
Introduction to random number generation
- Quick introduction of randtoolbox
- Full presentation of the RNG tools

Christophe Dutang, Petr Savicky and Diethelm Wuertz

September 2009

1

This vignette is divided into chapters: a quick introduction and a full presentation. Most useRs only
need to look at the first chapter to find and to use the Random Number Generation (RNG) they want. The
second chapter is clearly intended for more advanced users and prepare them to the RNG literature.

Chapter 1

Quick introduction of randtoolbox

Random simulation or Monte-Carlo methods rely on the fact we have access to random numbers. Even if
nowadays having random sequence is no longer a problem, for many years producing random numbers was a
big challenge. According to Ripley (1990), simulation started in 1940s with physical devices. Using physical
phenomena to get random numbers is referred in the literature as true randomness.

However, in our computers, we use more frequently pseudo-random numbers. These are defined as
deterministic sequences, which mimic a sequence of i.i.d. random numbers chosen from the uniform
distribution on the interval [0, 1]. Random number generators used for this purpose receive as input an
initial information, which is called a user specified seed, and allow to obtain different output sequences of
numbers from [0, 1] depending on the seed. If no seed is supplied by the user, we use the machine time to
initiate the sequence.

Since we use pseudo-random numbers as a proxy for random numbers, an important question is, which
properties the RNG should have to work as a good replacement of the truly random numbers. Essentially, we
need that the applications, which we have, produce the same results, or results from the same distribution, no
matter, whether we use pseudo-random numbers or truly random numbers. Hence, the required properties
may be formulated in terms of computational indistinguishability of the output of the generator from the
truly random numbers, if the seed is not known. The corresponding mathematical theory is developed in
complexity theory, see http://www.wisdom.weizmann.ac.il/˜oded/c-indist.html.

The best known random number generators are used for cryptographic purposes. These generators are
chosen so that there is no known procedure, which could distinguish their output from truly random numbers
within practically available computation time, if the seed is not known. For simulations, this requirement is
usually relaxed. However, even for simulation purposes, considering the hardness of detecting the difference
between the generated numbers and truly random ones is a good measure of the quality of the generator.
In particular, the well-known empirical tests of random number generators such as Diehard1 or TestU01
L’Ecuyer & Simard (2007) are based on relatively easy to compute statistics, which allow to distinguish the
output of bad generators from truly random numbers. More about this may be found in section Examples
of distinguishing from truly random numbers.

1The Marsaglia Random Number CDROM including the Diehard Battery of Tests of Randomness, Research Sponsored by
the National Science Foundation (Grants DMS-8807976 and DMS-9206972), copyright 1995 George Marsaglia.

2

http://www.wisdom.weizmann.ac.il/~oded/c-indist.html

CHAPTER 1. QUICK INTRODUCTION OF RANDTOOLBOX 3

A simple parameter of a generator is its period. Recent generators have huge periods, which cannot be
exhausted by any practical computation. Another parameter, suitable mainly for linear generators, is so
called equidistribution. This parameter measures the uniformity of several most significant bits of several
consecutive numbers in the sequence over the whole period. If a generator has good equidistribution, then
we have a reasonable guarantee of practical independence of several consecutive numbers in the sequence.
For linear generators, determining equidistribution properties may be done by efficient algebraic algorithms
and does not need to really generate the whole period.

Ripley (1990) lists the following properties

• output numbers are almost uniformly distributed,

• output numbers are independent,

• the period between two identical numbers is sufficiently long,

• unless a seed is given, output numbers should be unpredictable.

The statistical software R provides several random number generators described in ’?RNGkind()’. The
default generator is called Mersenne-Twister and achieves high quality, although it fails some tests based on
XOR operation. Still, there are reasons to provide better and more recent RNGs as well as classic statistical
tests to quantify their properties. The rest of this chapter is two-folded: first we present the use of RNGs
through the runif() interface, second we present the same use with dedicated functions (not modifying
base R default RNGs). See the overall man page with the command ?randtoolbox.

1.1 The runif interface

In R, the default setting for random generation are (i) uniform numbers are produced by the Mersenne-
Twister algorithm and (ii) normal numbers are computing through the numerical inversion of the standard
normal distribution function. This can be checked by the following code

> RNGkind()

[1] "Mersenne-Twister" "Inversion"

The function RNGkind() can also be used to set other RNGs, such as Wichmann-Hill, Marsaglia-Multicarry,
Super-Duper, Knuth-TAOCP or Knuth-TAOCP-2002 plus a user-supplied RNG. See the help page for
details.

Random number generators provided by R extension packages are set using
RNGkind("user-supplied"). The package randtoolbox assumes that this function is not called by
the user directly. Instead, it is called from the functions set.generator() and put.description()
used for setting some of a larger collection of the supported generators.

CHAPTER 1. QUICK INTRODUCTION OF RANDTOOLBOX 4

The function set.generator() eases the process to set a new RNG in R. Here is one short example
on how to use set.generator() (see the man page for detailed explanations).

> RNGkind()

[1] "Mersenne-Twister" "Inversion"

> library(randtoolbox)
> paramParkMiller <- c(mod = 2ˆ31 - 1, mult = 16807, incr = 0)
> set.generator(name = "congruRand", parameters = paramParkMiller,
+ seed = 1)
> get.description()

$name
[1] "congruRand"

$authors
[1] "Unknown"

$parameters
[1] "2147483647" "16807" "0"

$state
seed
"1"

> RNGkind()

[1] "user-supplied" "Inversion"

> runif(10)

[1] 7.826369e-06 1.315378e-01 7.556053e-01 4.586501e-01 5.327672e-01
[6] 2.189592e-01 4.704462e-02 6.788647e-01 6.792964e-01 9.346929e-01

Random number generators in randtoolbox are represented at the R level by a list containing
mandatory components name, parameters, state and possibly an optional component authors. The
function set.generator() internally creates this list from the user supplied information and then runs
put.description() on this list in order to really initialize the generator for the functions runif() and
set.seed(). If set.generator() is called with the parameter only.dsc=TRUE, then the generator
is not initialized and only its description is created. If the generator is initialized, then the function

CHAPTER 1. QUICK INTRODUCTION OF RANDTOOLBOX 5

get.description() may be used to get the actual state of the generator, which may be stored and
used later in put.description() to continue the sequence of the random numbers from the point, where
get.description() was called. This may be used, for example, to alternate between the streams of
random numbers generated by different generators.

From the runif() interface, you can use any other linear congruential generator with modulus at most
264 and multiplier, which is either a power of 2 or the product of the modulus and the multiplier is at
most 264. The current version of the package also allows to use Well-Equidistributed Long-period Linear
generators (WELL).

To get back to the original setting of RNGs in R, we just need to call set.generator with default
RNG.

> set.generator("default")
> RNGkind()

[1] "Mersenne-Twister" "Inversion"

1.2 Dedicated functions

The other way to use RNGs is to directly use dedicated functions. For instance to get the previous example,
we can simply use

> setSeed(1)
> congruRand(10, mod = 2ˆ31 - 1, mult = 16807, incr = 0)

[1] 7.826369e-06 1.315378e-01 7.556053e-01 4.586501e-01 5.327672e-01
[6] 2.189592e-01 4.704462e-02 6.788647e-01 6.792964e-01 9.346929e-01

where setSeed function initiates the seed for RNGs implemented in randtoolbox and congruRand calls
the congruential generator.

They are many other RNGs provided by RNGs in addition to linear congruential generator, WELL gen-
erators, SFMersenne-Twister generators and Knuth-TAOCP double version. See ?pseudo.randtoolbox
for details.

This package also implements usual quasi random generators such as Sobol or Halton sequences (see
?quasi.randtoolbox). See the second chapter for an explanation on quasi RNGs.

Chapter 2

Full presentation of the RNG tools

“Nothing in Nature is random. . .
a thing appears random only through

the incompleteness of our knowledge.”
Spinoza, Ethics I1.

2.1 Introduction

Random simulation has long been a very popular
and well studied field of mathematics. There
exists a wide range of applications in biology,
finance, insurance, physics and many others. So
simulations of random numbers are crucial. In
this note, we describe the most random number
algorithms

Let us recall the only things, that are truly ran-
dom, are the measurement of physical phenomena
such as thermal noises of semiconductor chips or
radioactive sources2.

The only way to simulate some randomness
on computers are carried out by deterministic
algorithms. Excluding true randomness3, there
are two kinds random generation: pseudo and
quasi random number generators.

The package randtoolbox provides R func-

1quote taken from Niederreiter (1978).
2for more details go to http://www.random.org/

randomness/.
3For true random number generation on R, use the

random package of Eddelbuettel (2007).

tions for pseudo and quasi random number
generations, as well as statistical tests to quantify
the quality of generated random numbers.

2.2 Overview of random gener-
ation algoritms

In this section, we present first the pseudo random
number generation and second the quasi random
number generation. By “random numbers”, we
mean random variates of the uniform U(0, 1)
distribution. More complex distributions can
be generated with uniform variates and rejection
or inversion methods. Pseudo random number
generation aims to seem random whereas quasi
random number generation aims to be determin-
istic but well equidistributed.

Those familiars with algorithms such as linear
congruential generation, Mersenne-Twister type
algorithms, and low discrepancy sequences should
go directly to the next section.

2.2.1 Pseudo random generation

At the beginning of the nineties, there was no
state-of-the-art algorithms to generate pseudo
random numbers. And the article of Park &
Miller (1988) entitled Random generators: good
ones are hard to find is a clear proof.

Despite this fact, most users thought the rand

6

http://www.random.org/randomness/
http://www.random.org/randomness/

CHAPTER 2. FULL PRESENTATION OF THE RNG TOOLS 7

function they used was good, because of a short
period and a term to term dependence. But
in 1998, Japenese mathematicians Matsumoto
and Nishimura invents the first algorithm whose
period (219937−1) exceeds the number of electron
spin changes since the creation of the Universe
(106000 against 10120). It was a big breakthrough.

As described in L’Ecuyer (1990), a (pseudo)
random number generator (RNG) is defined by
a structure (S, µ, f, U, g) where

• S a finite set of states,
• µ a probability distribution on S, called the

initial distribution,
• a transition function f : S 7→ S,
• a finite set of output symbols U ,
• an output function g : S 7→ U .

Then the generation of random numbers is as
follows:

1. generate the initial state (called the seed) s0
according to µ and compute u0 = g(s0),

2. iterate for i = 1, . . . , si = f(si−1) and ui =
g(si).

Generally, the seed s0 is determined using the
clock machine, and so the random variates
u0, . . . , un, . . . seems “real” i.i.d. uniform random
variates. The period of a RNG, a key charac-
teristic, is the smallest integer p ∈ N, such that
∀n ∈ N, sp+n = sn.

Linear congruential generators

There are many families of RNGs : linear congru-
ential, multiple recursive,. . . and “computer oper-
ation” algorithms. Linear congruential generators
have a transfer function of the following type

f(x) = (ax+ c) mod m1,

1this representation could be easily generalized for
matrix, see L’Ecuyer (1990).

where a is the multiplier, c the increment and m
the modulus and x, a, c,m ∈ N (i.e. S is the set
of (positive) integers). f is such that

xn = (axn−1 + c) mod m.

Typically, c and m are chosen to be relatively
prime and a such that ∀x ∈ N, ax mod m 6= 0.
The cycle length of linear congruential generators
will never exceed modulus m, but can maximised
with the three following conditions

• increment c is relatively prime to m,
• a−1 is a multiple of every prime dividing m,
• a− 1 is a multiple of 4 when m is a multiple

of 4,

see Knuth (2002) for a proof.

When c = 0, we have the special case of Park-
Miller algorithm or Lehmer algorithm (see Park &
Miller (1988)). Let us note that the n+ jth term
can be easily derived from the nth term with a
puts to aj mod m (still when c = 0).

Finally, we generally use one of the three types
of output function:

• g : N 7→ [0, 1[, and g(x) = x
m ,

• g : N 7→]0, 1], and g(x) = x
m−1 ,

• g : N 7→]0, 1[, and g(x) = x+1/2
m .

Linear congruential generators are implemented
in the R function congruRand.

Multiple recursive generators

A generalisation of linear congruential generators
are multiple recursive generators. They are based
on the following recurrences

xn = (a1xn−1 + · · ·+ akxn−kc) mod m,

where k is a fixed integer. Hence the nth term of
the sequence depends on the k previous one. A

CHAPTER 2. FULL PRESENTATION OF THE RNG TOOLS 8

particular case of this type of generators is when

xn = (xn−37 + xn−100) mod 230,

which is a Fibonacci-lagged generator1. The
period is around 2129. This generator has
been invented by Knuth (2002) and is generally
called “Knuth-TAOCP-2002” or simply “Knuth-
TAOCP”2.

An integer version of this generator is im-
plemented in the R function runif (see RNG).
We include in the package the latest double
version, which corrects undesirable deficiency. As
described on Knuth’s webpage3 , the previous
version of Knuth-TAOCP fails randomness test
if we generate few sequences with several seeds.
The cures to this problem is to discard the first
2000 numbers.

Mersenne-Twister

These two types of generators are in the big fam-
ily of matrix linear congruential generators (cf.
L’Ecuyer (1990)). But until here, no algorithms
exploit the binary structure of computers (i.e.
use binary operations). In 1994, Matsumoto and
Kurita invented the TT800 generator using binary
operations. But Matsumoto & Nishimura (1998)
greatly improved the use of binary operations and
proposed a new random number generator called
Mersenne-Twister.

Matsumoto & Nishimura (1998) work on the
finite set N2 = {0, 1}, so a variable x is
represented by a vectors of ω bits (e.g. 32 bits).
They use the following linear recurrence for the
n+ ith term:

xi+n = xi+m ⊕ (xuppi |x
low
i+1)A,

where n > m are constant integers, xuppi

(respectively xlowi) means the upper (lower) ω− r
1see L’Ecuyer (1990).
2TAOCP stands for The Art Of Computer Program-

ming, Knuth’s famous book.
3go to http://www-cs-faculty.stanford.edu/

˜knuth/news02.html#rng.

(r) bits of xi and A a ω×ω matrix of N2. | is the
operator of concatenation, so xuppi |xlowi+1 appends
the upper ω− r bits of xi with the lower r bits of
xi+1. After a right multiplication with the matrix
A4, ⊕ adds the result with xi+m bit to bit modulo
two (i.e. ⊕ denotes the exclusive-or called xor).

Once provided an initial seed x0, . . . , xn−1,
Mersenne Twister produces random integers in
0, . . . , 2ω−1. All operations used in the recurrence
are bitwise operations, thus it is a very fast
computation compared to modulus operations
used in previous algorithms.

To increase the equidistribution, Matsumoto &
Nishimura (1998) added a tempering step:

yi ← xi+n ⊕ (xi+n >> u),
yi ← yi ⊕ ((yi << s)⊕ b),
yi ← yi ⊕ ((yi << t)⊕ c),
yi ← yi ⊕ (yi >> l),

where >> u (resp. << s) denotes a rightshift
(leftshift) of u (s) bits. At last, we transform
random integers to reals with one of output
functions g proposed above.

Details of the order of the successive operations
used in the Mersenne-Twister (MT) algorithm
can be found at the page 7 of Matsumoto &
Nishimura (1998). However, the least, we need
to learn and to retain, is all these (bitwise)
operations can be easily done in many computer
languages (e.g in C) ensuring a very fast algo-
rithm.

The set of parameters used are

• (ω, n,m, r) = (32, 624, 397, 31),
• a = 0 × 9908B0DF, b = 0 × 9D2C5680, c =

0× EFC60000,
• u = 11, l = 18, s = 7 and t = 15.

4Matrix A equals to

„
0 Iω−1

a

«
whose right multi-

plication can be done with a bitwise rightshift operation
and an addition with integer a. See the section 2 of
Matsumoto & Nishimura (1998) for explanations.

http://www-cs-faculty.stanford.edu/~knuth/news02.html#rng
http://www-cs-faculty.stanford.edu/~knuth/news02.html#rng

CHAPTER 2. FULL PRESENTATION OF THE RNG TOOLS 9

These parameters ensure a good equidistribution
and a period of 2nω−r − 1 = 219937 − 1.

The great advantages of the MT algorithm are
a far longer period than any previous generators
(greater than the period of Park & Miller (1988)
sequence of 232− 1 or the period of Knuth (2002)
around 2129), a far better equidistribution (since
it passed the DieHard test) as well as an very
good computation time (since it used binary
operations and not the costly real operation
modullus).

MT algorithm is already implemented in
R (function runif). However the package
randtoolbox provide functions to compute a
new version of Mersenne-Twister (the SIMD-
oriented Fast Mersenne Twister algorithm) as well
as the WELL (Well Equidistributed Long-period
Linear) generator.

Well Equidistributed Long-period Linear
generators

The MT recurrence can be rewritten as

xi = Axi−1,

where xk are vectors of N2 and A a transition
matrix. The charateristic polynom of A is

χA(z)
4
= det(A−zI) = zk−α1z

k−1−· · ·−αk−1z−αk,

with coefficients αk’s in N2. Those coefficients are
linked with output integers by

xi,j = (α1xi−1,j + · · ·+ αkxi−k,j) mod 2

for all component j.

From Panneton et al. (2006), we have the
period length of the recurrence reaches the upper
bound 2k − 1 if and only if the polynom χA is a
primitive polynomial over N2.

The more complex is the matrix A the
slower will be the associated generator. Thus,
we compromise between speed and quality (of

equidistribution). If we denote by ψd the set of all
d-dimensional vectors produced by the generator
from all initial states1.

If we divide each dimension into 2l2 cells (i.e.
the unit hypercube [0, 1[d is divided into 2ld cells),
the set ψd is said to be (d, l)-equidistributed if
and only if each cell contains exactly 2k−dl of its
points. The largest dimension for which the set
ψd is (d, l)-equidistributed is denoted by dl.

The great advantage of using this definition
is we are not forced to compute random points
to know the uniformity of a generator. Indeed,
thanks to the linear structure of the recurrence
we can express the property of bits of the current
state. From this we define a dimension gap for l
bits resolution as δl = bk/lc − dl.

An usual measure of uniformity is the sum of
dimension gaps

∆1 =
ω∑
l=1

δl.

Panneton et al. (2006) tries to find generators
with a dimension gap sum ∆1 around zero and a
number Z1 of non-zero coefficients in χA around
k/2. Generators with these two characteristics are
called Well Equidistributed Long-period Linear
generators. As a benchmark, Mersenne Twister
algorithm is characterized with k = 19937, ∆1 =
6750 and Z1 = 135.

The WELL generator is characterized by the
following A matrix

T5,7,0 0 . . .
T0 0 . . .

0 I
. . .

.
. . . I 0

0 L 0

,

where T. are specific matrices, I the identity
matrix and L has ones on its “top left” corner.

1The cardinality of ψd is 2k.
2with l an integer such that l ≤ bk/dc.

CHAPTER 2. FULL PRESENTATION OF THE RNG TOOLS 10

The first two lines are not entirely sparse but “fill”
with T. matrices. All T.’s matrices are here to
change the state in a very efficient way, while the
subdiagonal (nearly full of ones) is used to shift
the unmodified part of the current state to the
next one. See Panneton et al. (2006) for details.

The MT generator can be obtained with
special values of T.’s matrices. Panneton et al.
(2006) proposes a set of parameters, where they
computed dimension gap number ∆1. The full
table can be found in Panneton et al. (2006), we
only sum up parameters for those implemented in
this package in table 2.1.

name k N1 ∆1

WELL512a 512 225 0
WELL1024a 1024 407 0
WELL19937a 19937 8585 4
WELL44497a 44497 16883 7

Table 2.1: Specific WELL generators

Let us note that for the last two generators
a tempering step is possible in order to have
maximally equidistributed generator (i.e. (d, l)-
equidistributed for all d and l). These generators
are implemented in this package thanks to the C
code of L’Ecuyer and Panneton.

SIMD-oriented Fast Mersenne Twister al-
gorithms

A decade after the invention of MT, Matsumoto
& Saito (2008) enhances their algorithm with the
computer of today, which have Single Instruction
Mutiple Data operations letting to work concep-
tually with 128 bits integers.

MT and its successor are part of the family
of multiple-recursive matrix generators since they
verify a multiple recursive equation with matrix
constants. For MT, we have the following

recurrence

xk+n =

xk

(
Iω−r 0

0 0

)
A⊕ xk+1

(
0 0
0 Ir

)
A⊕ xk+m.︸ ︷︷ ︸

h(xk,xk+1,...,xm,...,xk+n−1)

for the k + nth term.

Thus the MT recursion is entirely characterized
by

h(ω0, . . . , ωn−1) = (ω0|ω1)A⊕ ωm,

where ωi denotes the ith word integer (i.e.
horizontal vectors of N2).

The general recurrence for the SFMT algorithm
extends MT recursion to

h(ω0, . . . , ωn−1) = ω0A⊕ωmB⊕ωn−2C⊕ωn−1D,

where A,B,C,D are sparse matrices over N2, ωi
are 128-bit integers and the degree of recursion is
n =

⌈
19937
128

⌉
= 156.

The matrices A,B,C and D for a word w are
defined as follows,

• wA =
(
w

128
<< 8

)
⊕ w,

• wB =
(
w

32
>> 11

)
⊗ c, where c is a 128-bit

constant and ⊗ the bitwise AND operator,

• wC = w
128
>> 8,

• wD = w
32
<< 18,

where
128
<< denotes a 128-bit operation while

32
>>

a 32-bit operation, i.e. an operation on the four
32-bit parts of 128-bit word w.

Hence the transition function of SFMT is given
by

f : (Nω
2)n 7→ (Nω

2)n

(ω0, . . . , ωn−1) 7→ (ω1, . . . , ωn−1, h(ω0, . . . , ωn−1)),

where (Nω
2)n is the state space.

CHAPTER 2. FULL PRESENTATION OF THE RNG TOOLS 11

The selection of recursion and parameters
was carried out to find a good dimension of
equidistribution for a given a period. This step is
done by studying the characteristic polynomial of
f . SFMT allow periods of 2p−1 with p a (prime)
Mersenne exponent1. Matsumoto & Saito (2008)
proposes the following set of exponents 607, 1279,
2281, 4253, 11213, 19937, 44497, 86243, 132049
and 216091.

The advantage of SFMT over MT is the
computation speed, SFMT is twice faster without
SIMD operations and nearly fourt times faster
with SIMD operations. SFMT has also a better
equidistribution2 and a better recovery time from
zeros-excess states3. The function SFMT provides
an interface to the C code of Matsumoto and
Saito.

2.2.2 Quasi random generation

Before explaining and detailing quasi random
generation, we must (quickly) explain Monte-
Carlo4 methods, which have been introduced in
the forties. In this section, we follow the approach
of Niederreiter (1978).

Let us work on the d-dimensional unit cube
Id = [0, 1]d and with a (multivariate) bounded
(Lebesgues) integrable function f on Id. Then we
define the Monte Carlo approximation of integral
of f over Id by∫

Id

f(x)dx ≈ 1
n

n∑
i=1

f(Xi),

where (Xi)1≤i≤n are independent random points
from Id.

The strong law of large numbers ensures the
1a Mersenne exponent is a prime number p such that

2p − 1 is prime. Prime numbers of the form 2p − 1 have
the special designation Mersenne numbers.

2See linear algebra arguments of Matsumoto &
Nishimura (1998).

3states with too many zeros.
4according to wikipedia the name comes from a famous

casino in Monaco.

almost surely convergence of the approximation.
Furthermore, the expected integration error is
bounded by O(1√

n
), with the interesting fact it

does not depend on dimension d. Thus Monte
Carlo methods have a wide range of applications.

The main difference between (pseudo) Monte-
Carlo methods and quasi Monte-Carlo methods
is that we no longer use random points (xi)1≤i≤n
but deterministic points. Unlike statistical tests,
numerical integration does not rely on true
randomness. Let us note that quasi Monte-Carlo
methods dates from the fifties, and have also
been used for interpolation problems and integral
equations solving.

In the following, we consider a sequence
(ui)1≤i≤n of points in Id, that are not random.
As n increases, we want

1
n

n∑
i=1

f(ui) −→
n→+∞

∫
Id

f(x)dx.

Furthermore the convergence condition on the
sequence (ui)i is to be uniformly distributed in
the unit cube Id with the following sense:

∀J ⊂ Id, lim
n→+∞

1
n

n∑
i=1

11J(ui) = λd(I),

where λd stands for the d-dimensional volume (i.e.
the d-dimensional Lebesgue measure) and 11J the
indicator function of subset J . The problem is
that our discrete sequence will never constitute a
“fair” distribution in Id, since there will always
be a small subset with no points.

Therefore, we need to consider a more flexible
definition of uniform distribution of a sequence.
Before introducing the discrepancy, we need
to define CardE(u1, . . . , un) as

∑n
i=1 11E(ui) the

number of points in subset E. Then the
discrepancy Dn of the n points (ui)1≤i≤n in Id

is given by

Dn = sup
J∈J

∣∣∣∣CardJ(u1, . . . , un)
n

− λd(J)
∣∣∣∣

where J denotes the family of all subintervals of
Id of the form

∏d
i=1[ai, bi]. If we took the family

CHAPTER 2. FULL PRESENTATION OF THE RNG TOOLS 12

of all subintervals of Id of the form
∏d
i=1[0, bi],

Dn is called the star discrepancy (cf. Niederreiter
(1992)).

Let us note that the Dn discrepancy is nothing
else than the L∞-norm over the unit cube of the
difference between the empirical ratio of points
(ui)1≤i≤n in a subset J and the theoretical point
number in J . A L2-norm can be defined as well,
see Niederreiter (1992) or Jäckel (2002).

The integral error is bounded by

∣∣∣∣∣ 1n
n∑
i=1

f(ui)−
∫
Id

f(x)dx

∣∣∣∣∣ ≤ Vd(f)Dn,

where Vd(f) is the d-dimensional Hardy and
Krause variation1 of f on Id (supposed to be
finite).

Actually the integral error bound is the product
of two independent quantities: the variability of
function f through Vd(f) and the regularity of the
sequence through Dn. So, we want to minimize
the discrepancy Dn since we generally do not have
a choice in the “problem” function f .

We will not explain it but this concept can be
extented to subset J of the unit cube Id in order
to have a similar bound for

∫
J f(x)dx.

In the literature, there were many ways to
find sequences with small discrepancy, generally
called low-discrepancy sequences or quasi-random
points. A first approach tries to find bounds
for these sequences and to search the good
parameters to reach the lower bound or to
decrease the upper bound. Another school tries
to exploit regularity of function f to decrease
the discrepancy. Sequences coming from the first
school are called quasi-random points while those
of the second school are called good lattice points.

1Interested readers can find the definition page 966 of
Niederreiter (1978). In a sentence, the Hardy and Krause
variation of f is the supremum of sums of d-dimensional
delta operators applied to function f .

Quasi-random points and discrepancy

Until here, we do not give any example of quasi-
random points. In the unidimensional case,
an easy example of quasi-random points is the
sequence of n terms given by (1

2n ,
3
2n , . . . ,

2n−1
2n).

This sequence has a discrepancy 1
n , see Niederre-

iter (1978) for details.

The problem with this finite sequence is it
depends on n. And if we want different points
numbers, we need to recompute the whole se-
quence. In the following, we will on work the
first n points of an infinite sequence in order to
use previous computation if we increase n.

Moreover we introduce the notion of discrep-
ancy on a finite sequence (ui)1≤i≤n. In the above
example, we are able to calculate exactly the
discrepancy. With infinite sequence, this is no
longer possible. Thus, we will only try to estimate
asymptotic equivalents of discrepancy.

The discrepancy of the average sequence of
points is governed by the law of the iterated
logarithm :

lim sup
n→+∞

√
nDn√

log log n
= 1,

which leads to the following asymptotic equivalent
for Dn:

Dn = O

(√
log log n

n

)
.

Van der Corput sequences

An example of quasi-random points, which have a
low discrepancy, is the (unidimensional) Van der
Corput sequences.

Let p be a prime number. Every integer n can
be decomposed in the p basis, i.e. there exists
some integer k such that

n =
k∑
j=1

ajp
j .

CHAPTER 2. FULL PRESENTATION OF THE RNG TOOLS 13

Then, we can define the radical-inverse function
of integer n as

φp(n) =
k∑
j=1

aj
pj+1

.

And finally, the Van der Corput sequence is given
by (φp(0), φp(1), . . . , φp(n), . . .) ∈ [0, 1[. First
terms of those sequence for prime numbers 2 and
3 are given in table 2.2.

n in p-basis φp(n)
n p = 2 p = 3 p = 5 p = 2 p = 3 p = 5
0 0 0 0 0 0 0
1 1 1 1 0.5 0.333 0.2
2 10 2 2 0.25 0.666 0.4
3 11 10 3 0.75 0.111 0.6
4 100 11 4 0.125 0.444 0.8
5 101 12 10 0.625 0.777 0.04
6 110 20 11 0.375 0.222 0.24
7 111 21 12 0.875 0.555 0.44
8 1000 22 13 0.0625 0.888 0.64

Table 2.2: Van der Corput first terms

The big advantage of Van der Corput sequence
is that they use p-adic fractions easily computable
on the binary structure of computers.

Halton sequences

The d-dimensional version of the Van der Corput
sequence is known as the Halton sequence. The
nth term of the sequence is define as

(φp1(n), . . . , φpd
(n)) ∈ Id,

where p1, . . . , pd are pairwise relatively prime
bases. The discrepancy of the Halton sequence
is asymptotically O

(
log(n)d

n

)
.

The following Halton theorem gives us better
discrepancy estimate of finite sequences. For any
dimension d ≥ 1, there exists an finite sequence

of points in Id such that the discrepancy

Dn = O

(
log(n)d−1

n

)
1.

Therefore, we have a significant guarantee there
exists quasi-random points which are outperform-
ing than traditional Monte-Carlo methods.

Faure sequences

The Faure sequences is also based on the decom-
position of integers into prime-basis but they have
two differences: it uses only one prime number for
basis and it permutes vector elements from one
dimension to another.

The basis prime number is chosen as the small-
est prime number greater than the dimension d,
i.e. 3 when d = 2, 5 when d = 3 or 4 etc. . . In
the Van der Corput sequence, we decompose
integer n into the p-basis:

n =
k∑
j=1

ajp
j .

Let a1,j be integer aj used for the decomposition
of n. Now we define a recursive permutation of
aj :

∀2 ≤ D ≤ d, aD,j =
k∑
j=i

CijaD−1,j mod p,

where Cij denotes standard combination
j!

i!(j−i)! . Then we take the radical-inversion
φp(aD,1, . . . , aD,k) defined as

φp(a1, . . . , ak) =
k∑
j=1

aj
pj+1

,

which is the same as above for n defined by the
aD,i’s.

Finally the (d-dimensional) Faure sequence is
defined by

(φp(a1,1, . . . , a1,k), . . . , φp(ad,1, . . . , ad,k)) ∈ Id.
1if the sequence has at least two points, cf. Niederreiter

(1978).

CHAPTER 2. FULL PRESENTATION OF THE RNG TOOLS 14

In the bidimensional case, we work in 3-basis, first
terms of the sequence are listed in table 2.3.

n a13a12a11
1 a23a22a21 φ(a13..) φ(a23..)

0 000 000 0 0
1 001 001 1/3 1/3
2 002 002 2/3 2/3
3 010 012 1/9 7/9
4 011 010 4/9 1/9
5 012 011 7/9 4/9
6 020 021 2/9 5/9
7 021 022 5/9 8/9
8 022 020 8/9 2/9
9 100 100 1/27 1/27
10 101 101 10/27 10/27
11 102 102 19/27 19/27
12 110 112 4/27 22/27
13 111 110 12/27 4/27
14 112 111 22/27 12/27

Table 2.3: Faure first terms

Sobol sequences

This sub-section is taken from unpublished work
of Diethelm Wuertz.

The Sobol sequence xn = (xn,1, . . . , xn,d) is
generated from a set of binary functions of
length ω bits (vi,j with i = 1, . . . , ω and j =
1, . . . , d). vi,j , generally called direction numbers
are numbers related to primitive (irreducible)
polynomials over the field {0, 1}.

In order to generate the jth dimension, we sup-
pose that the primitive polynomial in dimension
j is

pj(x) = xq + a1x
q−1 + · · ·+ aq−1x+ 1.

Then we define the following q-term recurrence
relation on integers (Mi,j)i

Mi,j = 2a1Mi−1,j ⊕ 22a2Mi−2,j ⊕ . . .
⊕ 2q−1aq−1Mi−q+1,j ⊕ 2qaqMi−q,j ⊕Mi−q

1we omit commas for simplicity.

where i > q.

This allow to compute direction numbers as

vi,j = Mi,j/2i.

This recurrence is initialized by the set of
arbitrary odd integers v1,j2ω, . . . , v,j2qω, which
are smaller than 2, . . . , 2q respectively. Finally
the jth dimension of the nth term of the Sobol
sequence is with

xn,j = b1v1,j ⊕ b2v2,j ⊕ · · · ⊕ vω,j ,

where bk’s are the bits of integer n =
∑ω−1

k=0 bk2
k.

The requirement is to use a different primitive
polynomial in each dimension. An e?cient variant
to implement the generation of Sobol sequences
was proposed by Antonov & Saleev (1979). The
use of this approach is demonstrated in Bratley
& Fox (1988) and Press et al. (1996).

Scrambled Sobol sequences

Randomized QMC methods are the basis for error
estimation. A generic recipe is the following:
Let A1, . . . , An be a QMC point set and Xi a
scrambled version of Ai. Then we are searching
for randomizations which have the following
properties:

• Uniformity: The Xi makes the approximator
Î = 1

N

∑N
i=1 f(Xi) an unbiased estimate of

I =
∫
[0,1]d f(x)dx.

• Equidistribution: The Xi form a point set
with probability 1; i.e. the random- ization
process has preserved whatever special prop-
erties the underlying point set had.

The Sobol sequences can be scrambled by the
Owen’s type of scrambling, by the Faure-Tezuka
type of scrambling, and by a combination of both.

The program we have interfaced to R is based
on the ACM Algorithm 659 described by Bratley

CHAPTER 2. FULL PRESENTATION OF THE RNG TOOLS 15

& Fox (1988) and Bratley et al. (1992). Modi-
fications by Hong & Hickernell (2001) allow for
a randomization of the sequences. Furthermore,
in the case of the Sobol sequence we followed the
implementation of Joe & Kuo (1999) which can
handle up to 1111 dimensions.

To interface the Fortran routines to the R envi-
ronment some modifications had to be performed.
One important point was to make possible to
re-initialize a sequence and to recall a sequence
without renitialization from R. This required to
remove BLOCKDATA, COMMON and SAVE
statements from the original code and to pass the
initialization variables through the argument lists
of the subroutines, so that these variables can be
accessed from R.

Kronecker sequences

Another kind of low-discrepancy sequence uses
irrational number and fractional part. The
fractional part of a real x is denoted by {x} =
x − bxc. The infinite sequence (n{α})n≤0 has a
bound for its discrepancy

Dn ≤ C
1 + log n

n
.

This family of infinite sequence (n{α})n≤0 is
called the Kronecker sequence.

A special case of the Kronecker sequence is the
Torus algorithm where irrational number α is a
square root of a prime number. The nth term of
the d-dimensional Torus algorithm is defined by

(n{√p1}, . . . , n{
√
pd}) ∈ Id,

where (p1, . . . , pd) are prime numbers, generally
the first d prime numbers. With the previous
inequality, we can derive an estimate of the Torus
algorithm discrepancy:

O

(
1 + log n

n

)
.

Mixed pseudo quasi random sequences

Sometimes we want to use quasi-random se-
quences as pseudo random ones, i.e. we want to
keep the good equidistribution of quasi-random
points but without the term-to-term dependence.

One way to solve this problem is to use pseudo
random generation to mix outputs of a quasi-
random sequence. For example in the case of the
Torus sequence, we have repeat for 1 ≤ i ≤ n

• draw an integer ni from Mersenne-Twister in
{0, . . . , 2ω − 1}

• then ui = {ni
√
p}

Good lattice points

In the above methods we do not take into account
a better regularity of the integrand function f
than to be of bounded variation in the sense of
Hardy and Krause. Good lattice point sequences
try to use the eventual better regularity of f .

If f is 1-periodic for each variable, then the
approximation with good lattice points is∫

Id

f(x)dx ≈ 1
n

n∑
i=1

f

(
i

n
g

)
,

where g ∈ Zd is suitable d-dimensional lattice
point. To impose f to be 1-periodic may
seem too brutal. But there exists a method
to transform f into a 1-periodic function while
preserving regularity and value of the integrand
(see Niederreiter 1978, page 983).

We have the following theorem for good lattice
points. For every dimension d ≥ 2 and integer
n ≥ 2, there exists a lattice points g ∈ Zd which
coordinates relatively prime to n such that the
discrepancy Dn of points { 1

ng}, . . . , {
n
ng} satisfies

Ds <
d

n
+

1
2n

(
7
5

+ 2 logm
)d

.

CHAPTER 2. FULL PRESENTATION OF THE RNG TOOLS 16

Numerous studies of good lattice points try
to find point g which minimizes the discrep-
ancy. Korobov test g of the following form(
1,m, . . . ,md−1

)
with m ∈ N. Bahvalov tries

Fibonnaci numbers (F1, . . . , Fd). Other studies
look directly for the point α = g

n e.g. α =(
p

1
d+1 , . . . , p

d
d+1

)
or some cosinus functions. We

let interested readers to look for detailed informa-
tion in Niederreiter (1978).

2.3 Examples of distinguishing
from truly random numbers

For a good generator, it is not computationally
easy to distinguish the output of the generator
from truly random numbers, if the seed or the
index in the sequence is not known. In this
section, we present examples of generators, whose
output may be easily distinguished from truly
random numbers.

An example of such a generator is the older
version of Wichmann-Hill from 1982. For this
generator, we can even predict the next number
in the sequence, if we know the last already
generated one. Verifying such a predicition is easy
and it is, of course, not valid for truly random
numbers. Hence, we can easily distinguish
the output of the generator from truly random
numbers. An implementation of this test in R
derived from McCullough (2008) is as follows.

> wh.predict <- function(x) {
+ M1 <- 30269
+ M2 <- 30307
+ M3 <- 30323
+ y <- round(M1 * M2 * M3 * x)
+ s1 <- y%%M1
+ s2 <- y%%M2
+ s3 <- y%%M3
+ s1 <- (171 * 26478 * s1)%%M1
+ s2 <- (172 * 26070 * s2)%%M2
+ s3 <- (170 * 8037 * s3)%%M3
+ (s1/M1 + s2/M2 + s3/M3)%%1
+ }

> RNGkind("Wichmann-Hill")
> xnew <- runif(1)
> maxerr <- 0
> for (i in 1:1000) {
+ xold <- xnew
+ xnew <- runif(1)
+ err <- abs(wh.predict(xold) - xnew)
+ maxerr <- max(err, maxerr)
+ }
> print(maxerr)

[1] 0

The printed error is 0 on some machines and
less than 5 · 10−16 on other machines. This is
clearly different from the error obtained for truly
random numbers, which is close to 1.

The requirement that the output of a random
number generator should not be distinguishable
from the truly random numbers by a simple
computation, is directly related to the way, how a
generator is used. Typically, we use the generated
numbers as an input to a computation and we
expect that the distribution of the output (for
different seeds or for different starting indices
in the sequence) is the same as if the input
are truly random numbers. A failure of this
assumption implies, besides of a wrong result
of our simulation, that observing the output of
the computation allows to distinguish the output
from the generator from truly random numbers.
Hence, we want to use a generator, for which
we may expect that the calculations used in the
intended application cannot distinguish its output
from truly random numbers.

In this context, it has to be noted that many
of the currently used generators for simulations
can be distinguished from truly random numbers
using the arithmetic mod 2 (XOR operation)
applied to individual bits of the output numbers.
This is true for Mersenne Twister, SFMT and also
all WELL generators. The basis for tolerating this
is based on two facts. First, the arithmetic mod 2
and extracting individual bits of real numbers is
not directly used in typical simulation problems

CHAPTER 2. FULL PRESENTATION OF THE RNG TOOLS 17

and real valued functions, which represent these
operations, are extremely discontinuous and such
functions also do not typically occur in simulation
problems. Another reason is that we need to
observe quite a long history of the output to
detect the difference from true randomness. For
example, for Mersenne Twister, we need 624
consecutive numbers.

On the other hand, if we use a cryptograph-
ically strong pseudorandom number generator,
we may avoid distinguishing from truly ran-
dom numbers under any known efficient proce-
dure. Such generators are typically slower than
Mersenne Twister type generators. The factor
of slow down is, for example for AES, about
5. However, note that for simulation problems,
which require intensive computation besides the
generating random numbers, using slower, but
better, generator implies only negligible slow
down of the computation as a whole.

2.4 Description of the random
generation functions

In this section, we detail the R functions imple-
mented in randtoolbox and give examples.

2.4.1 Pseudo random generation

For pseudo random generation, R provides
many algorithms through the function runif
parametrized with .Random.seed. We encour-
age readers to look in the corresponding help
pages for examples and usage of those functions.
Let us just say runif use the Mersenne-Twister
algorithm by default and other generators such as
Wichmann-Hill, Marsaglia-Multicarry or Knuth-
TAOCP-20021.

1see Wichmann & Hill (1982), Marsaglia (1994) and
Knuth (2002) for details.

congruRand

The randtoolbox package provides two pseudo-
random generators functions : congruRand and
SFMT. congruRand computes linear congruen-
tial generators, see sub-section 2.2.1. By default,
it computes the Park & Miller (1988) sequence, so
it needs only the observation number argument.
If we want to generate 10 random numbers, we
type

> congruRand(10)

[1] 0.9079502 0.9186374 0.5383590
[4] 0.1996996 0.3507678 0.3541376
[7] 0.9905118 0.5320287 0.8070732

[10] 0.4796016

One will quickly note that two calls to
congruRand will not produce the same output.
This is due to the fact that we use the machine
time to initiate the sequence at each call. But the
user can set the seed with the function setSeed:

> setSeed(1)
> congruRand(10)

[1] 7.826369e-06 1.315378e-01
[3] 7.556053e-01 4.586501e-01
[5] 5.327672e-01 2.189592e-01
[7] 4.704462e-02 6.788647e-01
[9] 6.792964e-01 9.346929e-01

One can follow the evolution of the nth integer
generated with the option echo=TRUE.

> setSeed(1)
> congruRand(10, echo = TRUE)

1 th integer generated : 1
2 th integer generated : 16807
3 th integer generated : 282475249

CHAPTER 2. FULL PRESENTATION OF THE RNG TOOLS 18

4 th integer generated : 1622650073
5 th integer generated : 984943658
6 th integer generated : 1144108930
7 th integer generated : 470211272
8 th integer generated : 101027544
9 th integer generated : 1457850878
10 th integer generated : 1458777923
[1] 7.826369e-06 1.315378e-01
[3] 7.556053e-01 4.586501e-01
[5] 5.327672e-01 2.189592e-01
[7] 4.704462e-02 6.788647e-01
[9] 6.792964e-01 9.346929e-01

We can check that those integers are the 10 first
terms are listed in table 2.4, coming from http:
//www.firstpr.com.au/dsp/rand31/.

n xn n xn
1 16807 6 470211272
2 282475249 7 101027544
3 1622650073 8 1457850878
4 984943658 9 1458777923
5 1144108930 10 2007237709

Table 2.4: 10 first integers of Park & Miller (1988)
sequence

We can also check around the 10000th term.
From the site http://www.firstpr.com.
au/dsp/rand31/, we know that 9998th to
10002th terms of the Park-Miller sequence are
925166085, 1484786315, 1043618065, 1589873406,
2010798668. The congruRand generates

> setSeed(1614852353)
> congruRand(5, echo = TRUE)

1 th integer generated : 1614852353
2 th integer generated : 925166085
3 th integer generated : 1484786315
4 th integer generated : 1043618065
5 th integer generated : 1589873406
[1] 0.4308140 0.6914075 0.4859725
[4] 0.7403425 0.9363511

with 1614852353 being the 9997th term of Park-
Miller sequence.

However, we are not limited to the Park-
Miller sequence. If we change the modulus,
the increment and the multiplier, we get other
random sequences. For example,

> setSeed(12)
> congruRand(5, mod = 2ˆ8, mult = 25,
+ incr = 16, echo = TRUE)

1 th integer generated : 12
2 th integer generated : 60
3 th integer generated : 236
4 th integer generated : 28
5 th integer generated : 204
[1] 0.234375 0.921875 0.109375
[4] 0.796875 0.984375

Those values are correct according to Planchet
et al. 2005, page 119.

Here is a example list of RNGs computable with
congruRand:

RNG mod mult incr
Knuth - Lewis 232 1664525 1.01e91

Lavaux - Jenssens 248 31167285 1
Haynes 264 6.36e172 1
Marsaglia 232 69069 0
Park - Miller 231 − 1 16807 0

Table 2.5: some linear RNGs

One may wonder why we implement such
a short-period algorithm since we know the
Mersenne-Twister algorithm. It is provided to
make comparisons with other algorithms. The
Park-Miller RNG should not be viewed as a
“good” random generator.

Finally, congruRand function has a dim
argument to generate dim- dimensional vectors

11013904223.
2636412233846793005.

http://www.firstpr.com.au/dsp/rand31/
http://www.firstpr.com.au/dsp/rand31/
http://www.firstpr.com.au/dsp/rand31/
http://www.firstpr.com.au/dsp/rand31/

CHAPTER 2. FULL PRESENTATION OF THE RNG TOOLS 19

of random numbers. The nth vector is build with
d consecutive numbers of the RNG sequence (i.e.
the nth term is the (un+1, . . . , un+d)).

SFMT

The SF- Mersenne Twister algorithm is described
in sub-section 2.2.1. Usage of SFMT function im-
plementing the SF-Mersenne Twister algorithm
is the same. First argument n is the number
of random variates, second argument dim the
dimension.

> SFMT(10)
> SFMT(5, 2)

[1] 0.77063036 0.56447135 0.78254640
[4] 0.07272326 0.86541951 0.02444042
[7] 0.96740105 0.33077227 0.12775956
[10] 0.90732049

[,1] [,2]
[1,] 0.7337500 0.4352455
[2,] 0.3917798 0.5912221
[3,] 0.8592548 0.9823896
[4,] 0.1484319 0.6649717
[5,] 0.2336705 0.2575520

A third argument is mexp for Mersenne expo-
nent with possible values (607, 1279, 2281, 4253,
11213, 19937, 44497, 86243, 132049 and 216091).
Below an example with a period of 2607 − 1:

> SFMT(10, mexp = 607)

[1] 0.006326784 0.793815485 0.769362527
[4] 0.076866336 0.033306829 0.542184594
[7] 0.021908831 0.751547592 0.032024436
[10] 0.106860209

Furthermore, following the advice of Mat-
sumoto & Saito (2008) for each exponent below

19937, SFMT uses a different set of parameters1

in order to increase the independence of random
generated variates between two calls. Otherwise
(for greater exponent than 19937) we use one set
of parameters2.

We must precise that we do not implement
the SFMT algorithm, we “just” use the C code
of Matsumoto & Saito (2008). For the moment,
we do not fully use the strength of their code.
For example, we do not use block generation and
SSE2 SIMD operations.

2.4.2 Quasi-random generation

Halton sequences

The function halton implements both the Van
Der Corput (unidimensional) and Halton se-
quences. The usage is similar to pseudo-RNG
functions

> halton(10)
> halton(10, 2)

[1] 0.5000 0.2500 0.7500 0.1250 0.6250
[6] 0.3750 0.8750 0.0625 0.5625 0.3125

[,1] [,2]
[1,] 0.5000 0.33333333
[2,] 0.2500 0.66666667
[3,] 0.7500 0.11111111
[4,] 0.1250 0.44444444
[5,] 0.6250 0.77777778
[6,] 0.3750 0.22222222
[7,] 0.8750 0.55555556
[8,] 0.0625 0.88888889
[9,] 0.5625 0.03703704
[10,] 0.3125 0.37037037

1this can be avoided with usepset argument to
FALSE.

2These parameter sets can be found in the C function
initSFMT in SFMT.c source file.

CHAPTER 2. FULL PRESENTATION OF THE RNG TOOLS 20

You can use the init argument set to FALSE
(default is TRUE) if you want that two calls
to halton functions do not produce the same
sequence (but the second call continues the
sequence from the first call.

> halton(5)
> halton(5, init = FALSE)

[1] 0.500 0.250 0.750 0.125 0.625

[1] 0.3750 0.8750 0.0625 0.5625 0.3125

init argument is also available for other quasi-
RNG functions.

Sobol sequences

The function sobol implements the Sobol se-
quences with optional sampling (Owen, Faure-
Tezuka or both type of sampling). This sub-
section also comes from an unpublished work of
Diethelm Wuertz.

To use the different scrambling option, you just
to use the scrambling argument: 0 for (the
default) no scrambling, 1 for Owen, 2 for Faure-
Tezuka and 3 for both types of scrambling.

> sobol(10)
> sobol(10, scramb = 3)

[1] 0.5000 0.7500 0.2500 0.3750 0.8750
[6] 0.6250 0.1250 0.1875 0.6875 0.9375

[1] 0.08301502 0.40333283 0.79155719
[4] 0.90135312 0.29438373 0.22406116
[7] 0.58105069 0.62985182 0.05026767
[10] 0.49559012

It is easier to see the impact of scrambling
by plotting two-dimensional sequence in the unit
square. Below we plot the default Sobol sequence
and Sobol scrambled by Owen algorithm, see
figure 2.1.

> par(mfrow = c(2, 1))
> plot(sobol(1000, 2))
> plot(sobol(10ˆ3, 2, scram = 1))

Faure sequences

In a near future, randtoolbox package will have
an implementation of Faure sequences. For the
moment, there is no function faure.

Torus algorithm (or Kronecker sequence)

The function torus implements the Torus algo-
rithm.

> torus(10)

[1] 0.41421356 0.82842712 0.24264069
[4] 0.65685425 0.07106781 0.48528137
[7] 0.89949494 0.31370850 0.72792206
[10] 0.14213562

These numbers are fractional parts of√
2, 2
√

2, 3
√

2, . . . , see sub-section 2.2.2 for
details.

> torus(5, use = TRUE)

[1] 0.178817749 0.593032837 0.007247925
[4] 0.421463013 0.835670471

The optional argument useTime can be used to
the machine time or not to initiate the seed. If we

CHAPTER 2. FULL PRESENTATION OF THE RNG TOOLS 21

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sobol (no scrambling)

u

v

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sobol (Owen)

u

v

Figure 2.1: Sobol (two sampling types)

do not use the machine time, two calls of torus
produces obviously the same output.

If we want the random sequence with prime
number 7, we just type:

> torus(5, p = 7)

[1] 0.6457513 0.2915026 0.9372539
[4] 0.5830052 0.2287566

The dim argument is exactly the same as
congruRand or SFMT. By default, we use the
first prime numbers, e.g. 2, 3 and 5 for a call like
torus(10, 3). But the user can specify a set
of prime numbers, e.g. torus(10, 3, c(7,
11, 13)). The dimension argument is limited
to 100 0001.

As described in sub-section 2.2.2, one way to
deal with serial dependence is to mix the Torus
algorithm with a pseudo random generator. The
torus function offers this operation thanks to
argument mixed (the Torus algorithm is mixed
with SFMT).

> torus(5, mixed = TRUE)

[1] 0.6911116 0.8866177 0.8741907
[4] 0.5744629 0.4443746

In order to see the difference between, we can plot
the empirical autocorrelation function (acf in R),
see figure 2.2.

> par(mfrow = c(2, 1))
> acf(torus(10ˆ5))
> acf(torus(10ˆ5, mix = TRUE))

2.4.3 Visual comparisons

To understand the difference between pseudo and
quasi RNGs, we can make visual comparisons of
how random numbers fill the unit square.

First we compare SFMT algorithm with Torus
algorithm on figure 2.3.

1the first 100 000 prime numbers are take from http:
//primes.utm.edu/lists/small/millions/.

http://primes.utm.edu/lists/small/millions/
http://primes.utm.edu/lists/small/millions/

CHAPTER 2. FULL PRESENTATION OF THE RNG TOOLS 22

0 10 20 30 40 50

−
0.

5
0.

5

Lag

A
C

F

Series torus(10^5)

0 10 20 30 40 50

0.
0

0.
4

0.
8

Lag

A
C

F

Series torus(10^5, mix = TRUE)

Figure 2.2: Auto-correlograms

> par(mfrow = c(2, 1))
> plot(SFMT(1000, 2))
> plot(torus(10ˆ3, 2))

Secondly we compare WELL generator with
Faure-Tezuka-scrambled Sobol sequences on fig-
ure 2.4.

> par(mfrow = c(2, 1))
> plot(WELL(1000, 2))
> plot(sobol(10ˆ3, 2, scram = 2))

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SFMT

u
v

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Torus

u

v

Figure 2.3: SFMT vs. Torus algorithm

2.4.4 Applications of QMC methods

d dimensional integration

Now we will show how to use low-discrepancy
sequences to compute a d-dimensional integral

CHAPTER 2. FULL PRESENTATION OF THE RNG TOOLS 23

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

WELL 512a

u

v

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sobol (Faure−Tezuka)

u

v

Figure 2.4: WELL vs. Sobol

defined on the unit hypercube. We want compute

Icos(d) =
∫

Rd

cos(||x||)e||x||2dx

≈ πd/2

n

n∑
i=1

cos

√√√√ d∑
j=1

(Φ−1)2 (tij)

where Φ−1 denotes the quantile function of the
standard normal distribution.

We simply use the following code to com-
pute the Icos(25) integral whose exact value is
−1356914.

> I25 <- -1356914
> nb <- c(1200, 14500, 214000)
> ans <- NULL
> for (i in 1:3) {
+ tij <- sobol(nb[i], dim = 25,
+ scramb = 2, norm = TRUE)
+ Icos <- mean(cos(sqrt(apply(tijˆ2/2,
+ 1, sum)))) * piˆ(25/2)
+ ans <- rbind(ans, c(n = nb[i],
+ I25 = Icos, Delta = (Icos -
+ I25)/I25))
+ }
> data.frame(ans)

n I25 Delta
1 1200 -1355379 -1.131576e-03
2 14500 -1357216 2.222451e-04
3 214000 -1356909 -3.810502e-06

The results obtained from the Sobol Monte
Carlo method in comparison to those obtained by
Papageorgiou & Traub (2000) with a generalized
Faure sequence and in comparison with the
quadrature rules of Namee & Stenger (1967),
Genz (1982) and Patterson (1968) are listed in
the following table.

n 1200 14500 214000
Faure (P&T) 0.001 0.0005 0.00005
Sobol (s=0) 0.02 0.003 0.00006
s=1 0.004 0.0002 0.00005
s=2 0.001 0.0002 0.000002
s=3 0.002 0.0009 0.00003
Quadrature (McN&S) 2 0.75 0.07
G&P 2 0.4 0.06

Table 2.6: list of errors

CHAPTER 2. FULL PRESENTATION OF THE RNG TOOLS 24

Pricing of a Vanilla Call

In this sub-section, we will present one financial
application of QMC methods. We want to price
a vanilla European call in the framework of a
geometric Brownian motion for the underlying
asset. Those options are already implemented in
the package fOptions of Rmetrics bundle1.

The payoff of this classical option is

f(ST) = (ST −K)+,

where K is the strike price. A closed formula for
this call was derived by Black & Scholes (1973).

The Monte Carlo method to price this option
is quite simple

1. simulate sT,i for i = 1 . . . n from starting
point s0,

2. compute the mean of the discounted payoff
1
n

∑n
i=1 e

−rT (sT,i −K)+.

With parameters (S0 = 100, T = 1, r = 5%,
K = 60, σ = 20%), we plot the relative error as a
function of number of simulation n on figure 2.5.

We test two pseudo-random generators (namely
Park Miller and SF-Mersenne Twister) and one
quasi-random generator (Torus algorithm). No
code will be shown, see the file qmc.R in the
package source. But we use a step-by-step
simulation for the Brownian motion simulation
and the inversion function method for Gaussian
distribution simulation (default in R).

As showed on figure 2.5, the convergence of
Monte Carlo price for the Torus algorithm is
extremely fast. Whereas for SF-Mersenne Twister
and Park Miller prices, the convergence is very
slow.

1created by Wuertz et al. (2007b).

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

-0
.0
2

-0
.0
1

0.
00

0.
01

0.
02

Vanilla Call

simulation number

re
la

tiv
e

er
ro

r

SFMT
Torus
Park Miller
zero

Figure 2.5: Error function for Vanilla call

Pricing of a DOC

Now, we want to price a barrier option: a
down-out call i.e. an Downward knock-Out
Call2. These kind of options belongs to the path-
dependent option family, i.e. we need to simulate
whole trajectories of the underlying asset S on
[0, T].

In the same framework of a geometric Brow-
nian motion, there exists a closed formula for
DOCs (see Rubinstein & Reiner (1991)). Those
options are already implemented in the package
fExoticOptions of Rmetrics bundle3.

The payoff of a DOC option is

f(ST) = (ST −K)+11(τH>T),

where K is the strike price, T the maturity, τH
the stopping time associated with the barrier H
and St the underlying asset at time t.

As the price is needed on the whole period
[0, T], we produc as follows:

1. start from point st0 ,
2. for simulation i = 1 . . . n and time index j =

1 . . . d
2DOC is disactived when the underlying asset hits the

barrier.
3created by Wuertz et al. (2007a).

CHAPTER 2. FULL PRESENTATION OF THE RNG TOOLS 25

• simulate stj ,i ,
• update disactivation boolean Di

3. compute the mean of the discounted payoff
1
n

∑n
i=1 e

−rT (sT,i −K)+Di,

where n is the simulation number, d the point
number for the grid of time and Di the opposite
of boolean Di.

In the following, we set T = 1, r = 5%, st0 =
100, H = K = 50, d = 250 and σ = 20%. We
test crude Monte Carlo methods with Park Miller
and SF-Mersenne Twister generators and a quasi-
Monte Carlo method with (multidimensional)
Torus algoritm on the figure 2.6.

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

-0
.0
2

-0
.0
1

0.
00

0.
01

0.
02

Down Out Call

simulation number

re
la

tiv
e

er
ro

r

SFMT
Torus
Park Miller
zero

Figure 2.6: Error function for Down Out Call

One may wonder why the Torus algorithm is
still the best (on this example). We use the d-
dimensional Torus sequence. Thus for time tj , the
simulated underlying assets (stj ,i)i are computed
with the sequence (i{√pj})i. Thanks to the
linear independence of the Torus sequence over
the rationals1, we guarantee a non-correlation of
Torus quasi-random numbers.

However, these results do not prove the Torus
algorithm is always better than traditional Monte
Carlo. The results are sensitive to the barrier level
H, the strike price X (being in or out the money

1i.e. for k 6= j, ∀i, (i{√pj})i and (i{√pk})i are linearly
independent over Q.

has a strong impact), the asset volatility σ and
the time point number d.

Actuaries or readers with actuarial background
can find an example of actuarial applications of
QMC methods in Albrecher et al. (2003). This
article focuses on simulation methods in ruin
models with non-linear dividend barriers.

2.5 Random generation tests

Tests of random generators aim to check if the
output u1, . . . , un, . . . could be considered as
independent and identically distributed (i.i.d.)
uniform variates for a given confidence level.
There are two kinds of tests of the uniform
distribution: first on the interval]0, 1[, second
on the binary set {0, 1}. In this note, we only
describe tests for]0, 1[outputs (see L’Ecuyer &
Simard (2007) for details about these two kind of
tests).

Some RNG tests can be two-level tests, i.e. we
do not work directly on the RNG output ui’s but
on a function of the output such as the spacings
(coordinate difference of the sorted sample).

2.5.1 Test on one sequence of n num-
bers

Goodness of Fit

Goodness of Fit tests compare the empirical
cumulative distribution function (cdf) Fn of
ui’s with a specific distribution (U(0, 1) here).
The most known test are Kolmogorov-Smirnov,
Crámer-von Mises and Anderson-Darling tests.
They use different norms to quantify the differ-
ence between the empirical cdf Fn and the true
cdf FU(0,1)

.

CHAPTER 2. FULL PRESENTATION OF THE RNG TOOLS 26

• Kolmogorov-Smirnov statistic is

Kn =
√
n sup
x∈R

∣∣∣Fn(x)− FU(0,1)
(x)
∣∣∣ ,

• Crámer-von Mises statistic is

W 2
n = n

∫ +∞

−∞

(
Fn(x)− FU(0,1)

(x)
)2
dFU(0,1)

(x),

• and Anderson-Darling statistic is

A2
n = n

∫ +∞

−∞

(
Fn(x)− FU(0,1)

(x)
)2
dFU(0,1)

(x)

FU(0,1)
(x)(1− FU(0,1)

(x))
.

Those statistics can be evaluated empirically
thanks to the sorted sequence of ui’s. But we
will not detail any further those tests, since
according to L’Ecuyer & Simard (2007) they are
not powerful for random generation testing.

The gap test

The gap test investigates for special patterns in
the sequence (ui)1≤i≤n. We take a subset [l, u] ⊂
[0, 1] and compute the ’gap’ variables with

Gi =
{

1 if l ≤ Ui ≤ u
0 otherwise.

The probability p that Gi equals to 1 is just the
u − l (the Lebesgue measure of the subset). The
test computes the length of zero gaps. If we
denote by nj the number of zero gaps of length j.

The chi-squared statistic of a such test is given
by

S =
m∑
j=1

(nj − npj)2

npj
,

where pj = (1 − p)2pj is the probability that the
length of gaps equals to j; and m the max number
of lengths. In theory m equals to +∞, but in
pratice, it is a large integer. We fix m to be at
least ⌊

log(10−1)− 2 log(1− p)− log(n)
log(p)

⌋
,

in order to have lengths whose appearance prob-
abilitie is at least 0.1.

The order test

The order test looks for another kind of patterns.
We test a d-tuple, if its components are ordered
equiprobably. For example with d = 3, we should
have an equal number of vectors (ui, ui+1, ui+2)i
such that

• ui < ui+1 < ui+2,
• ui < ui+2 < ui+1,
• ui+1 < ui < ui+2,
• ui+1 < ui+2 < ui,
• ui+2 < ui < ui+1

• and ui+1 < ui+2 < ui.

For some d, we have d! possible orderings of
coordinates, which have the same probability to
appear 1

d! . The chi-squared statistic for the order
test for a sequence (ui)1≤i≤n is just

S =
d!∑
j=1

(nj −m 1
d!)

2

m 1
d!

,

where nj ’s are the counts for different orders and
m = n

d . Computing d! possible orderings has an
exponential cost, so in practive d is small.

The frequency test

The frequency test works on a serie of ordered
contiguous integers (J = [i1, . . . , il] ∩ Z). If we
denote by (ni)1≤i≤n the sample number of the set
I, the expected number of integers equals to j ∈ J
is

1
il − i1 + 1

× n,

which is independent of j. From this, we can
compute a chi-squared statistic

S =
l∑

j=1

(Card(ni = ij)−m)2

m
,

where m = n
d .

CHAPTER 2. FULL PRESENTATION OF THE RNG TOOLS 27

2.5.2 Tests based on multiple se-
quences

Under the i.i.d. hypothesis, a vector of output
values ui, . . . , ui+t−1 is uniformly distributed over
the unit hypercube [0, 1]t. Tests based on multiple
sequences partition the unit hypercube into cells
and compare the number of points in each cell
with the expected number.

The serial test

The most intuitive way to split the unit hypercube
[0, 1]t into k = dt subcubes. It is achieved by
splitting each dimension into d > 1 pieces. The
volume (i.e. a probability) of each cell is just 1

k .

The associated chi-square statistic is defined as

S =
m∑
j=1

(Nj − λ)2

λ
,

where Nj denotes the counts and λ = n
k their

expectation.

The collision test

The philosophy is still the same: we want to
detect some pathological behavior on the unit
hypercube [0, 1]t. A collision is defined as when
a point vi = (ui, . . . , ui+t−1) falls in a cell where
there are already points vj ’s. Let us note C the
number of collisions

The distribution of collision number C is given
by

P (C = c) =
n−c−1∏
i=0

k − i
k

1
kc

2S
n−c
n ,

where 2S
k
n denotes the Stirling number of the

second kind1 and c = 0, . . . , n− 1.

1they are defined by 2S
k
n = k × 2S

k
n−1 + 2S

k−1
n−1 and

2S
1
n = 2S

n
n = 1. For example go to wikipedia.

But we cannot use this formula for large n since
the Stirling number need O(n log(n)) time to be
computed. As L’Ecuyer et al. (2002) we use a
Gaussian approximation if λ = n

k >
1
32 and n ≥

28, a Poisson approximation if λ < 1
32 and the

exact formula otherwise.

The normal approximation assumes C follows
a normal distribution with mean m = n − k +
k
(
k−1
k

)n
and variance very complex (see L’Ecuyer

& Simard (2007)). Whereas the Poisson approxi-
mation assumes C follows a Poisson distribution
of parameter n2

2k .

The φ-divergence test

There exist generalizations of these tests where
we take a function of counts Nj , which we called
φ-divergence test. Let f be a real valued function.
The test statistic is given by

k−1∑
j=0

f(Nj).

We retrieve the collision test with f(x) = (x−1)+
and the serial test with f(x) = (x−λ)2

λ . Plenty of
statistics can be derived, for example if we want
to test the number of cells with at least b points,
f(x) = 11(x=b). For other statistics, see L’Ecuyer
et al. (2002).

The poker test

The poker test is a test where cells of the unit cube
[0, 1]t do not have the same volume. If we split
the unit cube into dt cells, then by regrouping cells
with left hand corner having the same number of
distinct coordinates we get the poker test. In a
more intuitive way, let us consider a hand of k
cards from k different cards. The probability to
have exactly c different cards is

P (C = c) =
1
kk

k!
(k − c)! 2S

c
k,

CHAPTER 2. FULL PRESENTATION OF THE RNG TOOLS 28

where C is the random number of different cards
and 2S

d
n the second-kind Stirling numbers. For a

demonstration, go to Knuth (2002).

2.6 Description of RNG test
functions

In this section, we will give usage examples of
RNG test functions, in a similar way as section 2.4
illustrates section 2.2 - two first sub-sections. The
last sub-section focuses on detecting a particular
RNG.

> par(mfrow = c(2, 1))
> hist(SFMT(10ˆ3), 100)
> hist(torus(10ˆ3), 100)

2.6.1 Test on one sequence of n num-
bers

Goodness of Fit tests are already imple-
mented in R with the function ks.test for
Kolmogorov-Smirnov test and in package adk
for Anderson-Darling test. In the following, we
will focus on one-sequence test implemented in
randtoolbox.

The gap test

The function gap.test implements the gap test
as described in sub-section 2.5.1. By default,
lower and upper bound are l = 0 and u = 0.5,
just as below.

> gap.test(runif(1000))

Gap test

chisq stat = 9.8, df = 10
, p-value = 0.46

Histogram of SFMT(10^3)

SFMT(10^3)
F

re
qu

en
cy

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
Histogram of torus(10^3)

torus(10^3)

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

(sample size : 1000)

length observed freq theoretical freq

1 119 125
2 59 62
3 35 31
4 14 16

CHAPTER 2. FULL PRESENTATION OF THE RNG TOOLS 29

5 9 7.8
6 2 3.9
7 1 2.0
8 1 0.98
9 1 0.49
10 0 0.24
11 1 0.12

If you want l = 1/3 and u = 2/3 with a SFMT
sequence, you just type

> gap.test(SFMT(1000), 1/3, 2/3)

The order test

The Order test is implemented in function
order.test for d-uples when d = 2, 3, 4, 5. A
typical call is as following

> order.test(runif(4000), d = 4)

Order test

chisq stat = 48, df = 23
, p-value = 0.0016

(sample size : 1000)

observed number 47 24 39 29 54 43
47 48 62 58 46 49 34 49 45 36 32 42
42 38 31 36 37 32

expected number 42

Let us notice that the sample length must be a
multiple of dimension d, see sub-section 2.5.1.

The frequency test

The frequency test described in sub-section 2.5.1
is just a basic equi-distribution test in [0, 1] of the
generator. We use a sequence integer to partition
the unit interval and test counts in each sub-
interval.

> freq.test(runif(1000), 1:4)

Frequency test

chisq stat = 6.6, df = 3
, p-value = 0.086

(sample size : 1000)

observed number 219 273 262 246

expected number 250

2.6.2 Tests based on multiple se-
quences

Let us study the serial test, the collision test and
the poker test.

The serial test

Defined in sub-section 2.5.2, the serial test focuses
on the equidistribution of random numbers in the
unit hypercube [0, 1]t. We split each dimension
of the unit cube in d equal pieces. Currently in
function serial.test, we implement t = 2 and
d fixed by the user.

> serial.test(runif(3000), 3)

Serial test

CHAPTER 2. FULL PRESENTATION OF THE RNG TOOLS 30

chisq stat = 3.9, df = 8
, p-value = 0.87

(sample size : 3000)

observed number 176 181 159 167
166 172 151 162 166

expected number 167

In newer version, we will add an argument t for
the dimension.

The collision test

The exact distribution of collision number costs
a lot of time when sample size and cell number
are large (see sub-section 2.5.2). With function
coll.test, we do not yet implement the normal
approximation.

The following example tests Mersenne-Twister
algorithm (default in R) and parameters implying
the use of the exact distribution (i.e. n < 28 and
λ > 1/32).

> coll.test(runif, 2ˆ7, 2ˆ10)

Collision test

chisq stat = 23, df = 15
, p-value = 0.09

exact distribution
(sample number : 1000/sample size : 128
/ cell number : 1024)

collision observed expected
number count count

1 1 2.3
2 8 10
3 16 29
4 48 62
5 101 102
6 145 138
7 145 156
8 172 151
9 114 126
10 97 93
11 78 61
12 42 36
13 20 19
14 7 9
15 5 3.9
16 1 1.5

When the cell number is far greater than the
sample length, we use the Poisson approximation
(i.e. λ < 1/32). For example with congruRand
generator we have

> coll.test(congruRand, 2ˆ8, 2ˆ14)

Collision test

chisq stat = 3.9, df = 8
, p-value = 0.87

Poisson approximation
(sample number : 1000/sample size : 256
/ cell number : 16384)

collision observed expected
number count count

0 129 135
1 287 271
2 259 271
3 180 180
4 95 90
5 32 36
6 15 12
7 2 3.4
8 1 0.86

CHAPTER 2. FULL PRESENTATION OF THE RNG TOOLS 31

The poker test

Finally the function poker.test implements
the poker test as described in sub-section 2.5.2.
We implement for any “card number” denoted by
k. A typical example follows

> poker.test(SFMT(10000))

Poker test

chisq stat = 2.5, df = 4
, p-value = 0.64

(sample size : 10000)

observed number 2 200 980 738 80

expected number 3.2 192 960 768 77

2.6.3 Hardness of detecting a differ-
ence from truly random numbers

Random number generators typically have an
internal memory of fixed size, whose content
is called the internal state. Since the number
of possible internal states is finite, the output
sequence is periodic. The length of this period
is an important parametr of the random number
generator. For example, Mersenne-Twister gen-
erator, which is the default in R, has its internal
state stored in 624 unsigned integers of 32 bits
each. So, the internal state consists of 19968 bits,
but only 19937 are used. The period length is
219937 − 1, which is a Mersenne prime.

Large period is not the only important parame-
ter of a generator. For a good generator, it is not
computationally easy to distinguish the output of
the generator from truly random numbers, if the
seed or the index in the sequence is not known.

Generators, which are good from this point of
view, are used for cryptographic purposes. These
generators are chosen so that there is no known
procedure, which could distinguish their output
from truly random numbers within practically
available computation time. For simulations, this
requirement is usually relaxed.

However, even for simulation purposes, consid-
ering the hardness of distinguishing the generated
numbers from truly random ones is a good
measure of the quality of the generator. In
particular, the well-known empirical tests of
random number generators such as Diehard1 or
TestU01 L’Ecuyer & Simard (2007) are based on
comparing statistics computed for the generator
with their values expected for truly random
numbers. Consequently, if a generator fails an
empirical test, then the output of the test provides
a way to distinguish the generator from the truly
random numbers.

Besides of general purpose empirical tests
constructed without the knowledge of a concrete
generator, there are tests specific to a given gen-
erator, which allow to distinguish this particular
generator from truly random numbers.

An example of a generator, whose output
may easily be distinguished from truly random
numbers, is the older version of Wichmann-Hill
from 1982. For this generator, we can even predict
the next number in the sequence, if we know
the last already generated one. Verifying such a
predicition is easy and it is, of course, not valid
for truly random numbers. Hence, we can easily
distinguish the output of the generator from truly
random numbers. An implementation of this test
in R derived from McCullough (2008) is as follows.

> wh.predict <- function(x) {
+ M1 <- 30269
+ M2 <- 30307

1The Marsaglia Random Number CDROM including
the Diehard Battery of Tests of Randomness, Research
Sponsored by the National Science Foundation (Grants
DMS-8807976 and DMS-9206972), copyright 1995 George
Marsaglia.

CHAPTER 2. FULL PRESENTATION OF THE RNG TOOLS 32

+ M3 <- 30323
+ y <- round(M1 * M2 * M3 * x)
+ s1 <- y%%M1
+ s2 <- y%%M2
+ s3 <- y%%M3
+ s1 <- (171 * 26478 * s1)%%M1
+ s2 <- (172 * 26070 * s2)%%M2
+ s3 <- (170 * 8037 * s3)%%M3
+ (s1/M1 + s2/M2 + s3/M3)%%1
+ }
> RNGkind("Wichmann-Hill")
> xnew <- runif(1)
> err <- 0
> for (i in 1:1000) {
+ xold <- xnew
+ xnew <- runif(1)
+ err <- max(err, abs(wh.predict(xold) -
+ xnew))
+ }
> print(err)

[1] 0

The printed error is 0 on some machines and
less than 5 · 10−16 on other machines. This is
clearly different from the error obtained for truly
random numbers, which is close to 1.

The requirement that the output of a random
number generator should not be distinguishable
from the truly random numbers by a simple
computation, is also directly related to the way,
how a generator is used. Typically, we use the
generated numbers as an input to a computation
and we expect that the distribution of the output
(for different seeds or for different starting indices
in the sequence) is the same as if the input
are truly random numbers. A failure of this
assumption implies that observing the output of
the computation allows to distinguish the output
from the generator from truly random numbers.
Hence, we want to use a generator, for which
we may expect that the calculations used in the
intended application cannot distinguish its output
from truly random numbers.

In this context, it has to be noted that many

of the currently used generators for simulations
can be distinguished from truly random numbers
using the arithmetic mod 2 applied to individual
bits of the output numbers. This is true for
Mersenne Twister, SFMT and also all WELL
generators. The basis for tolerating this is based
on two facts.

First, the arithmetic mod 2 and extracting
individual bits of real numbers is not directly used
in typical simulation problems and real valued
functions, which represent these operations are
extremely discontinuous and such functions also
do not typically occur in simulation problems.
Another reason is that we need to observe quite a
long history of the output to detect the difference
from true randomness. For example, for Mersenne
Twister, we need 624 consecutive numbers.

On the other hand, if we use a cryptographi-
cally strong pseudorandom number generator, we
may avoid a difference from truly random num-
bers under any known efficient procedure. Such
generators are typically slower than Mersenne
Twister type generators. The factor of slow
down may be, for example, 5. If the simulation
problem requires intensive computation besides
the generating random numbers, using slower, but
better, generator may imply only negligible slow
down of the computation as a whole.

2.7 Calling the functions from
other packages

In this section, we briefly present what to do if
you want to use this package in your package.
This section is mainly taken from package expm
available on R-forge.

Package authors can use facilities from rand-
toolbox in two ways:

• call the R level functions (e.g. torus) in R
code;

• if random number generators are needed in

CHAPTER 2. FULL PRESENTATION OF THE RNG TOOLS 33

C, call the routine torus,. . .

Using R level functions in a package simply
requires the following two import directives:

Imports: randtoolbox

in file DESCRIPTION and

import(randtoolbox)

in file NAMESPACE.

Accessing C level routines further requires to
prototype the function name and to retrieve
its pointer in the package initialization function
R init pkg, where pkg is the name of the
package.

For example if you want to use torus C
function, you need

void (*torus)(double *u, int nb, int dim,
int *prime, int ismixed, int usetime);

void R_init_pkg(DllInfo *dll)
{
torus = (void (*) (double, int, int,
int, int, int)) \
R_GetCCallable("randtoolbox", "torus");
}

See file randtoolbox.h to find headers of
RNGs. Examples of C calls to other functions
can be found in this package with the WELL RNG
functions.

The definitive reference for these matters re-
mains the Writing R Extensions manual, page
20 in sub-section “specifying imports exports”
and page 64 in sub-section “registering native
routines”.

Bibliography

Albrecher, H., Kainhofer, R. & Tichy, R. E.
(2003), ‘Simulation methods in ruin models
with non-linear dividend barriers’, Mathemat-
ics and Computers in Simulation 62, 277–287.
25

Antonov, I. & Saleev, V. (1979), ‘An economic
method of computing lp sequences’, USSR
Comp. Mathematics and Mathematical Physics
19 pp. 252–256. 14

Black, F. & Scholes, M. (1973), ‘The pricing of
options and corporate liabilities’, Journal of
Political Economy 81(3). 24

Bratley, P. & Fox, B. (1988), ‘Algorithm 659:
Implementing sobol’s quasi-random sequence
generators’, ACM Transactions on Mathemati-
cal Software 14(88-100). 14

Bratley, P., Fox, B. & Niederreiter, H. (1992),
‘Implementation and tests of low discrepancy
sequences’, ACM Transactions Mode; Comput.
Simul. 2(195-213). 15

Eddelbuettel, D. (2007), random: True random
numbers using random.org.
URL: http://www.random.org 6

Genz, A. (1982), ‘A lagrange extrapolation al-
gorithm for sequences of approximations to
multiple integrals’, SIAM Journal on scientific
computing 3, 160–172. 23

Hong, H. & Hickernell, F. (2001), Implementing
scrambled digital sequences. preprint. 15

Jäckel, P. (2002), Monte Carlo methods in finace,
John Wiley & Sons. 12

Joe, S. & Kuo, F. (1999), Remark on algorithm
659: Implementing sobol’s quasi-random se-
quence generator. Preprint. 15

Knuth, D. E. (2002), The Art of Computer Pro-
gramming: seminumerical algorithms, Vol. 2,
3rd edition edn, Massachusetts: Addison-
Wesley. 7, 8, 9, 17, 28

L’Ecuyer, P. (1990), ‘Random numbers for sim-
ulation’, Communications of the ACM 33, 85–
98. 7, 8

L’Ecuyer, P. & Simard, R. (2007), ‘Testu01: A
c library for empirical testing of random num-
ber generators’, ACM Trans. on Mathematical
Software 33(4), 22. 2, 25, 26, 27, 31

L’Ecuyer, P., Simard, R. & Wegenkittl, S.
(2002), ‘Sparse serial tests of uniformity for
random number generations’, SIAM Journal on
scientific computing 24(2), 652–668. 27

Marsaglia, G. (1994), ‘Some portable very-long-
period random number generators’, Computers
in Physics 8, 117–121. 17

Matsumoto, M. & Nishimura, T. (1998),
‘Mersenne twister: A 623-dimensionnally
equidistributed uniform pseudorandom number
generator’, ACM Trans. on Modelling and
Computer Simulation 8(1), 3–30. 8, 11

Matsumoto, M. & Saito, M. (2008), SIMD-
oriented Fast Mersenne Twister: a 128-
bit pseudorandom number generator, Monte
Carlo and Quasi-Monte Carlo Methods 2006,
Springer. 10, 11, 19

McCullough, B. D. (2008), ‘Microsoft excel’s
‘not the wichmann–hill’ random number gen-
erators’, Computational Statistics and Data
Analysis 52, 4587–4593. 16, 31

Namee, J. M. & Stenger, F. (1967), ‘Construction
of ful ly symmetric numerical integration for-
mulas’, Numerical Mathatematics 10, 327–344.
23

34

CHAPTER 2. FULL PRESENTATION OF THE RNG TOOLS 35

Niederreiter, H. (1978), ‘Quasi-monte carlo meth-
ods and pseudo-random numbers’, Bulletin of
the American Mathematical Society 84(6). 6,
11, 12, 13, 15, 16

Niederreiter, H. (1992), Random Number Gener-
ation and Quasi-Monte Carlo Methods, SIAM,
Philadelphia. 12

Panneton, F., L’Ecuyer, P. & Matsumoto, M.
(2006), ‘Improved long-period generators based
on linear recurrences modulo 2’, ACM Trans.
on Mathematical Software 32(1), 1–16. 9, 10

Papageorgiou, A. & Traub, J. (2000), ‘Faster
evaluation of multidimensional integrals’,
arXiv:physics/0011053v1 p. 10. 23

Park, S. K. & Miller, K. W. (1988), ‘Random
number generators: good ones are hard to
find.’, Association for Computing Machinery
31(10), 1192–2001. 6, 7, 9, 17, 18

Patterson, T. (1968), ‘The optimum addition of
points to quadrature formulae’, Mathematics of
Computation pp. 847–856. 23

Planchet, F., Thérond, P. & Jacquemin, J. (2005),
Modèles Financiers En Assurance, Economica.
18

Press, W., Teukolsky, W., William, T. & Brian,
P. (1996), Numerical Recipes in Fortran, Cam-
bridge University Press. 14

Ripley, B. D. (1990), Stochastic Simulation, John
Wiley & Sons. 2, 3

Rubinstein, M. & Reiner, E. (1991), ‘Unscram-
bling the binary code’, Risk Magazine 4(9). 24

Wichmann, B. A. & Hill, I. D. (1982), ‘Algorithm
as 183: An efficient and portable pseudo-
random number generator’, Applied Statistics
31, 188–190. 17

Wuertz, D., many others & see the SOURCE file
(2007a), fExoticOptions: Rmetrics - Exotic
Option Valuation.
URL: http://www.rmetrics.org 24

Wuertz, D., many others & see the SOURCE file
(2007b), fOptions: Rmetrics - Basics of Option
Valuation.
URL: http://www.rmetrics.org 24

	Quick introduction of randtoolbox
	The runif interface
	Dedicated functions

	Full presentation of the RNG tools
	Introduction
	Overview of random generation algoritms
	Pseudo random generation
	Quasi random generation

	Examples of distinguishing from truly random numbers
	Description of the random generation functions
	Pseudo random generation
	Quasi-random generation
	Visual comparisons
	Applications of QMC methods

	Random generation tests
	Test on one sequence of n numbers
	Tests based on multiple sequences

	Description of RNG test functions
	Test on one sequence of n numbers
	Tests based on multiple sequences
	Hardness of detecting a difference from truly random numbers

	Calling the functions from other packages

