.poly.below tries to find appropriate support points for the baseline iteratively.

Both functions return a hyperSpec object containing the fitted baselines. They need to be subtracted
afterwards:

> bl <- spc.fit.poly.below (chondro)
Fitting with npts.min = 15

> chondro <- chondro - bl

For details, see vignette (baselinebelow).

15

10.6 Intensity Calibration
10.6.1 Correcting by a constant, e.g. Readout Bias

CCD cameras often operate with a bias, causing a constant value for each pixel. Such a constant
can be immediately subtracted:
spectra - constant

10.6.2 Correcting Wavelength Dependence

This means that for each of the wavelengths the same correction needs to be applied to all spectra.

1. There might be wavelength dependent offsets (background or dark spectra). They are sub-
tracted:
sweep (spectra, 2, offset.spectrum, "-")

2. A multiplicative dependency such as a CCD’s photon efficiency:
sweep (spectra, 2, photon.efficiency, "/")

10.6.3 Spectra Dependent Correction

If the correction depends on the spectra (e.g. due to inhomogeneous illumination while collecting
imaging data?), the MARGINof the sweep function needs to be 1:

1. Pixel dependent offsets are subtracted:
sweep (spectra, 2, pixel.offsets, "-")

2. A multiplicative dependency:
sweep (spectra, 2, illumination.factors, "*")

10.7 Normalization

1. Calculate appropriate normalization factors:
factors <- 1 / apply (spectra, 1, sum) for area normalization. mean gives equal results,
just that the Intensities are on the same scale as before.
For minimum-maximum-normalization, first do an offset- or baseline correction, then calculate
the factors using max.
You may calculate the factors using only a certain wavelength range, thereby normalizing on
a particular band or peak.

2. Again, sweep the factor off the spectra:
normalized <- sweep (spectra, 1, factors, "*")

> factors <- 1 / apply (chondro, 1, mean)
> chondro <- sweep (chondro, 1, factors, "*")

2imaging (as opposed to mapping) refers to simultaneously collecting spatially resolved spectra, either 2d images or

line imaging.

16

10.8 Centering the Data

Centering means that the mean spectrum is subtracted from each of the spectra. Many data anal-
ysis techniques, like principal component analysis, partial least squares, etc., work much better on
centered data.

However, from a spectroscopic point of view it depends on the particular data set whether centering
does make sense or not.

It is perfectly fine to centre the f1lu data set: the interpretation is that centering the data cancels
the offset (background spectrum etc.) of the calibration:

> flu.centered <- sweep (flu, 2, apply (flu, 2, mean), "-")

> plot (flu.centered)

On the other hand, the chondro data set consists of Raman spectra, so the spectroscopic interpre-
tation of centering is getting rid of the the average chemical composition of the sample. But: what
is the meaning of the “average spectrum” of an inhomogeneous sample? In this case it is better to
subtract the minimum spectrum (which will hopefully have almost the same benefit on the data
analysis) as it is the spectrum of that chemical composition that is underlying the whole sample.

One more point to consider is that the actual minimum spectrum will pick up lots of the negative
noise. In order to avoid that, using e. g. the 5" percentile spectrum is more suitable:

> chondro <- sweep (chondro, 2, apply (chondro, 2, quantile, 0.05), "-")

> plot (chondro, "spcprctl5")

10.9 Variance Scaling
Variance scaling is often used in multivariate analysis to adjust the influence and scaling of the

variates (that are typically different physical values). However, it is hardly appropriate for spectra
that do have the same scale of the same physical value.

10.10 Muiltiplicative Scatter Correction (MSC)

MSC can be done using msc from package pls[2]. It operates on the spectra matrix:

> library (pls)
> chondro.msc <- chondro
> chondro.msc [[]] <- msc (chondro [[]])

17

10.11 Spectral Arithmetic

Basic mathematical functions are defined for hyperSpec objects. You may convert spectra:
absorbance.spectra = - logl0 (transmission.spectra)

In this case, do not forget to adapt the label:
> labels (absorbance.spectra)$spc <- "A"

Be careful: R’s log function calculates the natural logarithm if no base is given.

The basic arithmetic operators work element-wise in R. Thus they all need either a scalar, or a
matrix (or hyperSpec object) of the correct size.

Matrix multiplication is done by %*% , again each of the operands may be a matrix or a hyperSpec
object, and must have the correct dimensions.

11 Data Analysis

11.1 Data Analysis Methods using a data.frame
e.g. Principal Component Analysis with prcomp

The $. notation is handy, if a data analysis function expects a data.frame. The column names can
then be used in the formula:

> pca <- prcomp (~ spc, data = chondro$., centre = FALSE)

Results of such a decomposition can be put again into hyperSpec objects. This allows to plot e.g.
the loading like spectra, or score maps, see figure 5.

> scores <- decomposition (chondro, pca$x, label.wavelength = "PC", label.spc = "score / a.u.")

+ - %/ " log
logl0

labels

W*h

> loadings <- decomposition (chondro, t(pca$rotation), scores = FALSE, label.spc = "loading I / a.u.")

11.2 Data Analysis Methods using a matrix
e.g. Hierarchical Cluster Analysis

> dist <- pearson.dist (chondro [[]])
> dendrogram <- hclust (dist, method = "ward")

> plot (dendrogram)

In order to plot a cluster map, the cluster membership needs to be calculated from the dendrogram.

First, cut the dendrogam so that three clusters result:
> clusters <- cutree (dendrogram, k = 3)

Then the result may be plotted:

18

loading | / a.u.

Figure 5:

ylum

T T T T T T T T T
600 700 800 900 1000 1100 1200 1300 1400

Jlem™

(a)

(a) The first three loadings: plot (loadings [1

T T T T
1500 1600 1700 1800

second score map: plotmap (scores [, , 2])

Height

40

30

20

10

Cluster Dendrogram

y/um

35
s 30

25
10

20
s

15
o

10

05

10] 0 s 0 5 20

x/um

(b)

lau.

3], stacked = TRUE). (b) The

| 0 1 A
! ARPA 1 S A
et \Y/’\jkwfw\/&%g

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800
Vfem™

(c)

Figure 6: The results of the cluster analysis: (a) the dendrogram (b) the map of the 3 clusters (c)
the mean spectra.

19

11.3 Calculating group-wise Sum Characteristics
e.g. Cluster Mean Spectra

aggregate applies the function given in FUN to each of the groups of spectra specified in by.

So we may plot the cluster mean spectra:

> means <- aggregate (chondro, by = clusters, mean_pm_sd)
> means

hyperSpec object
9 spectra
4 data columns
300 data points / spectrum
wavelength: tilde(nu)/cm”™-1 [numeric 300] 602 606 ... 1798
data: (9 rows x 4 columns)
(1) y: y/(@mu * m) [numeric 9] range -4.77 -2.77
(2) x: x/(mu * m) [numeric 9] range -11.55 -5.55 22.45
(3) spc: I / a.u. [matrix 9 x 300] range -0.01384176 -0.01258208 ... 0.5974339
(4) .aggregate: [factor 9] range 1 2 3

> plot (means, col = matlab.palette (3), stacked = ".aggregate", fill = ".aggregate")

11.4 Splitting an Object

A hyperSpec object may also be split into a list of hyperSpec objects:

> clusters <- split (chondro, clusters)
> clusters

$1°
hyperSpec object
292 spectra
3 data columns
300 data points / spectrum
wavelength: tilde(nu)/cm”™-1 [numeric 300] 602 606 ... 1798
data: (292 rows x 3 columns)
(1) y: y/(mu * m) [numeric 292] range -4.77 -3.77 ... 19.23
(2) x: x/(mu * m) [numeric 292] range -11.55 -10.55 ... 22.45
(3) spc: I / a.u. [matrix 292 x 300] range -0.1372477 -0.1306328 ... 0.9382884

$°2°
hyperSpec object
417 spectra
3 data columns
300 data points / spectrum
wavelength: tilde(nu)/cm™-1 [numeric 300] 602 606 ... 1798
data: (417 rows x 3 columns)
(1) y: y/(mu * m) [numeric 417] range -4.77 -3.77 ... 19.23
(2) x: x/(mu * m) [numeric 417] range -11.55 -10.55 ... 22.45
(3) spc: I / a.u. [matrix 417 x 300] range -0.2540939 -0.2373205 ... 1.043128

$°3°
hyperSpec object

20

aggregate

166 spectra
3 data columns
300 data points / spectrum

wavelength: tilde(nu)/cm™-1 [numeric 300] 602 606 ... 1798
data: (166 rows x 3 columns)

(1) y: y/(mu * m) [numeric 166] range -2.77 5.23 ... 18.23

(2) x: x/(mu * m) [numeric 166] range -7.55 -6.55 ... 22.45

(3) spc: I / a.u. [matrix 166 x 300] range -0.2713962 -0.2156510 ... 0.4380194
References

[1] Henrik Bengtsson and Jason Riedy. R.matlab: Read and write of MAT files together with R-to-
Matlab connectivity, 2008. URL http://www.braju.com/R/. R package version 1.2.4.

[2] Ron Wehrens and Bjgrn-Helge Mevik. pls: Partial Least Squares Regression (PLSR) and Prin-
cipal Component Regression (PCR), 2007. URL http://mevik.net/work/software/pls.html.

R package version 2.1-0.

21

http://www.braju.com/R/
http://mevik.net/work/software/pls.html

	Introduction
	Notation

	Remarks on R
	Generic Functions
	S4 Classes Can be Extended at Runtime
	Validity

	Loading the package
	The structure of hyperSpec objects
	Obtaining Basic Information about hyperSpec Objects
	Creating a hyperSpec Object, Data Import and Export
	ASCII Files
	Manufacturer Specific Import Functions
	Matlab Files
	Creating a hyperSpec Object from Spectra Matrix and Wavelength Vector

	Combining hyperspec Objects
	Access to the data
	Selecting and Deleting Spectra
	Accessing the Extra Data
	Wavelengths and Spectral Axis
	Wavelength Indices
	Wavelength Axis Conversion

	Fast Access to Parts of the hyperSpec Object

	Plotting
	Plotting Spectra
	Calibration Plots, (Depth) Profiles, and Time Series Plots
	Plotting False-Colour Maps

	Spectral (Pre)processing
	Cutting the Spectral Range
	Spectral Interpolation and Smoothing
	Background Correction
	Offset Correction
	Baseline Correction
	Intensity Calibration
	Correcting by a constant, e.g. Readout Bias
	Correcting Wavelength Dependence
	Spectra Dependent Correction

	Normalization
	Centering the Data
	Variance Scaling
	Multiplicative Scatter Correction (MSC)
	Spectral Arithmetic

	Data Analysis
	Data Analysis Methods using a data.frame e.g. Principal Component Analysis with prcomp
	Data Analysis Methods using a matrix e.g. Hierarchical Cluster Analysis
	Calculating group-wise Sum Characteristics e.g. Cluster Mean Spectra
	Splitting an Object

