
lpSolveAPI Package Users Guide

Kjell Konis

Contents

1 Introduction 1

1.1 Installation . 1

1.2 Getting Help . 1

1.3 Conventions used in the lpSolveAPI Package 2

1.4 Caveats . 4

1.5 A Detailed Example . 5

1

1 Introduction

The lpSolveAPI package provides an R API for the lp solve library, a mixed inte-

ger linear programming (MILP) solver with support for pure linear, (mixed) inte-

ger/binary, semi-continuous and special ordered sets (SOS) models. The lp solve

library uses the revised simplex method to solve pure linear programs and uses the

branch-and-bound algorithm to handle integer variables, semi-continuous variables

and special ordered sets.

Note there is separate package called lpSolve available on CRAN that provides a

few high-level functions for solving specific types of linear programs. The lpSolve

package is based on an older version of lp solve (5.5.0.8) and does not include the

API.

The˜> shown before each R command is the R prompt. Only the text after˜> must

be entered.

1.1 Installation

Use the following command to install the package from CRAN

> install.packages("lpSolveAPI")

then load it into your R session.

> library(lpSolveAPI)

Additionally, development versions of the package can be obtained from the R-Forge

lpSolveAPI project website.

http://lpsolve.r-forge.r-project.org

1.2 Getting Help

Documentation is provided for each function in the lpSolve package using R’s built-in

help system. For example, the command

> help(add.constraint)

1

1.3 Conventions used in the lpSolveAPI Package 2

will display the documentation for the add.constraint function. Use the following

command to list all of the functions provided by the lpSolveAPI package.

> ls("package:lpSolveAPI")

1.3 Conventions used in the lpSolveAPI Package

The syntax used to program lp solve via the lpSolveAPI package is different from

that normally used in R. The general approach used in the lpSolveAPI package

is to create an lpSolve linear program model object (LPMO), use the set accessor

methods to define a linear program (which will be contained in the LPMO), solve

the linear program and finally use the get accessor methods to retrieve elements of

the solution. The first argument to almost all of the functions in the lpSolveAPI

package is therefore the lpSolve linear program model object that the function is

meant to operate on.

A new lpSolve linear program model object with m constraints and n decision

variables can be created using the make.lp function. For example, the following

command creates an lpSolve linear program model object with 3 constraints and 2

decision variables.

> my.lp <- make.lp(3, 2)

The number of constraints m and the number of decision variables n can be retrieved

using the generic dim function. Note that the objective function and right-hand-side

are not counted in the dimension of the LPMO. Assignment via the dim function

is not supported; to change the dimension of an LPMO it is necessary to use the

resize.lp function.

The LPMO is now initialized but contains no data.

> my.lp

Model name:

C1 C2

Minimize 0 0

R1 0 0 free 0

R2 0 0 free 0

R3 0 0 free 0

2

1.3 Conventions used in the lpSolveAPI Package 3

Type Real Real

Upper Inf Inf

Lower 0 0

The next step is to use the set accessor methods to define a linear programming

problem. Suppose we wish to solve the following linear program

minimize: −2x1 − x2

subject to: x1 + 3x2 ≤ 4
x1 + x2 ≤ 2

2x1 + ≤ 3

with x1 ≥ 0 and x2 ≥ 0. The best way to build a model in lp solve is columnwise;

that is to set the columns then the objective function then the constraint types and

finally the right-hand-side.

> set.column(my.lp, 1, c(1, 1, 2))

> set.column(my.lp, 2, c(3, 1, 0))

> set.objfn(my.lp, c(-2, -1))

> set.constr.type(my.lp, rep("<=", 3))

> set.rhs(my.lp, c(4, 2, 3))

> my.lp

Model name:

C1 C2

Minimize -2 -1

R1 1 3 <= 4

R2 1 1 <= 2

R3 2 0 <= 3

Type Real Real

Upper Inf Inf

Lower 0 0

The set accessor methods (the functions with names beginning with the word set)

operate directly on an lpSolve linear program model object. Do not assign the output

of a set accessor method and expect an lpSolve linear program model object. The

(invisible) return value of these functions is generally a logical status code indicating

whether the function executed sucessfully.

3

1.4 Caveats 4

1.4 Caveats

The lpSolveAPI package provides an API for building and solving linear programs

that mimics the lp solve C API. This approach allows much greater flexibility but

also has a few caveats. The most important is that the lpSolve linear program

model objects created by make.lp and read.lp are not actually R objects but

external pointers to lp solve ’lprec’ structures. R does not know how to deal with

these structures. In particular, R cannot duplicate them. Thus you should avoid

assigning LPMOs in R code.

Consider the following example. First we create an empty model x.

> x <- make.lp(2, 2)

Then we assign x to y.

> y <- x

Next we set some columns in x.

> set.column(x, 1, c(1, 2))

> set.column(x, 2, c(3, 4))

And finally, take a look at y.

> y

Model name:

C1 C2

Minimize 0 0

R1 1 3 free 0

R2 2 4 free 0

Type Real Real

Upper Inf Inf

Lower 0 0

The changes made to x appear in y as well. Although x and y are two distinct

objects in R, they both refer to the same external lp solve ’lprec’ structure.

4

1.5 A Detailed Example 5

1.5 A Detailed Example

Lets solve the mixed integer linear program

minimize: 1x1 + 3x2 + 6.24x3 + 0.1x4

subject to: 78.26x2 + 2.9x4 ≥ 92.3
0.24x1 + 11.31x3 ≤ 14.8

12.68x1 + 0.08x3 + 0.9x4 ≥ 4

where x1 is a real decision variable with a minimum value of 28.6, x2 is a nonnegative

integer-valued decision variable, x3 is a binary decision variable and x4 is a real

decision variable restricted to the range [18, 48.98].

First, we create an LPMO with 3 constraints and 4 decision variables.

> lprec <- make.lp(3, 4)

Next we set the values in the first column.

> set.column(lprec, 1, c(0, 0.24, 12.68))

The lp solve library is capable of using a sparse vectors to represent the constraints

matrix. In the remaining three columns, only the nonzero entries are set.

> set.column(lprec, 2, 78.26, indices = 1)

> set.column(lprec, 3, c(11.31, 0.08), indices = 2:3)

> set.column(lprec, 4, c(2.9, 0.9), indices = c(1, 3))

Next, we set the objective function, constraint types and right-hand-side.

> set.objfn(lprec, c(1, 3, 6.24, 0.1))

> set.constr.type(lprec, c(">=", "<=", ">="))

> set.rhs(lprec, c(92.3, 14.8, 4))

By default, all decision variables are created as real with range [0,∞). Thus we

must change the type of the decision variables x2 and x3.

> set.type(lprec, 2, "integer")

> set.type(lprec, 3, "binary")

5

1.5 A Detailed Example 6

Setting the type to binary automatically changes the range to [0, 1]. We still need

to set the range constraints on x1 and x4.

> set.bounds(lprec, lower = c(28.6, 18), columns = c(1, 4))

> set.bounds(lprec, upper = 48.98, columns = 4)

Finally, we name the decision variables and the constraints.

> RowNames <- c("THISROW", "THATROW", "LASTROW")

> ColNames <- c("COLONE", "COLTWO", "COLTHREE", "COLFOUR")

> dimnames(lprec) <- list(RowNames, ColNames)

Lets take a look at what we have done so far.

> lprec

Model name:

COLONE COLTWO COLTHREE COLFOUR

Minimize 1 3 6.24 0.1

THISROW 0 78.26 0 2.9 >= 92.3

THATROW 0.24 0 11.31 0 <= 14.8

LASTROW 12.68 0 0.08 0.9 >= 4

Type Real Int Int Real

Upper Inf Inf 1 48.98

Lower 28.6 0 0 18

Now we can solve the model and retrieve some results.

> solve(lprec)

[1] 0

A return value of 0 indicates that the model was successfully solved.

> get.objective(lprec)

[1] 31.78276

> get.variables(lprec)

[1] 28.60000 0.00000 0.00000 31.82759

> get.constraints(lprec)

6

1.5 A Detailed Example 7

[1] 92.3000 6.8640 391.2928

Note that there are some commands that return an answer. For the get accessor

functions (the functions with names beginning with the word get) the output should

be clear. For other functions (e.g., solve), the interpretation of the returned value is

described in the documentation. Since solve is generic in R, use the command

> help(solve.lpExtPtr)

to view the appropriate documentation. The set accessor functions (the functions

with names beginning with the word set) also have a return value - often a logical

value indicating whether the command was successful - that is returned invisibly.

Invisible values can be assigned but are not echoed to the console. For example,

> status <- add.constraint(lprec, 1:4, ">=", 5)

> status

[1] TRUE

indicates that the operation was successful. Invisible values can also be used in flow

control.

7

