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It is well known that the dosage level of markers in autopolyploids and al-
lopolyploids can be characterised by their observed segregation ratios. The re-
lated package polySegratio provides functions to allocate dosage by standard
approaches and to simulate marker data sets for differing ploidies and levels
of overdispersion. Note that these methods could equally well be applied to
allopolyploids with specified expected segregation ratios. For details see poly-
Segratio.

A Bayesian approach to marker dosage estimation was proposed by Baker et
al SUBMITTED whereby all markers are fitting a finite mixture distribution.

This library calls the JAGS software for Bayesian calculation. JAGS 1.0 or
higher must be installed following instructions from http://www-fis.iarc.fr/
~martyn/software/jags/. JAGS must be installed and the executable must be
in your path. Note that no checking is carried out to asecrtain whether or not
JAGS is set up appropriately.

To use the library, you need to attach it with

> library(polySegratioMM)

1 Simulated data

Library functions are demonstrated on a simulated data set generated using the
sim.autoMarkers function from the polySegratio package.

The following R code can be used to generate 500 markers for 200 auto-
hexaploid individuals exhibiting overdispersion with the parameter shape1 =
25. The underlying percentages of single double and triple dose markers are
70%, 20% and 10%, respectively.

hexmarkers <- sim.autoMarkers(6,c(0.7,0.2,0.1),n.markers=500,n.individuals=200)

> print(hexmarkers)

Autopolyploid dominant markers generated at Fri Jul 18 14:51:38 2008
with call:
sim.autoMarkers(ploidy.level = 6, dose.proportion = c(0.7, 0.2,
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0.1), n.markers = 500, n.individuals = 200)

Ploidy level is: 6 ( Hexaploid )
Parents were set as heterogeneous for the markers
Theoretical segregation proportions:

ratio.SD ratio.DD ratio.TD ploidy.level
"0.5" "0.8" "0.95" "6"

ploidy.name type.parents
"Hexaploid" "heterogeneous"

Proportions in each dosage class:
SD DD TD
0.7 0.2 0.1
No. of markers generated from multinomial distribution:

No.markers
SD 346
DD 103
TD 51

Data were generated for 200 individuals with 500 markers
A subset is:

X.1 X.2 X.3 X.4 X.5 X.6 X.7 X.8 X.9 X.10 r n ratio dose
M.1 1 0 0 1 0 1 0 1 1 1 108 200 0.54 SD
M.2 0 1 1 1 0 1 0 1 0 1 102 200 0.51 SD
M.3 1 0 0 1 0 0 0 1 1 1 103 200 0.515 SD
M.4 1 1 1 1 1 0 0 0 1 0 97 200 0.485 SD
M.5 0 0 1 1 0 0 1 1 0 1 99 200 0.495 SD
M.6 1 1 0 0 0 0 0 0 0 0 103 200 0.515 SD
M.7 1 1 0 0 0 1 0 0 1 1 101 200 0.505 SD
M.8 1 1 1 1 1 1 0 0 0 1 102 200 0.51 SD
M.9 0 1 1 1 1 0 0 1 1 0 110 200 0.55 SD
M.10 1 0 1 0 1 1 1 0 1 1 108 200 0.54 SD

Note that the segregation ratios for simulated or real data may be extracted
by using segregationRatios which sets up the appropriate objects for testing
marker dosage and plotting or summarising the marker data.

> sr <- segregationRatios(hexmarkers$markers)

For instance, as seen in Figure 1, segregation ratios may be plotted with

plotTheoretical(ploidy.level=6, seg.ratios=sr,

expected.segratio=NULL, proportions=c(0.7,0.2,0.1),

n.individuals=200)

On the other hand, consider a similar data set that exhibits overdispersion.
This may be simulated as follows

hexmarkers.overdisp <- sim.autoMarkers(6,c(0.7,0.2,0.1),n.markers=500,n.individuals=200,

overdispersion=TRUE, shape1=30)
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Figure 1: Segregation ratios of 500 simulated markers from 200 autohexaploid
individuals. Percentages of single double and triple dose markers are 70%, 20%
and 10%, respectively. Data were generated assuming no overdispersion.

> sr.overdisp <- segregationRatios(hexmarkers.overdisp$markers)

The histogram of marker segregation ratios, which is a useful graphical
method for identifying overdispersion or outliers, is seen in Figure 2. Note that,
due to overdispersion the theoretical distribution is narrow than the observed
data.

2 A Bayesian mixture model approach

For the jth marker j = 1 . . . n, we assume the observed number rj of dominant
markers out of Nj lines follows a binomial distribution denoted Bin(Nj, Pk). If
we knew the dosage k then, following Ripol et al. (1999), the expected value of
Pk may be written as

Pk(k|m, x) = 1−
(m−k

mx )
( m

mx)
, k = 0 . . . m/2 (1)

where m is the ploidy level or number of homologous chromosomes and the
monoploid number x is the number of chromosomes in a basic set. Note that
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Figure 2: Segregation ratios of 500 simulated markers from 200 autohexaploid
individuals. Percentages of single double and triple dose markers are 70%, 20%
and 10%, respectively. Data were generated from the Beta–Binomial distribu-
tion assuming a shape parameter shape1 of 30.

for diploids m = 2, tetraploids m = 4 , octaploids then m = 8 and so on and
also that if there are no marker data missing then Nj is simply the number of
progeny.

Since the dosage of each marker is unknown, we rely on the missing data
representation of Dempster et al. (1977) and Tanner and Wong (1987) which is
commonly adopted for MCMC computation in finite mixture models. An indi-
cator variable zj corresponding to unknown marker dosage class k is introduced
where zj = k if the marker has dose k. For the K components with K ≤ m/2,
consider the logit transformation of the true segregation proportions Pk for dose
k, k = 1 . . . K. The the logit transformed segregation ratio ωk is then

ωk = log(
Pk

1− Pk
). (2)

Let z = (z1 . . . zn)T be a vector of unknown dosages (labelled 1, 2 . . . K cor-
responding to simplex, duplex, triplex markers and so on), then rj is binomially
distributed with known size parameter Nj and unknown proportion parameter
ωZj which is the segregation ratio for marker dosage zj. Hence, given marker
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dosage zj then

rj|zj ∼ Bin
(

Nj, ωZj

)
, (3)

where

logit(ωZj ) = log(
ωZj

1−ωZj

) ∼ N(µZj , τ−1
Zj

)

where µk and τk are the mean and precision (τk = 1/σ2
k ) of marker dosage class

k on the logit scale.
Since the dosage is unknown, for the autohexaploid data generated here then

for the logit(ωzk ) can be modelled as a finite mixture of 3 normals

logit(ωZj ) ∼ π1N(µ1, τ−1
1 ) + π2N(µ2, τ−1

2 ) + . . . + πK N(µK, τ−1
K ) (4)

where µk is the mean and τk is the precision of component k on the logit scale,
and πk are the mixing proportions of the three components with ∑K

k=1 πk = 1.
The probability density function f (x) of logit(ωk) is

f (x) =
K

∑
k=1

πkφ(x|µk, τ−1
k ) (5)

where φ is the normal cumulative distribution function with parameters mean
µk and variance σ2

k = τ−1
k .

Simulation studies suggested that incorporating strong prior information,
such as the expected distributions of Haldane (1930) provided the best method
of allocating dosage. Further details may be found in Baker, et al SUBMITTED

3 Specifying a model

A mixture model may be set up with setModel. By default, only two parameters
are required, namely the ploidy.level or the number of homologous chromo-
somes set either as a numeric or as a character string and also n.components or
the number of components for mixture model (less than or equal to maximum
number of possible dosages). By default, strong priors are set by using the for-
mulae of Haldane (1930) for the expected numbers and ratios of offspring for
various parental configurations of autopolyploids.

For the autohexaploid data generated above, the models are set with

> x.mod1 <- setModel(3, 6)

The R object x.mod1 contains components describing aspects of the model
such as the number of components, ploidy, expected segregation ratios and so
on. Note that the str command is useful for displaying the internal structure
of any R object.

4 Fitting a mixture model

While various options are available for fine tuning the MCMC process, the
simplest way to fit a mixture model to allocate marker dosages is with the
wrapper function runSegratioMM as follows:
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mcmcHexRun <- runSegratioMM(sr.overdisp, x.mod1)

which automatically determines starting values, priors, length of burn in, num-
ber of iterations, and other parameters as well as producing summary statistics
and diagnostic plots.

To run JAGS without producing plots then set the plots option to FALSE.
For the overdispersed data running this command produced the following se-
lected output. While seleceted output is printed here the simple command
print(mcmcHexRun) whould producethe following output and more.

The summary of processing times:

> print(mcmcHexRun$run.jags)

CMD File: test.cmd
JAGS started at Fri Jul 18 14:51:41 2008
JAGS run completed successfully at Fri Jul 18 14:55:47 2008
Elapsed times:

user system elapsed
228.0 228.0 246.4

And summary statistics for the posterior distributions of selected parame-
ters:

> print(mcmcHexRun$summary)

$statistics
Mean SD Naive SE Time-series SE

P[1] 0.72356 0.02064 0.0002919 0.0003616
P[2] 0.19709 0.01906 0.0002695 0.0005650
P[3] 0.07935 0.01336 0.0001890 0.0006636
mu[1] 0.02381 0.01696 0.0002398 0.0006163
mu[2] 1.54959 0.04421 0.0006253 0.0031491
mu[3] 3.16008 0.08879 0.0012557 0.0074792
sigma 0.27012 0.01215 0.0001718 0.0005203

$quantiles
2.5% 25% 50% 75% 97.5%

P[1] 0.681698 0.70954 0.72439 0.73818 0.76208
P[2] 0.161445 0.18404 0.19643 0.20946 0.23651
P[3] 0.054776 0.07029 0.07876 0.08805 0.10753
mu[1] -0.008683 0.01177 0.02381 0.03529 0.05805
mu[2] 1.464629 1.51904 1.54875 1.57957 1.63693
mu[3] 2.995540 3.09972 3.15792 3.21625 3.34191
sigma 0.247668 0.26165 0.26998 0.27826 0.29443

$start
[1] 0

$end
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[1] 4999

$thin
[1] 1

$nchain
[1] 1

attr(,"class")
[1] "summarySegratioMCMC"

Note that MCMC convergence diagnostic output is produced automatically.
Assessing convergence is crucial in MCMC and poor convergence may result
in mis–allocated marker doages. The diagnostic statistics indicate that conver-
gence was acheived.

> print(mcmcHexRun$diagnostics)

$raftery
$raftery[[1]]

Quantile (q) = 0.025
Accuracy (r) = +/- 0.005
Probability (s) = 0.95

Burn-in Total Lower bound Dependence
(M) (N) (Nmin) factor (I)

P[1] 2 3803 3746 1.020
P[2] 2 3930 3746 1.050
P[3] 2 3680 3746 0.982
mu[1] 4 4713 3746 1.260
mu[2] 10 11010 3746 2.940
mu[3] 18 19611 3746 5.240
sigma 10 10754 3746 2.870

$geweke
$geweke[[1]]

Fraction in 1st window = 0.1
Fraction in 2nd window = 0.5

P[1] P[2] P[3] mu[1] mu[2] mu[3] sigma
1.3314 -1.9552 1.4159 1.7912 -0.7923 -0.9007 -1.0033

$heidel
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$heidel[[1]]

Stationarity start p-value
test iteration

P[1] passed 1 0.348
P[2] passed 1 0.904
P[3] passed 1 0.547
mu[1] passed 1 0.387
mu[2] passed 1 0.465
mu[3] passed 1 0.374
sigma passed 1 0.913

Halfwidth Mean Halfwidth
test

P[1] passed 0.7236 0.000709
P[2] passed 0.1971 0.001107
P[3] passed 0.0794 0.001301
mu[1] passed 0.0238 0.001208
mu[2] passed 1.5496 0.006172
mu[3] passed 3.1601 0.014659
sigma passed 0.2701 0.001020

$hpd
$hpd[[1]]

lower upper
P[1] 0.68391 0.76365
P[2] 0.15950 0.23382
P[3] 0.05438 0.10695
mu[1] -0.01018 0.05593
mu[2] 1.46539 1.63737
mu[3] 2.99198 3.33813
sigma 0.24697 0.29359
attr(,"Probability")
[1] 0.95

And finally, summaries of marker dosage allocations are produced:

> print(mcmcHexRun$doses)

Dosages for chain: 1
Thresholds set at:
[1] 0.50 0.60 0.70 0.80 0.90 0.95 0.99
A random sample of posterior probabilities and classifications

SD DD TD 0.5 0.6 0.7 0.8 0.9 0.95 0.99 maxPostP
M.1 1.0000 0.0000 0 1 1 1 1 1 1 1 1
M.45 0.9994 0.0006 0 1 1 1 1 1 1 1 1
M.47 1.0000 0.0000 0 1 1 1 1 1 1 1 1
M.53 1.0000 0.0000 0 1 1 1 1 1 1 1 1
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M.54 1.0000 0.0000 0 1 1 1 1 1 1 1 1
M.63 1.0000 0.0000 0 1 1 1 1 1 1 1 1
M.65 1.0000 0.0000 0 1 1 1 1 1 1 1 1
M.86 1.0000 0.0000 0 1 1 1 1 1 1 1 1
M.131 1.0000 0.0000 0 1 1 1 1 1 1 1 1
M.145 0.9994 0.0006 0 1 1 1 1 1 1 1 1
M.152 1.0000 0.0000 0 1 1 1 1 1 1 1 1
M.171 1.0000 0.0000 0 1 1 1 1 1 1 1 1
M.266 1.0000 0.0000 0 1 1 1 1 1 1 1 1
M.281 1.0000 0.0000 0 1 1 1 1 1 1 1 1
M.334 1.0000 0.0000 0 1 1 1 1 1 1 1 1
M.336 1.0000 0.0000 0 1 1 1 1 1 1 1 1
M.355 0.0892 0.9108 0 2 2 2 2 2 . . 2
M.393 0.3844 0.6156 0 2 2 . . . . . 2
M.439 0.0000 0.0000 1 3 3 3 3 3 3 3 3
M.486 0.0000 0.0000 1 3 3 3 3 3 3 3 3

Maximum posterior probabilities for 500 markers
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.502 1.000 1.000 0.980 1.000 1.000

Proportion of genes classified using maximum posterior probability
SD DD TD

0.724 0.194 0.082
Total proportion of markers classified: 1
Call:
dosagesJagsMix(mcmc.mixture = read.jags, jags.control = jags.control,

seg.ratio = seg.ratios)

Note that simply plotting mcmcHexRun will produce a histogram of segrega-
tion proportions and the fitted model but that other plots are easily produced.

When plots option of runSegratioMM is set to the default value of TRUE,
numerous plots are produced including trace and density plots from the CODA
package. These may also be extracted manually but the process is somewhat
more complicated. For instance to obtain trace and density plots for the pa-
rameters p1, µ1, σ1 and for the 140th marker, as shown in Figure 3, then CODA
may be used directly by following command.

plot(mcmcHexRun$mcmc.mixture$mcmc.list[[1]][,c("P[1]","mu[1]","sigma","T[140]")])

The histogram of segregation proportions with fitted and theoretical values
shown in Figure 4 may be obtained by setting the theoretical option to TRUE
as follows.

print(plot(mcmcHexRun, theoretical=TRUE))
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Figure 3: Trace and posterior density plots for the parameters parameters p1,
µ1, σ1 and for the 140th marker for the overdispersed data.

5 Assigning marker dosage

Marker dosages allocations may be obtained directly from the object mcm-
cHexRun. The dosage with maximum posterior probability is simply mcm-
cHexRun$doses$max.post.dosage. A more conservative allocation is obtained
by using mcmcHexRun$doses$dosage[,"0.8"] whereby the dosage with pos-
terior probability over 0.8 is employed. For instance, to tabulate the number
of markers (including those not allocated a dosage which are labelled NA) the
table command can be employed.

> cat("Employing maximum posterior probability\n")

Employing maximum posterior probability

> table(Dose = mcmcHexRun$doses$max.post.dosage, exclude = NULL)

Dose
1 2 3 <NA>

362 97 41 0

> cat("Employing posterior probability > 0.8\n")
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Warning: component proportions normalised, now:
P[1] P[2] P[3]
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Figure 4: Fitted (blue) and theoretical (red) distributions for simulated segre-
gation ratios with overdispersion for 500 markers from 200 individuals.

Employing posterior probability > 0.8

> table(Dose = mcmcHexRun$doses$dosage[, "0.8"], exclude = NULL)

Dose
1 2 3 <NA>

358 89 34 19

And of course since the data were simulated we can compare the estimated
and true dosages obtained as hexmarkers.overdisp$true.doses$dosage via
cross tabulation. Doses can also be obtained for the standard χ2 test by using
the test.segRatio command from the polySegratio library.

> cat("Employing theChi squared test\n")

Employing theChi squared test

> dose.chi <- test.segRatio(sr.overdisp, ploidy.level = 6)

> table(Chi2Dose = dose.chi$dosage, True = hexmarkers.overdisp$true.doses$dosage,

+ exclude = NULL)
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True
Chi2Dose 1 2 3 <NA>

1 223 2 0 0
2 0 54 5 0
3 0 3 27 0
<NA> 130 39 17 0

> cat("Employing maximum posterior probability\n")

Employing maximum posterior probability

> table(MixtureDose = mcmcHexRun$doses$max.post.dosage,

+ True = hexmarkers.overdisp$true.doses$dosage, exclude = NULL)

True
MixtureDose 1 2 3 <NA>

1 353 9 0 0
2 0 86 11 0
3 0 3 38 0
<NA> 0 0 0 0

> cat("Employing posterior probability > 0.8\n")

Employing posterior probability > 0.8

> table(MixtureDose = mcmcHexRun$doses$dosage[, "0.8"],

+ True = hexmarkers.overdisp$true.doses$dosage, exclude = NULL)

True
MixtureDose 1 2 3 <NA>

1 352 6 0 0
2 0 78 11 0
3 0 2 32 0
<NA> 1 12 6 0

These tables show that far fewer markers are allocated a dosage using the
standard χ2 test than by the mixture model. Fewer markers were misclassified
using a posterior probability threshold of 0.8 rather than the maximum posterior
probability as a basis for allocating dosage.
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