modeest {modeest} | R Documentation |
Mode Estimation
Description
This package intends to provide estimators of the mode of univariate
unimodal (and sometimes multimodal) data and values of the modes of usual probability distributions.
For a complete list of functions, use library(help = "modeest")
or help.start()
.
Details
Package: | modeest |
Type: | Package |
Version: | 1.09 |
Date: | 2009-05-23 |
License: | GPL version 2 or newer |
Author(s)
Paul Poncet paulponcet@yahoo.fr
Maintainer: Paul Poncet paulponcet@yahoo.fr
References
- Parzen E. (1962).
On estimation of a probability density function and mode.
Ann. Math. Stat., 33(3):1065-1076.
- Chernoff H. (1964).
Estimation of the mode.
Ann. Inst. Statist. Math., 16:31-41.
- Huber P.J. (1964).
Robust estimation of a location parameter.
Ann. Math. Statist., 35:73-101.
- Dalenius T. (1965).
The Mode - A Negleted Statistical Parameter.
J. Royal Statist. Soc. A, 128:110-117.
- Grenander U. (1965).
Some direct estimates of the mode.
Ann. Math. Statist., 36:131-138.
- Venter J.H. (1967).
On estimation of the mode.
Ann. Math. Statist., 38(5):1446-1455.
- Lientz B.P. (1969).
On estimating points of local maxima and minima of density functions.
Nonparametric Techniques in Statistical Inference (ed. M.L. Puri, Cambridge University Press), p.275-282.
- Lientz B.P. (1970).
Results on nonparametric modal intervals.
SIAM J. Appl. Math., 19:356-366.
- Wegman E.J. (1971).
A note on the estimation of the mode.
Ann. Math. Statist., 42(6):1909-1915.
- Yamato H. (1971).
Sequential estimation of a continuous probability density function and mode.
Bull. Math. Statist., 14:1-12.
- Ekblom H. (1972).
A Monte Carlo investigation of mode estimators in small samples.
Applied Statistics, 21:177-184.
- Lientz B.P. (1972).
Properties of modal intervals.
SIAM J. Appl. Math., 23:1-5.
- Konakov V.D. (1973).
On the asymptotic normality of the mode of multidimensional distributions.
Theory Probab. Appl., 18:794-803.
- Robertson T. and Cryer J.D. (1974).
An iterative procedure for estimating the mode.
J. Amer. Statist. Assoc., 69(348):1012-1016.
- Kim B.K. and Van Ryzin J. (1975).
Uniform consistency of a histogram density estimator and modal estimation.
Commun. Statist., 4:303-315.
- Sager T.W. (1975).
Consistency in nonparametric estimation of the mode.
Ann. Statist., 3(3):698-706.
- Stone C.J. (1975).
Adaptive maximum likelihood estimators of a location parameter.
Ann. Statist., 3:267-284.
- Mizoguchi R. and Shimura M. (1976).
Nonparametric Learning Without a Teacher Based on Mode Estimation.
IEEE Transactions on Computers, C25(11):1109-1117.
- Adriano K.N., Gentle J.E. and Sposito V.A. (1977).
On the asymptotic bias of Grenander's mode estimator.
Commun. Statist.-Theor. Meth. A, 6:773-776.
- Asselin de Beauville J.-P. (1978).
Estimation non parametrique de la densite et du mode, exemple de la distribution Gamma.
Revue de Statistique Appliquee, 26(3):47-70.
- Sager T.W. (1978).
Estimation of a multivariate mode.
Ann. Statist., 6:802-812.
- Devroye L. (1979).
Recursive estimation of the mode of a multivariate density.
Canadian J. Statist., 7(2):159-167.
- Sager T.W. (1979).
An iterative procedure for estimating a multivariate mode and isopleth.
J. Amer. Statist. Assoc., 74(366):329-339.
- Eddy W.F. (1980).
Optimum kernel estimators of the mode.
Ann. Statist., 8(4):870-882.
- Eddy W.F. (1982).
The Asymptotic Distributions of Kernel Estimators of the Mode.
Z. Wahrsch. Verw. Gebiete, 59:279-290.
- Hall P. (1982).
Asymptotic Theory of Grenander's Mode Estimator.
Z. Wahrsch. Verw. Gebiete, 60:315-334.
- Sager T.W. (1983).
Estimating modes and isopleths.
Commun. Statist.-Theor. Meth., 12(5):529-557.
- Hartigan J.A. and Hartigan P.M. (1985).
The Dip Test of Unimodality.
Ann. Statist., 13:70-84.
- Hartigan P.M. (1985).
Computation of the Dip Statistic to Test for Unimodality.
Appl. Statist. (JRSS C), 34:320-325.
- Romano J.P. (1988).
On weak convergence and optimality of kernel density estimates of the mode.
Ann. Statist., 16(2):629-647.
- Tsybakov A. (1990).
Recursive estimation of the mode of a multivariate distribution.
Probl. Inf. Transm., 26:31-37.
- Hyndman R.J. (1996).
Computing and graphing highest density regions.
Amer. Statist., 50(2):120-126.
- Leclerc J. (1997).
Comportement limite fort de deux estimateurs du mode : le shorth et l'estimateur naif.
C. R. Acad. Sci. Paris, Serie I, 325(11):1207-1210.
- Leclerc J. (2000).
Strong limiting behavior of two estimates of the mode: the shorth and the naive estimator.
Statistics and Decisions, 18(4).
- Groeneboom P.and Wellner J.A. (2001).
Computing Chernoff's distribution.
J. Comput. Graph. Statist., 10:388-400.
- Shoung J.M. and Zhang C.H. (2001).
Least squares estimators of the mode of a unimodal regression function.
Ann. Statist., 29(3):648-665.
- Bickel D.R. (2002).
Robust estimators of the mode and skewness of continuous data.
Computational Statistics and Data Analysis, 39:153-163.
- Abraham C., Biau G. and Cadre B. (2003).
Simple Estimation of the Mode of a Multivariate Density.
Canad. J. Statist., 31(1):23-34.
- Bickel D.R. (2003).
Robust and efficient estimation of the mode of continuous data: The mode as a viable measure of central tendency.
J. Statist. Comput. Simul., 73:899-912.
- Djeddour K., Mokkadem A. et Pelletier M. (2003).
Sur l'estimation recursive du mode et de la valeur modale d'une densite de probabilite.
Technical report 105.
- Djeddour K., Mokkadem A. et Pelletier M. (2003).
Application du principe de moyennisation a l'estimation recursive du mode et de la valeur modale d'une densite de probabilite.
Technical report 106.
- Hedges S.B. and Shah P. (2003).
Comparison of mode estimation methods and application in molecular clock analysis.
BMC Bioinformatics, 4:31-41.
- Herrmann E. and Ziegler K. (2004).
Rates of consistency for nonparametric estimation of the mode in absence of smoothness assumptions.
Statistics and Probability Letters, 68:359-368.
- Abraham C., Biau G. and Cadre B. (2004).
On the Asymptotic Properties of a Simple Estimate of the Mode.
ESAIM Probab. Stat., 8:1-11.
- Mokkadem A. et Pelletier M. (2005).
Adaptive Estimation of the Mode of a Multivariate Density.
J. Nonparametr. Statist., 17(1):83-105.
- Bickel D.R. et Fruehwirth R. (2006).
On a Fast, Robust Estimator of the Mode: Comparisons to Other Robust Estimators with Applications.
Computational Statistics and Data Analysis, 50(12):3500-3530.
See Also
mlv
for general mode estimation
[Package
modeest version 1.09
Index]