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This manual shows how to use the mombf library to compute Moment and
inverse Moment Bayes factors (Mom BF and iMom BF, respectively). The
intuitive appeal of Mom and iMom BF is that they represent prior beliefs
under the alternative hypothesis which are fundamentally different from those
under the null hypothesis. Mathematically, when the null hypothesis is true
they present better convergence rates than BF resulting from most standard
procedures. When the alternative hypothesis is true, they present the same
convergence rates as most standard procedures.

The routines compute exact BF for linear regression models, and ap-
proximate BF for generalized linear models. Approximate BF can also be
obtained in other situations where the regression coefficients are asymptoti-
cally normally distributed and sufficient. The library also contains routines
to evaluate the prior density and to elicit the prior parameters by specifying
the mode a priori of the standardized regression coefficients.

In Section 1 we briefly review the definition of the Mom and iMom priors,
and we present routines to evaluate them. In Section 2 we analyze Hald’s
data with linear models and compute Bayes factors to assess whether some
predictors can be dropped from the model. Section 3 shows the analysis of
some simulated logistic regression data.

1 Mom and iMom priors

Let θ′ = (θ′1,θ
′
2) be the vector of regression coefficients, σ2 be a dispersion

parameter (i.e. the residual variance in a linear regression setup) and suppose
that the goal is to test H0 : θ1 = θ0 versus H1 = θ1 6= θ0. Define the
quadratic distance Q(θ1) = (θ1 − θ0)

TV −1
1 (θ1 − θ0)/(ngσ

2), where θ1 is a
p1 × 1 dimensional real vector, V1 is a p1 × p1 positive definite matrix and
g > 0 is a scalar. We set V1 to be proportional to the asymptotic covariance

1



matrix of the maximum likelihood estimate θ̂1. For instance, in a linear
regression setup with design matrix X we set V1 = (X ′X)−1.

We define an improper prior density on θ2 proportional to 1, and in the
situation where σ2 is unknown we specify an independent improper prior on
σ2 proportional to 1/σ.

1.1 Mom prior

Let πZ(θ1) be a prior density for θ1 for which EπZ [Q(θ1)
k] is finite. We define

the multivariate Mom prior as

πM(θ1) =
Q(θ1)

k

EπZ [Q(θ1)k]
πZ(θ1). (1)

The package currently implements normal MOM priors (where πZ is the g-
prior of Zellner and Siow (1980), i.e. πZ(θ1) = N(θ0, ngσ

2V1)) and T MOM
priors (where πZ is a multivariate T with ν ≥ 3 degrees of freedom). Both
for normal and T MOM priors only the case k = 1 is currently implemented.
For the normal MOM prior the normalization constant is EπZ (Q(θ)k) =∏k−1

i=0 (p1 + 2i), i.e. the kth raw moment of a chi-square distribution with p1

degrees of freedom. For k = 1 this simplifies to EπZ (Q(θ)k) = 1. For the T
MOM prior and k = 1 the normalization constant is EπZ (Q(θ)k) = d ν

ν−2
.

1.2 iMom prior

The iMom prior on θ1 is

πI(θ1) = cI Q(θ1)
− ν+p1

2 exp
[
Q(θ1)

−k] , (2)

where

cI =

∣∣∣∣ V −1
1

ngσ2

∣∣∣∣1/2 k

Γ(ν/2k)

Γ(p1/2)

πp1/2
. (3)

As Q(θ1) increases, the influence of the exponential term in (2) disappears
and the tails of πI are of the same order as those of a multivariate T with
ν degrees of freedom. Several authors have found appealing to set ν = 1
(Bayarri and Garcia-Donato, 2007), which is the default value in our routines.
Currently the library only implements the case k = 1.

1.3 Evaluating the Mom and iMom priors

The functions dmom and dimom evaluate the Mom and iMom priors, respec-
tively. Setting the argument baseDensity=’normal’ in dmom (the default)
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Figure 1: Moment and inverse Moment priors for g = 1

returns the normal MOM density, baseDensity=’t’ returns the t MOM
density. The functions pmom and pimom evaluate the distribution functions,
and qmom and qimom return quantiles. Currently pmom and qmom are only
implemented for the normal MOM. Let’s set the prior parameter g = 1 and
plot the Mom and iMom priors in a univariate setting for θ1 ∈ (−3, 3). By
default θ0 is set to 0, n = 1 and V1 = 1.

> library(mombf)

> g <- 1

> thseq <- seq(-3, 3, length = 1000)

> plot(thseq, dmom(thseq, g = g), type = "l", ylab = "Prior density")

> lines(thseq, dmom(thseq, g = g, baseDensity = "t", nu = 3), lty = 2,

+ col = 2)

> lines(thseq, dimom(thseq, g = g), lty = 3, col = 3)

The iMOM prior assigns the lowest density for θ1 in a neighborhood of
0, whereas the normal MOM prior assigns the largest density. We can also
plot the corresponding distribution functions.

> library(mombf)

> plot(thseq, pmom(thseq, g = g), type = "l", ylab = "Prior cdf")

> lines(thseq, pimom(thseq, g = g), lty = 3, col = 3)
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Figure 2: Moment and inverse Moment cdf for g = 1

2 Bayes factors for linear regression models

2.1 Linear model fit and prior elicitation

The Hald data contains 13 observations, a continuous response variable and
4 predictors. We start by loading the data and fitting a linear regression
model.

> data(hald)

> dim(hald)

[1] 13 5

> lm1 <- lm(hald[, 1] ~ hald[, 2] + hald[, 3] + hald[, 4] + hald[,

+ 5])

> summary(lm1)

Call:

lm(formula = hald[, 1] ~ hald[, 2] + hald[, 3] + hald[, 4] +

hald[, 5])

Residuals:

Min 1Q Median 3Q Max

-3.1750 -1.6709 0.2508 1.3783 3.9254



Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 62.4054 70.0710 0.891 0.3991

hald[, 2] 1.5511 0.7448 2.083 0.0708 .

hald[, 3] 0.5102 0.7238 0.705 0.5009

hald[, 4] 0.1019 0.7547 0.135 0.8959

hald[, 5] -0.1441 0.7091 -0.203 0.8441

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Residual standard error: 2.446 on 8 degrees of freedom

Multiple R-squared: 0.9824, Adjusted R-squared: 0.9736

F-statistic: 111.5 on 4 and 8 DF, p-value: 4.756e-07

The goal is to obtain Bayes factors to assess whether any one predictor
can be dropped from the model. First, we specify the prior parameter g based
on considerations about the standardized regression coefficient (θ1/(σnV1)

2.
θ1/σ is known as the signal-to-noise ratio, or as the standardized effect size.
To find the g value that gives a prior mode at ±.2, we use the function
mode2g. For instance, for the regression coefficient associated to hald[,2]

we would do as follows.

> prior.mode <- 0.2^2

> V <- summary(lm1)$cov.unscaled

> diag(V)

(Intercept) hald[, 2] hald[, 3] hald[, 4] hald[, 5]

820.65457471 0.09271040 0.08756026 0.09520141 0.08403119

> gmom <- mode2g(prior.mode, prior = "normalMom")

> gtmom <- mode2g(prior.mode, prior = "tMom", nu = 3)

> gimom <- mode2g(prior.mode, prior = "iMom")

> gmom

[1] 0.02

> gtmom

[1] 0.01333333

> gimom
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Figure 3: Hald data. Mom and iMom priors for a regression coefficient. The
prior mode for θ1/σ is set at ±0.2

[1] 0.04

We can check the obtained g values by plotting the prior density.

> thseq <- seq(-1, 1, length = 1000)

> plot(thseq, dmom(thseq, V1 = V[2, 2], g = gmom, n = nrow(hald)),

+ type = "l", xlab = "theta/sigma", ylab = "Prior density")

> lines(thseq, dmom(thseq, V1 = V[2, 2], g = gtmom, n = nrow(hald),

+ baseDensity = "t", nu = 3), lty = 2, col = 2)

> lines(thseq, dimom(thseq, V1 = V[2, 2], g = gimom, n = nrow(hald)),

+ lty = 3, col = 3)

Another way to specify g is by finding the value that assigns a desired
prior probability to a certain interval. This can be achieved with the function
priorp2g. For instance, to find the g value that gives 5% probability to the
interval (-0.2,0.2) we use the following code.

> a <- 0.2

> priorp <- 0.05

> gmom2 <- priorp2g(priorp = priorp, q = a, prior = "normalMom")

> gimom2 <- priorp2g(priorp = priorp, q = -a, prior = "iMom")

> gmom2



[1] 0.113686

> gimom2

[1] 0.07682918

2.2 Bayes factor computation

Bayes factors can be easily computed using the functions mombf and imombf.
The normal Mom BF can be computed in explicit form, the T MOM BF
require computing a one dimensional integral and the iMom BF a two di-
mensional integral (regardless of the dimensionality of θ1). The numerical
integration can be achieved either via adaptive quadratures (as implemented
in the routines integrate) by setting method=’adapt’, or via Monte Carlo
simulation by setting method=’MC’. When σ2 is unknown, method==’adapt’
combines integrate with the quantile method of Johnson (1992). The pa-
rameter nquant determines the number of quantiles of the posterior distri-
bution of σ2 at which to evaluate the integral. The default nquant=100

usually gives a fairly good approximation. For Monte Carlo integration, the
argument B specifies the number of Monte Carlo samples.

In our example, for computational speed we use B=100000, even though
in real examples a higher value can be used to ensure proper accuracy. For
comparison, we also compute the Bayes factors that would be obtained under
Zellner’s g-prior with the default value g = 1, which can be achieved with
the function zellnerbf. For reproducibility, we set the random number
generator seed to the date this document was produced.

> set.seed(4 * 2 * 2008)

> mombf(lm1, coef = 2, g = gmom)

[,1]

[1,] 1.690808

> mombf(lm1, coef = 2, g = gtmom, baseDensity = "t")

[1] 0.007494312

> imombf(lm1, coef = 2, g = gimom, method = "adapt")

[,1]

[1,] 1.714063

> imombf(lm1, coef = 2, g = gimom, method = "MC", B = 10^5)



[,1]

[1,] 1.711426

> zellnerbf(lm1, coef = 2, g = 1)

[,1]

[1,] 1.582311

We assess the Monte Carlo error by re-computing the iMom BF with a
different set of Monte Carlo samples. We find the error to be acceptable.

> imombf(lm1, coef = 2, g = gimom, method = "MC", B = 10^5)

[,1]

[1,] 1.711051

We now assess the sensitivity to the prior mode specification. For illus-
tration purposes, we exclude the T MOM and iMom BF as these take longer
to compute. The estimated standardized regression coefficient is

> sr <- sqrt(sum(lm1$residuals^2)/(nrow(hald) - 5))

> thest <- coef(lm1)[2]/sr

> thest

hald[, 2]

0.6341364

We define a sequence of prior modes, find the corresponding g values and
compute Bayes factors. Note that mombf, imombf and zellnerbf accept g to
be a vector instead of a single value. For large g vectors setting the option
method=’MC’ in imombf can save considerable computing time, as the Monte
Carlo samples need only be generated once for all g values.

> prior.mode <- seq(0.01, 1, length = 100)^2

> gmom <- mode2g(prior.mode, prior = "normalMom")

> bf1 <- mombf(lm1, coef = 2, g = gmom)

> bf2 <- zellnerbf(lm1, coef = 2, g = gmom)

> plot(prior.mode, bf1, type = "l", ylab = "BF")

> lines(prior.mode, bf2, lty = 2, col = 2)

> abline(v = thest, lty = 2)

The highest possible BF are observed when the prior mode is slightly
smaller than the estimated 0.634. As the mode converges to zero both priors
converge to a point mass at zero, and hence the BF converges to 1. As the
mode goes to infinity the BF goes to 0, as predicted by Lindley’s paradox
(Lindley, 1957). Although the Mom and Zellner BF show some sensitivity to
the prior specification, any prior mode between 0 and 1 results in evidence
in favor of including the variable in the model.
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Figure 4: Hald data. BF obtained for Mom and Zellner’s g-prior for several
prior mode specifications.

3 Bayes factors for generalized linear regres-

sion models

As an illustration, we simulate data with 50 observations from a probit re-
gression model. We simulate two correlated predictors with coefficients equal
to log(2) and 0 (i.e. the second variable is not actually in the model). The
predictors are stored in the matrix x, the success probabilities in the vector
p and the observed responses in the vector y. As in Section 2.2, for repro-
ducibility purposes we set the random number generator seed to the date this
document was produced.

> set.seed(4 * 2 * 2008)

> n <- 50

> theta <- c(log(2), 0)

> x <- matrix(NA, nrow = n, ncol = 2)

> x[, 1] <- rnorm(n, 0, 1)

> x[, 2] <- rnorm(n, 0.5 * x[, 1], 1)

> p <- pnorm(x %*% matrix(theta, ncol = 1))

> y <- rbinom(n, 1, p)

Before computing Bayes factors, we fit a probit regression model with the
function glm. The maximum likelihood estimates are stored in thetahat and
the asymptotic covariance matrix in V.



> glm1 <- glm(y ~ x[, 1] + x[, 2], family = binomial(link = "probit"))

> thetahat <- coef(glm1)

> V <- summary(glm1)$cov.scaled

To compute Bayes factors we use the functions momknown and imomknown.
These functions take as primary arguments a vector of regression coefficients
and their covariance matrix, and hence they can be used in any setting where
one has a statistic that is asymptotically sufficient and normally distributed.
The resulting Bayes factors are approximate. The functions also allow for
the presence of a dispersion parameter sigma, i.e. the covariance of the
regression coefficients is sigma*V, but they assume that sigma is known. The
probit regression model that we simulated has no over-dispersion and hence
it corresponds to sigma=1. We first compare the full model with the model
resulting from excluding the second covariate, setting g = 0.5 for illustration
(note that thetahat[1] contains the intercept).

> g <- 0.5

> bfmom.1 <- momknown(thetahat[2], V[2, 2], n = n, g = g, sigma = 1)

> bfimom.1 <- imomknown(thetahat[2], V[2, 2], n = n, nuisance.theta = 2,

+ g = g, sigma = 1)

> bfmom.1

[,1]

[1,] 4.262401

> bfimom.1

[,1]

[1,] 3.336888

Both priors result in evidence for including the first covariate. We now check
whether the second covariate can be dropped.

> bfmom.2 <- momknown(thetahat[3], V[3, 3], n = n, g = g, sigma = 1)

> bfimom.2 <- imomknown(thetahat[3], V[3, 3], n = n, nuisance.theta = 2,

+ g = g, sigma = 1)

> bfmom.2

[,1]

[1,] 0.02784354

> bfimom.2



[,1]

[1,] 0.00825012

Both Mom and iMom BF provide strong evidence in favor of the simpler
model, i.e. excluding x[,2]. To compare the full model with the model
that has no covariates (i.e. only the constant term remains) we use the same
routines, passing a vector as the first argument and a matrix as the second
argument.

> bfmom.0 <- momknown(thetahat[2:3], V[2:3, 2:3], n = n, g = g,

+ sigma = 1)

> bfimom.0 <- imomknown(thetahat[2:3], V[2:3, 2:3], n = n, nuisance.theta = 2,

+ g = g, sigma = 1)

> bfmom.0

[,1]

[1,] 0.5272556

> bfimom.0

[,1]

[1,] 0.953978

Based on the resulting BF being close to 1, it is not clear whether the full
model is preferable to the model with no covariates.

The BF can be used to easily compute posterior probabilities for each of
the four considered models: no covariates, only x[,1], only x[,2] and both
x[,1] and x[,2]. We assume equal probabilities a priori.

> prior.prob <- rep(1/4, 4)

> bf <- c(bfmom.0, bfmom.1, bfmom.2, 1)

> pos.prob <- prior.prob * bf/sum(prior.prob * bf)

> pos.prob

[1] 0.090632677 0.732686026 0.004786169 0.171895128

The model with the highest posterior probability is the one including only
x[,1], i.e. the correct model, and the model with the lowest posterior prob-
ability is that including only x[,2].
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