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Abstract

The problem of creating recommendations given a large data base from directly elicited
ratings (e.g., ratings of 1 through 5 stars) is a popular research area which was lately boosted
by the Netflix Prize competition. While computing recommendations using these type of
data has direct application for example for large on-line retailers, there are many potential
applications for recommender systems where such data is not available. However, in many
cases there might be 0-1 rating data available or can be derived from other data sources
(e.g., purchase records, Web click data) which can be utilized. Although this type of data
differs significantly from directly elicited ratings, only very limited research is available for
0-1 data. This paper describes recommenderlab which provides the infrastructure to test and
develop recommender algorithms. Currently the focus is on recommender systems for 0-1
data, however in the future it can be extended to also the more thoroughly researched case of
directly elicited, real-valued rating data.

1 Introduction

Predicting ratings and creating personalized recommendations for products like books, songs
or movies online came a long way from the first system using social filtering created by Malone,
Grant, Turbak, Brobst, and Cohen (1987) more than 20 years ago. Today recommender
systems are an accepted technology used by market leaders in several industries (e.g., by
amazon.com, iTunes and Netflix). Recommender systems apply statistical and knowledge
discovery techniques to the problem of making product recommendations based on previously
recorded data˜(Sarwar, Karypis, Konstan, and Riedl, 2000). Such recommendations can help
to improve the conversion rate by helping the customer to find products she/he wants to
buy faster, promote cross-selling by suggesting additional products and can improve customer
loyalty through creating a value-added relationship˜(Schafer, Konstan, and Riedl, 2001). The
importance and the economic impact of research in this field is reflected by the Netflix Prize˜1,
a challenge to improve the predictions of Netflix’s movie recommender system by more than
10% in terms of the root mean square error. The grand price of 1 million dollar was just
awarded to the Belcore Pragmatic Chaos team.

The most widely used method to create recommendations is collaborative filtering. The
idea is that given rating data by many users for many items (e.g., 1 to 5 stars for movies
elicited directly from the users), one can predict a user’s rating for an item not known to her
or him˜(see, e.g., Goldberg, Nichols, Oki, and Terry, 1992) or create for a user a so called
top-N lists of recommended items˜(see, e.g., Deshpande and Karypis, 2004). For these type of
recommender systems, several projects were initiated to implement recommender algorithms
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(e.g., Apache Mahout/Taste˜2, Cofi˜3, RACOFI˜4, SUGGEST˜5, Vogoo PHP˜6).
Very limited research is available for situations where no large amount of detailed directly

elicited rating data is available. However, this is a common situation and occurs when users
do not want to directly reveal their preferences by rating an item (e.g., because it is to time
consuming). In this case preferences can only be inferred by analyzing usage behavior. For
example, we can easily record in a supermarket setting what items a customer purchases.
However, we do not know why other products were not purchased. The reason might be one
of the following.

� The customer does not need the product right now.

� The customer does not know about the product. Such a product is a good candidate for
recommendation.

� The customer does not like the product. Such a product should obviously not be rec-
ommended.

Mild and Reutterer (2003) and Lee, Jun, Lee, and Kim (2005) present and evaluate rec-
ommender algorithms for this setting. The same reasoning is true for recommending pages of
a web site given click-stream data. Here we only have information about which pages were
viewed but not why some pages were not viewed. This situation leads to binary data or more
exactly to 0-1 data where 1 means that we inferred that the user has a preference for an item
and 0 means that either the user does not like the item or does not know about it. Pan, Zhou,
Cao, Liu, Lukose, Scholz, and Yang (2008) call this type of data in the context of collaborative
filtering analogous to similar situations for classifiers one-class data since only the 1-class is
pure and contains only positive examples. The 0-class is a mixture of positive and negative
examples.

The R extension package˜recommenderlab provides a general infrastructure for collabora-
tive filtering. In this paper we will focus on the package’s capabilities for creating and testing
recommender algorithms which create top-N recommendation list for 0-1 data.

This paper is structured as follows. Section˜2 introduces collaborative filtering and applies
popular methods to the top-N recommendation problem on 0-1 data. In section˜3 we discuss
the evaluation of recommender algorithms. We introduce the infrastructure provided by
recommenderlab in section˜4. In section˜5 we illustrate the capabilities on the package to
create and evaluate recommender algorithms. We conclude with section˜6.

2 Collaborative Filtering for 0-1 Data

Collaborative filtering (CF) uses given rating data by many users for many items as the basis
for predicting missing ratings and/or for creating a top-N recommendation list for a given
user, called the active user. Formally, we have a set of users U = {u1, u2, . . . , um} and a set
of items I = {i1, i2, . . . , in}. Ratings are stored in a m × n rating matrix R = (rjk) where
each row represent a user uj with 1 ≥ j ≥ m and columns represent items ik with 1 ≥ k ≥ n.
rjk represents the rating of user uj for item ik. Typically only a small fraction of ratings are
known and for many cells in R the values are missing. Most published algorithms operate on
ratings on a specific scale (e.g., 1 to 5 (stars)) and estimated ratings are allowed to be within
an interval of matching range (e.g., [1, 5]). However in this paper we concentrate on the 0-1
case with rjk ∈ 0, 1 where we define:

rjk =

(
1 user uj is known to have a preference for item ik

0 otherwise.
(1)

Pan et˜al. (2008) call this type of data in the context of collaborative filtering analogous
to similar situations for classifiers one-class data since only the 1-class is pure and contains
only positive examples. The 0-class is a mixture of positive and negative examples. Two
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5http://glaros.dtc.umn.edu/gkhome/suggest/overview/
6http://www.vogoo-api.com/

2

http://lucene.apache.org/mahout/
http://www.nongnu.org/cofi/
http://racofi.elg.ca/
http://glaros.dtc.umn.edu/gkhome/suggest/overview/
http://www.vogoo-api.com/


strategies to deal with one-class data is to assume all missing ratings (zeros) are negative
examples or to assume that all missing ratings are unknown. Here will will follow mostly the
first strategy based on the assumption that users typically favor only a small fraction of the
items and thus most items with no rating will be indeed negative examples. However, it has
to be said that Pan et˜al. (2008) propose strategies which represent a trade-off between the
two extreme strategies based on wighted low rank approximations of the rating matrix and on
negative example sampling which might improve results across all recommender algorithms.
This is however outside the scope of this paper.

The aim of collaborative filtering is to create recommendations for a user called the active
user ua ∈ U . We define the set of items unknown to user ua as Ia = I \ {il ∈ I|ral = 1}.
The two typical tasks are to predict ratings for all items in Ia or to create a list of the best
N recommendations (i.e., a top-N recommendation list) for ua˜(Sarwar, Karypis, Konstan,
and Riedl, 2001). Creating a top-N lists can be seen as a second step after predicting ratings
for all unknown items in Ia and then taking the N items with the highest predicted ratings.
Typically we deal with a very large number of items with unknown ratings which makes first
predicting rating values for all of them computationally expensive. Some approaches (e.g.,
rule based approaches) can predict the top-N list directly without considering all unknown
items first.

Formally, predicting all missing ratings is calculating a complete row of the rating matrix
r̂a· where the missing values for items in Ia (zeros in the 0-1 case) are replaced by ratings
estimated from other data in R. The estimated ratings can either be in {0, 1} or in [0, 1],
where estimates closer to 1 indicate a stronger recommendation. The latter type of estimation
allows for ordering and thus is needed to be able to create a top-N list. A list of top-N
recommendations for a user ua is an partially ordered set TN = (X ,≥), where X ⊂ Ia and
|X | ≤ N (| · | denotes the cardinality of the set). Note that there may exist cases where top-N
lists contain less than N items. This can happen if |Ia| < N or if the CF algorithm is unable
to identify N items to recommend. The binary relation ≥ is defined as x ≥ y if and only if
r̂ax ≥ r̂ay for all x, y ∈ X . Furthermore we require that ∀x∈X∀y∈Ia r̂ax ≥ r̂ay to ensure that
the top-N list contains only the items with the highest estimated rating.

Collaborative filtering algorithms are typically divided into two groups, memory-based and
model-based algorithms˜(Breese, Heckerman, and Kadie, 1998). Memory-based algorithms
use the whole (or at least a large sample of the) user database to create recommendations.
The most prominent algorithm is user-based collaborative filtering. The disadvantages of
this approach is scalability since the whole user database has to be processed online for
creating recommendations. Model-based algorithms use the user database to learn a more
compact model (e.g, clusters with users of similar preferences) that is later used to create
recommendations.

In the following we will present well known memory and model-based collaborative filtering
algorithms and apply them to 0-1 data.

2.1 User-based Collaborative Filtering

User-based CF˜(Goldberg et˜al., 1992; Resnick, Iacovou, Suchak, Bergstrom, and Riedl, 1994;
Shardanand and Maes, 1995) is a memory-based algorithm which tries to mimics word-of-
mouth based on analysis of rating data. The assumption is that users with similar preferences
will rate products similarly. Thus missing ratings for a user can be predicted by first finding a
neighborhood of similar users and then aggregate the ratings of these users to form a prediction.

The neighborhood is defined in terms of similarity between users, either by taking a given
number of most similar users (k nearest neighbors) or all users within a given similarity
threshold. Popular similarity measures for CF are the Pearson correlation coefficient and the
Cosine similarity. These similarity measures are defined between two users ux and uy as

simPearson(x,y) =

P
i∈I(xi x̄)(yi ȳ)

(|I| − 1) sd(x) sd(y)

and
simCosine(x,y) =

x · y
‖x‖2‖y‖2

,

where x = rx· and y = ry· represent the users’ profile vectors. sd(·) is the standard deviation
and ‖ · ‖2 is the l2-norm. For calculating similarity using rating data only the dimensions
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Figure 1: User-based collaborative filtering.

(items) are used which were rated by both users. However, for 0-1 data that would lead to
the problem that the vectors x and y only contain ones and thus no useful measure can be
calculated.

If we assume that most zeroes are actually items that the user does not like, we can use
all items in the similarity calculation. However, this will produce significant errors for newer
users with very few ones. A similarity measure which only focuses on matching ones and thus
prevents the problem with zeroes is the Jaccard index :

simJaccard(X ,Y) =
|X ∩ Y|
|X ∪ Y| ,

where X and Y are the sets of the items with a 1 in user profiles ua and ub, respectively.
Now the neighborhood N ⊂ U can be selected by either a threshold on the similarity or by

taking the k nearest neighbors. Once the users in the neighborhood are found, their ratings
are aggregated to form the predicted rating for the active user. For real valued ratings, Breese
et˜al. (1998) suggest to aggregate the ratings for item ij as

r̂aj = r̄a + κ
X
i∈N

wai(rij − r̄i)

where r̄x is the mean of the ratings of user ux, wai is the weight for user ui and κ is a
normalizing factor to make the weights sum to 1. The weights can reflect the similarity
between the user and the active user. For 0-1 data we suggest, following Weiss and Indurkhya
(2001), to calculate the following score.

saj =
X
i∈N

wai rij

This score is not normalized but can be easily used to find the top-N items with the highest
score.

An example of the process of creating recommendations for 0-1 data by user-based CF is
shown in Figure˜1. To the left is the rating matrix R with 6 users and 8 items. The active
user ua we want to create recommendations for is shown at the bottom of the matrix. To
find the k-neighborhood (i.e., the k nearest neighbors) we calculate the similarity between the
active user and all other users in the database and then select the k users with the highest
similarity. To the right in Figure˜1 we see a 2-dimensional representation of the similarities
(users with higher similarity are closer) with the active user in the center. The k = 3 nearest
neighbors are selected and marked in the database to the left. To generate an aggregated
score, we use for the example a weight of 1 for all users. Thus the ones in the selected users
are just summed up. Then items known to the active user are removed and the N items with
the highest score (greater than zero) form the top-N recommendations. In the example in
Figure˜1 only two items are recommended.

The two main problems of user-based CF are that the whole user database has to be kept
in memory and that expensive similarity computation between the active user and all other
users in the database has to be performed.
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Figure 2: Item-based collaborative filtering

2.2 Item-based Collaborative Filtering

Item-based CF˜(Kitts, Freed, and Vrieze, 2000; Sarwar et˜al., 2001; Linden, Smith, and York,
2003; Deshpande and Karypis, 2004) is a model-based approach which produces recommenda-
tions based on the relationship between items inferred from the rating matrix. The assumption
behind this approach is that users will prefer items that are similar to the items they like.

The model-building step consists of calculating a similarity matrix containing all item-
to-item similarities using a given similarity measure. Popular are again Pearson correlation
and Cosine similarity. For 0-1 data again the Jaccard index can be used giving focus to
matching ones. For item-based CF, Deshpande and Karypis (2004) proposed a Conditional
probability-based similarity defined as:

simConditional(x, y) =
Freq(xy)

Freq(x)
= P̂ (y|x),

where x, y ∈ I are two items and Freq(·) is the number of users with the given items in their
profile. This similarity is in fact an estimate of the conditional probability to see item y in a
profile given that the profile contains items x. This similarity is equivalent to the confidence
measure used for association rules (see section˜2.3 below). A drawback of this similarity
measure is its sensitivity to the frequency of x with rare x producing high similarities. To
reduce the sensitivity, Deshpande and Karypis (2004) propose a normalized version of the
similarity measure:

simKarypis(x, y) =

P
∀ibi,x

bi,y

Freq(x)Freq(y)α

where B = (bi,j) is a normalized rating matrix where all rows sum up to 1. Freq(y)α reduces
the problem with rare x.

All pairwise similarities are stored in aN×N similarity matrix S, which is again normalized
such that rows sum up to 1. To reduce the model size to N × k with k � N , for each item
only a list of the k most similar items and their similarity values are stored˜(Sarwar et˜al.,
2001). This can improve the space and time complexity significantly by sacrificing some
recommendation quality.

Figure˜2 shows an example for N = 8 items. For the normalized similarity matrix S only
k = 3 entries are stored per row (the crossed out entries are discarded).

To make a recommendation based on the model only two steps are necessary:

1. Calculate a score for each item by adding the similarities with the active user’s items.

2. Remove the items of the active user and recommend the N items with the highest score.

In Figure˜2 we assume that the active user prefers items i1, i5 and i8. The rows corre-
sponding to these items are highlighted and the rows are added up. Now the sums for the
items preferred by the user are removed (crossed out in Figure˜2), leaving three items with a
score larger than zero which results in the top-N recommendation list i3, i6, i4.

Item-based CF are very efficient since the models (reduced similarity matrix) is relatively
small (N × k) and can be fully precomputed. Item-based CF is known to only produce
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slightly inferior results compared to user-based CF and higher order models which take the
joint distribution of sets of items into account are possible˜(Deshpande and Karypis, 2004).
Furthermore, item-based CF is successfully applied in large scale recommender systems (e.g.,
by Amazon.com).

2.3 Association Rules

Recommender systems based on association rules produce recommendations based on a de-
pendency model for items given by a set of association rules˜(Fu, Budzik, and Hammond,
2000; Mobasher, Dai, Luo, and Nakagawa, 2001; Geyer-Schulz, Hahsler, and Jahn, 2002; Lin,
Alvarez, and Ruiz, 2002; Demiriz, 2004). The binary profile matrix R is seen as a database
where each user is treated as a transaction that contains the subset of items in I with a rating
of 1. Hence transaction k is defined as Tk = {ij ∈ I|rjk = 1} and the whole transaction
data base is D = {T1, T2, . . . , TU} where U is the number of users. To build the dependency
model, a set of association rules R is mined from R. Association rules are rules of the form
X → Y where X ,Y ⊆ I and X ∩ Y = ∅. For the model we only use association rules with a
single item in the right-hand-side of the rule (|Y| = 1). To select a set of useful association
rules, thresholds on measures of significance and interestingness are used. Two widely applied
measures are:

support(X → Y) = support(X ∪ Y) = Freq(X ∪ Y)/|D|

confidence(X → Y) = support(X ∪ Y)/support(X ) = P̂ (Y|X )

Freq(X ) gives the number of transactions in the data base D that contains all items in X .
We now require support(X → Y) > s and confidence(X → Y) > c and also include a length

constraint |X ∪ Y| ≤ l. The set of rules R that satisfy these constraints form the dependency
model. Although finding all association rules given thresholds on support and confidence is
a hard problem (the model grows in the worse case exponential with the number of items),
algorithms that efficiently find all rules in most cases are available˜(e.g., Agrawal and Srikant,
1994; Zaki, 2000; Han, Pei, Yin, and Mao, 2004). Also model size can be controlled by l, s
and c.

To make a recommendation for an active user ua given the set of items Ta the user likes
and the set of association rules R (dependency model), the following steps are necessary:

1. Find all matching rules X → Y for which X ⊆ Ta in R.

2. Recommend N unique right-hand-sides (Y) of the matching rules with the highest con-
fidence (or another measure of interestingness).

The dependency model is very similar to item-based CF with conditional probability-based
similarity˜(Deshpande and Karypis, 2004). It can be fully precomputed and rules with more
than one items in the left-hand-side (X ), it incorporates higher order effects between more
than two items.

3 Evaluation of Top-N Recommender Algorithms
for 0-1 Data

Evaluation of recommender systems is an important topic but most evaluation efforts center on
recommender systems for non-binary rating data. A comprehensive review was presented by
Herlocker, Konstan, Terveen, and Riedl (2004). However, here we will discuss the evaluation
of top-N recommender algorithms for 0-1 data.

Typically, given a rating matrix R, recommender algorithms are evaluated by first parti-
tioning the users (rows) in R into two sets Utrain ∪ Utest = U . The rows of R corresponding to
the training users Utrain are used to learn the recommender model. Then each user ua ∈ Utest

is seen as an active user, however, before creating recommendations some items are withheld
from the profile rua· and it measured how well these removed items are predicted by the rec-
ommender algorithm in its top-N list. This type of evaluation does not take into account that
0 in the data also codes for items that are unknown to the user and could potentially be a good
recommendation. However, it is assumed that if a recommender algorithm performed better
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Table 1: 2x2 confusion matrix

actual / predicted negative positive
negative a b
positive c d

in predicting the withheld items, it will also perform better in finding good recommendations
for unknown items.

To determine how to split U into Utrain and Utest we can use several approaches˜(Kohavi,
1995).

� Splitting: We can randomly assign a predefined proportion of the users to the training
set and all others to the test set.

� Bootstrap sampling: We can sample from Utest with replacement to create the training
set and then use the users not in the training set as the test set. This procedure has
the advantage that for smaller data sets we can create larger training sets and still have
users left for testing.

� k-fold cross-validation: Here we split U into k sets (called folds) of approximately
the same size. Then we evaluate k times, always using one fold for testing and all other
folds for leaning. The k results can be averaged. This approach makes sure that each
user is at least once in the test set and the averaging produces more robust results and
error estimates.

The items withheld in the test data are randomly chosen. Breese et˜al. (1998) introduced
the four experimental protocols called Given 2, Given 5, Given 10 and All but 1. For the Given
x protocols for each user x randomly chosen items are given to the recommender algorithm
and the remaining items are withheld for evaluation. For All but x the algorithm gets all but
x withheld items.

The prediction results for all test users Utest can be aggregated into a so called confusion
matrix depicted in table˜1 (see Kohavi and Provost (1998)) which corresponds exactly to the
outcomes of a classical statistical experiment. The confusion matrix shows how many of the
items recommended in the top-N lists (column predicted positive; d+ b) were withheld items
and thus correct recommendations (cell d) and how many where potentially incorrect (cell b).
The matrix also shows how many of the not recommended items (column predicted negative;
a+ c) should have actually been recommended since they represent withheld items (cell c).

From the confusion matrix several performance measures can be derived. For the data
mining task of a recommender system the performance of an algorithm depends on its ability
to learn significant patterns in the data set. Performance measures used to evaluate these
algorithms have their root in machine learning. A commonly used measure is accuracy, the
fraction of correct recommendations to total possible recommendations.

Accuracy =
correct recommendations

total possible recommendations
=

a+ d

a+ b+ c+ d
(2)

A common error measure is the mean absolute error (MAE, also called mean absolute
deviation or MAD).

MAE =
1

N

NX
i=1

|εi| =
b+ c

a+ b+ c+ d
, (3)

where N = a+b+c+d is the total number of items which can be recommended and |εi| is the
absolute error of each item. Since we deal with 0-1 data, |εi| can only be zero (in cells a and d
in the confusion matrix) or one (in cells b and c). For evaluation recommender algorithms for
rating data, the root mean square error is often used. For 0-1 data it reduces to the square
root of MAE.

Recommender systems help to find items of interest from the set of all available items.
This can be seen as a retrieval task known from information retrieval. Therefore, standard
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Figure 3: UML class diagram for package˜recommenderlab˜(Fowler, 2004).

information retrieval performance measures are frequently used to evaluate recommender per-
formance. Precision and recall are the best known measures used in information retrieval
(Salton and McGill, 1983; van Rijsbergen, 1979).

Precision =
correctly recommended items

total recommended items
=

d

b+ d
(4)

Recall =
correctly recommended items

total useful recommendations
=

d

c+ d
(5)

Often the number of total useful recommendations needed for recall is unknown since the
whole collection would have to be inspected. However, instead of the actual total useful
recommendations often the total number of known useful recommendations is used. Precision
and recall are conflicting properties, high precision means low recall and vice versa. To find
an optimal trade-off between precision and recall a single-valued measure like the E-measure
(van Rijsbergen, 1979) can be used. The parameter α controls the trade-off between precision
and recall.

E-measure =
1

α(1/Precision) + (1− α)(1/Recall)
(6)

A popular single-valued measure is the F-measure. It is defined as the harmonic mean of
precision and recall.

F-measure =
2 Precision Recall

Precision + Recall
=

2

1/Precision + 1/Recall
(7)

It is a special case of the E-measure with α = .5 which places the same weight on both,
precision and recall. In the recommender evaluation literature the F-measure is often referred
to as the measure F1.

Another method used in the literature to compare two classifiers at different parameter
settings is the Receiver Operating Characteristic (ROC). The method was developed for signal
detection and goes back to the Swets model (van Rijsbergen, 1979). The ROC-curve is a plot
of the system’s probability of detection (also called sensitivity or true positive rate TPR which
is equivalent to recall as defined in formula 5) by the probability of false alarm (also called false
positive rate FPR or 1−specificity , where specificity = a

a+b
) with regard to model parameters.

A possible way to compare the efficiency of two systems is by comparing the size of the area
under the ROC-curve, where a bigger area indicates better performance.

4 Recommenderlab Infrastructure

recommenderlab is implemented using formal classes in the S4 class system. Figure˜3 shows
the main classes and their relationships.

The package uses the abstract ratingMatrix to provide a common interface for rating data.
ratingMatrix implements many methods typically available for matrix-like objects. For ex-
ample, dim(), dimnames(), colCounts(), rowCounts(), colMeans(), rowMeans(), colSums()
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and rowSums(). Additionally sample() can be used to sample from users (rows) and image()

produces an image plot.
For ratingMatrix we provide two concrete implementations realRatingMatrix and

binaryRatingMatrix to represent the rating matrix R. binaryRatingMatrix implements a 0-1
rating matrix using the implementation of itemMatrix defined in package˜arules. itemMatrix
stores only the ones and internally uses a sparse representation from package Matrix. Al-
though the focus of the package and this paper is on 0-1 data, for completeness the package
contains class realRatingMatrix which implements a rating matrix with real valued ratings
stored in sparse format defined in package Matrix. With this class the infrastructure of rec-
ommenderlab can be easily extended to non-binary data.

Class Recommender implements the data structure to store recommendation models. The
creator method

Recommender(data, method, parameter = NULL)

takes data as a ratingMatrix, a method name and some optional parameters for the method
and returns a Recommender object. Once we have a recommender object, we can predict top-
N recommendations for active users using

predict(object, newdata, n=10, ...).

object is the recommender object, newdata is the data for the active users and n is the
number of recommended items N in each top-N list. predict() will return a list of objects
of class topNList, one for each of the active users in newdata.

The actual implementations for the recommendation algorithms are managed using the
registry mechanism provided by package registry. Generally, the registry mechanism is hidden
from the user and the creator function Recommender() uses it in the background to map a
recommender method name to its implementation. However, the registry can be directly
queried and new recommender algorithms can be added by the user. We will give and example
for this feature in the examples section of this paper.

To evaluate recommender algorithms package˜recommenderlab provides the infrastructure
to create and maintain evaluation schemes stored as an object of class evaluationScheme from
rating data. The creator function

evaluationScheme(data, method="split", train=0.9, k=10, given=3)

creates the evaluation scheme from a data set using a method (e.g., simple split, boot-
strap sampling, k-fold cross validation) with item withholding (parameter given). The func-
tion evaluate() is then used to evaluate several recommender algorithms using an eval-
uation scheme resulting in a evaluation result list (class˜evaluationResultList) with one en-
try (class˜evaluationResult) per algorithm. Each object of evaluationResult contains one or
several object of confusionMatrix depending on the number of evaluations specified in the
evaluationScheme (e.g., k for k-fold cross validation). With this infrastructure several recom-
mender algorithms can be compared on a data set with a single line of code.

In the following, we will illustrate the usage of recommenderlab with several examples.

5 Examples

5.1 A first session

This fist example shows how to train and use a recommender algorithm. For the example
we use the data set MSWeb which is included in recommenderlab. The data set contains
anonymous web click-stream data from www.microsoft.com for 38,000 anonymous, randomly
selected users. For each user, the data lists all the areas of the web site (called Vroots; e.g.,
MS Office, Windows NT Server) that the user visited in a one week time frame (Breese et˜al.,
1998).

We first load the package and the data set and then select for the example only users who
visited more than 5 areas. Since the areas/items are columns in the 0-1 rating matrix, we
select all rows/users with a row count larger than 5.
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Figure 4: Distribution of the number of items per user (rowCounts).

R> library("recommenderlab")

R> data(MSWeb)

R> MSWeb5 <- MSWeb[rowCounts(MSWeb) > 5, ]

R> MSWeb5

4151 x 285 rating matrix of class ‘binaryRatingMatrix’

with 33875 ratings.

The used data set contains 4151 users with more than 5 items and 285 items. To un-
derstand the distribution of the number of areas/items each user visited, we can produce a
histogram.

R> hist(rowCounts(MSWeb5), breaks = 20)

Since the rows in the rating matrix represent the users, the histogram in Figure˜4 shows
the distribution of the users with 6, 7, . . . items (note that we required users to have at least
5 items). On average a user has 8.16 items in her/his profile.

The profile of users can be inspected with LIST(). For example, we can see what areas
the first two users visited.

R> LIST(MSWeb5[1:2])

$`10`

[1] "regwiz" "Visual Basic" "MS Office Development"

[4] "Outlook Development" "Visual Basic Support" "Office Free Stuff"

$`19`

[1] "End User Produced View" "Knowledge Base"

[3] "Microsoft.com Search" "Free Downloads"

[5] "Products" "isapi"

[7] "Clip Gallery Live" "Windows NT Server"

[9] "MS Office" "Games"

[11] "MS Store Logo Merchandise"

It is also interesting to study the popularity of items. To get a first idea, we use an image
plot for 200 randomly chosen users.

R> image(sample(MSWeb5, 200))

Figure˜5 shows that some items are by far more popular than others. We can further
look at the distribution of how many user profiles contain an item. This is done by plotting
a histogram for the column sums of the rating matrix.

R> hist(colCounts(MSWeb5), breaks = 25)

10



Dimensions: 200 x 285

Items (Columns)

U
se

rs
 (

R
ow

s)

50

100

150

50 100 150 200 250

Figure 5: Image plot of 200 randomly chosen users in the rating matrix R. Dark squares represent
1s in the matrix.
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The histogram is shown in Figure˜6. We see a typical distribution where the number of
items falls quickly with popularity and only very few items are extremely popular (tail of the
distribution).

A recommender is created using the creator function recommender(). Here we create a
simple recommender which generates recommendations solely on the popularity of items (the
number of users who have the item in their profile). We create a recommender using the first
1000 users in the data set.

R> r <- Recommender(MSWeb5[1:1000], method = "POPULAR")

R> r

Recommender of type ‘POPULAR’ for ‘binaryRatingMatrix’ learned using 1000 users.

The model can be obtained from a recommender using getModel().

R> getModel(r)

$description

[1] "Order of items by popularity"

$popOrder

[1] 9 19 18 5 35 2 10 4 27 36 42 41 38 31 39 21 26

[18] 33 1 37 52 11 32 70 15 74 28 3 53 78 47 25 76 58

[35] 67 60 130 285 64 65 43 49 119 17 8 54 22 46 40 81 88

[52] 12 23 68 134 87 57 82 44 72 77 48 56 69 75 61 89 7

[69] 55 59 118 51 113 125 137 71 85 95 136 20 29 63 123 124 96

[86] 62 84 105 167 83 90 157 168 66 93 150 79 99 135 146 154 24

[103] 45 100 189 14 16 127 143 204 50 92 109 13 30 80 97 102 108

[120] 114 131 140 141 148 158 159 190 91 110 112 121 133 144 156 164 169

[137] 183 147 160 177 188 201 203 94 98 103 126 152 155 162 176 181 184

[154] 193 197 205 206 218 34 86 101 111 166 170 172 174 185 200 211 216

[171] 227 6 104 106 115 132 139 151 161 163 165 179 182 187 192 194 198

[188] 202 207 215 219 220 222 223 226 230 231 234 241 107 116 120 128 129

[205] 138 145 149 153 171 173 178 186 191 195 196 199 208 210 212 221 225

[222] 228 236 237 238 240 244 73 117 122 142 175 180 209 213 214 217 224

[239] 229 232 233 235 239 242 243 245 246 247 248 249 250 251 252 253 254

[256] 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271

[273] 272 273 274 275 276 277 278 279 280 281 282 283 284

In this case the model is just a short description and a simple vector called popOrder

containing the order of items according to popularity in the data set.
Recommendations are generated by predict() in the same way predict is used in R

for other types of models. The result are recommendations in the form of an object of
class˜TopNList. Here we create top-5 recommendation lists for two users who were not used
to learn the model.

R> recom <- predict(r, MSWeb5[1001:1002], n = 5)

R> recom

Recommendations as ‘topNList’ with n = 5 for 2 users.

The result are two ordered top-N recommendation lists, one for each user. The recom-
mended items can be inspected using LIST().

R> LIST(recom)

[[1]]

[1] "Free Downloads" "Products" "Internet Explorer"

[4] "Support Desktop" "Knowledge Base"

[[2]]

[1] "isapi"

[2] "Microsoft.com Search"

[3] "Support Desktop"
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[4] "Knowledge Base"

[5] "Internet Site Construction for Developers"

Since the top-N lists are ordered, we can extract sublists of the best items in the top-N .
For example, we can get the best 3 recommendations for each list using bestN().

R> recom3 <- bestN(recom, n = 3)

R> recom3

Recommendations as ‘topNList’ with n = 3 for 2 users.

R> LIST(recom3)

[[1]]

[1] "Free Downloads" "Products" "Internet Explorer"

[[2]]

[1] "isapi" "Microsoft.com Search" "Support Desktop"

Next we will look at the evaluation of recommender algorithms.

5.2 Evaluation of a recommender algorithm

recommenderlab implements several standard evaluation methods for recommender systems.
Evaluation starts with creating an evaluation scheme that determines what and how data is
used for training and evaluation. Here we create a 4-fold cross validation scheme with the the
Given-3 protocol, i.e., for the test users all but three randomly selected items are withheld
for evaluation.

R> scheme <- evaluationScheme(MSWeb5, method = "cross", k = 4,

+ given = 3)

R> scheme

Evaluation scheme with 3 items given

Method: ‘cross-validation’ with 4 runs (training set proportion: NA)

Data set: 4151 x 285 rating matrix of class ‘binaryRatingMatrix’

with 33875 ratings.

Next we use the created evaluation scheme to evaluate the recommender method popular.
We evaluate top-1, top-3, top-5, top-10, top-15 and top-20 recommendation lists.

R> results <- evaluate(scheme, method = "POPULAR", n = c(1,

+ 3, 5, 10, 15, 20))

POPULAR run 1 [1.536 s] 2 [1.656 s] 3 [1.5 s] 4 [1.505 s]

R> results

Evaluation results for 4 runs using method ‘POPULAR’.

The result is an object of class˜EvaluationResult which contains several confusion matrices.
getConfusionMatrix() will return the confusion matrices for the 4 runs (we used 4-fold cross
evaluation) as a list. In the following we look at the first element of the list which represents
the first of the 4 runs.

R> getConfusionMatrix(results)[[1]]

n TP FP FN TN PP recall precision FPR TPR

1 1.568 2.081 17.298 264.1 3.649 0.08313 0.4298 0.007818 0.08313

3 4.130 6.818 14.737 259.3 10.947 0.21890 0.3772 0.025617 0.21890

5 6.432 11.814 12.435 254.3 18.246 0.34090 0.3525 0.044391 0.34090

10 9.512 26.979 9.354 239.2 36.491 0.50418 0.2607 0.101374 0.50418

15 11.116 43.621 7.751 222.5 54.737 0.58918 0.2031 0.163907 0.58918

20 12.102 60.881 6.765 205.3 72.982 0.64144 0.1658 0.228760 0.64144
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Figure 7: ROC curve for recommender method POPULAR.

For the first run we have 6 confusion matrices represented by rows, one for each of the
six different top-N lists we used for evaluation. n is the number of recommendations per list.
TP, FP, FN and TN are the entries for true positives, false positives, false negatives and true
negatives in the confusion matrix. The remaining columns contain precomputed performance
measures. The average for all runs can be obtained from the evaluation results directly using
avg().

R> avg(results)

n TP FP FN TN PP recall precision FPR TPR

1 1.660 1.989 17.161 264.2 3.649 0.08818 0.4548 0.007474 0.08818

3 4.268 6.680 14.553 259.5 10.947 0.22674 0.3898 0.025095 0.22674

5 6.595 11.651 12.225 254.5 18.246 0.35038 0.3614 0.043770 0.35038

10 9.583 26.908 9.237 239.3 36.491 0.50920 0.2626 0.101089 0.50920

15 11.111 43.626 7.710 222.6 54.737 0.59033 0.2030 0.163898 0.59033

20 12.138 60.845 6.682 205.3 72.982 0.64492 0.1663 0.228585 0.64492

Evaluation results can be plotted using plot(). The default plot is the ROC curve which
plots the true positive rate (TPR) against the false positive rate (FPR).

R> plot(results, annotate = TRUE)

For the plot where we annotated the curve with the size of the top-N list is shown in
Figure˜7. By using "prec/rec" as the second argument, a precision-recall plot is produced
(see Figure˜8).

R> plot(results, "prec/rec", annotate = TRUE)

5.3 Comparing recommender algorithms

The comparison of several recommender algorithms is one of the main functions of recom-
menderlab. For comparison also evaluate() is used. The only change is to use evaluate()

with a list of algorithms together with their parameters instead of a single method name. In
the following we use the evaluation scheme created above to compare the five recommender
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Figure 8: Precision-recall plot for method POPULAR.

algorithms: random items, popular items, user-based CF, item-based CF, and association rule
based recommendations. Note that when running the following code, the CF based algorithms
are very slow.

R> algorithms <- list(`random items` = list(name = "RANDOM",

+ param = NULL), `popular items` = list(name = "POPULAR",

+ param = NULL), `user-based CF` = list(name = "UBCF",

+ param = list(method = "Jaccard", nn = 50)), `item-based CF` = list(name = "IBCF",

+ param = list(method = "Jaccard", k = 50)), `association rules` = list(name = "AR",

+ param = list(supp = 0.001, conf = 0.2, maxlen = 2)))

R> results <- evaluate(scheme, algorithms, n = c(1, 3, 5, 10,

+ 15, 20))

The result is an object of class˜evaluationResultList for the five recommender algorithms.

R> results

List of evaluation results for 5 recommenders:

Evaluation results for 4 runs using method ‘RANDOM’.

Evaluation results for 4 runs using method ‘POPULAR’.

Evaluation results for 4 runs using method ‘UBCF’.

Evaluation results for 4 runs using method ‘IBCF’.

Evaluation results for 4 runs using method ‘AR’.

Individual results can be accessed by list subsetting using an index or the name specified
when calling evaluate().

R> names(results)

[1] "random items" "popular items" "user-based CF"

[4] "item-based CF" "association rules"

R> results[["association rules"]]

Evaluation results for 4 runs using method ‘AR’.
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Figure 9: Comparison of ROC curves for several recommender methods for the given-3 evaluation
scheme.

Again plot() can be used to create ROC and precision-recall plots (see Figures˜9 and
10). Plot accepts most of the usual graphical parameters like pch, type, lty, etc. In addition
annotate can be used to annotate the points on selected curves with the list length.

R> plot(results, annotate = c(1, 3), legend = "right")

R> plot(results, "prec/rec", annotate = 3)

For this data set and the given evaluation scheme the user-based and item-based CF
methods clearly outperform all other methods. In Figure˜9 we see that they dominate the
other method since for each length of top-N list they provide a better combination of TPR
and FPR.

For comparison we will check how the algorithms compare given less information using
instead of a given-3 a given-1 scheme.

R> scheme1 <- evaluationScheme(MSWeb5, method = "cross", k = 4,

+ given = 1)

R> scheme1

Evaluation scheme with 1 items given

Method: ‘cross-validation’ with 4 runs (training set proportion: NA)

Data set: 4151 x 285 rating matrix of class ‘binaryRatingMatrix’

with 33875 ratings.

R> results1 <- evaluate(scheme1, algorithms, n = c(1, 3, 5,

+ 10, 15, 20))

R> plot(results1, annotate = c(1, 3), legend = "right")

From Figure˜11 we see that given less information, the performance of item-based CF
suffers the most and the simple popularity based recommender performs almost a well as
user-based CF and association rules.

Similar to the examples presented here, it is easy to compare different recommender algo-
rithms for different data sets or to compare different algorithm settings (e.g., the influence of
neighborhood formation using different distance measures or different neighborhood sizes).
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Figure 10: Comparison of precision-recall curves for several recommender methods for the given-3
evaluation scheme.
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Table 2: Defining and registering a new recommender algorithm.

1 ## always recommends the top-N popular items (without known items)
2 BIN_POPULAR <- function(data, parameter = NULL) {
3

4 model <- list(
5 description = "Order of items by popularity",
6 popOrder = order(colCounts(data), decreasing=TRUE)
7 )
8

9 predict <- function(model, newdata, n=10) {
10 n <- as.integer(n)
11

12 ## remove known items and take highest
13 reclist <- lapply(LIST(newdata, decode= FALSE),
14 function(x) head(model$popOrder[!(model$popOrder %in% x)], n))
15

16 new("topNList", items = reclist, itemLabels = colnames(newdata), n = n)
17 }
18

19 ## construct recommender object
20 new("Recommender", method = "POPULAR", dataType = "binaryRatingMatrix",
21 ntrain = nrow(data), model = model, predict = predict)
22 }
23

24 ## register recommender
25 recommenderRegistry$set_entry(
26 method="POPULAR", dataType = "binaryRatingMatrix", fun=BIN_POPULAR,
27 description="Recommender based on item popularity (binary data)."
28 )

5.4 Implementing a new recommender algorithm

Adding a new recommender algorithm to recommenderlab is straight forward since it uses
a registry mechanism to manage the algorithms. To implement the actual recommender
algorithm we need to implement a creator function which takes a training data set, trains
a model and provides a predict function which uses the model to create recommendations
for new data. The model and the predict function are both encapsulated in an object of
class˜Recommender.

For example the creator function in Table˜2 is called BIN_POPULAR(). It uses the (training)
data to create a model which is a simple list (lines 4–7 in Table˜2). In this case the model is
just a list of all items sorted in decreasing order of popularity. The second part (lines 9–22) is
the predict function which takes the model, new data and the number of items of the desired
top-N list as its arguments. Predict used the model to compute recommendations for each
user in the new data and encodes them as an object of class˜topNList (line 16). Finally, the
trained model and the predict function are returned as an object of class˜Recommender (lines
20–21). Now all that needs to be done is to register the creator function. In this case it is
called POPULAR and applies to binary rating data (lines 25–28).

To create a new recommender algorithm the code in Table˜2 can be copied. Then lines 5,
6, 20, 26 and 27 need to be edited to reflect the new method name and description. Line 6
needs to be replaced by the new model. More complicated models might use several entries
in the list. Finally, lines 12–14 need to be replaced by the recommendation code.
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6 Conclusion

Being able to use automated recommender systems offers a big advantage for online retailers
and for many other applications. But often no extensive data base of rating data is avail-
able and it makes sense to think about using 0-1 data, which is in many cases easier to
obtain, instead. Unfortunately there is only limited research on collaborative filtering based
recommender systems using 0-1 data available.

In this paper we described the R extension package˜recommenderlab which is especially
geared towards developing and testing recommender algorithms for 0-1 data. The package
allows to create evaluation schemes following accepted methods and then use them to evaluate
and compare recommender algorithms. Adding new recommender algorithms to the package
is facilitates using a registry to manage the algorithms.

recommenderlab currently includes several algorithms for 0-1 data, however, the infrastruc-
ture is flexible enough to also extend to the more conventional non-binary rating data and its
algorithms. In the future we will add more and more of these algorithms to the package and
we hope that some algorithms will also be contributed by other researchers.
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