
Extract data from an html document

with CSS package

François Guillem

May 24, 2013

Many data are available on internet bat they often are encapsulated in html
pages and their extraction is difficult. In R, you can use the package XML to
perform this extraction but it is quite tedious.

Package CSS provides wrapper functions that facilitate extraction of data
from html document : these functions behave like the one in package XML, but
instead of using xpath query, they use CSS paths to select elements ; moreover
some functions facilitate extraction of specific information like numbers or urls.

What is an html document ?

An html document is a text document with a special structure that look like
this :

<html>

<head></head>

<body>

<h1> Title of the page </h1>

<div>

Some text.

<a>Some link.

</div>

<div>

<div>Some other text.</div>

</div>

</body>

</html>

It composed of a set of elements that contain text and or other elements. An
element has the following form : ”<XXX> </XXX>” where ”XXX” is the
name of the element.

An html element can have attributes that are defined like this :

1

<XXX attr1="V1" attr2="V2"> ... </XXX>

In html files, there are two attributes that appear very often and that are
very useful for information extraction : the ”id” is a unique name that identify
the element in the document and the ”class”. Two elements cannot have the
same ”id” in a document, but they can have the same class. This is often the
case when they have the same role and contain the same kind of information.

CSS selectors

In order to extract information from an html document, we need a way to in-
dicate were the information is located in the document. To do so we will use
what is called ”CSS selectors”. Here are some examples :

XXX select all “XXX” elements

#III select the element which id is “III”

.CCC select all elements with class “CCC”

XXX#III select the “XXX” element with id “III”

XXX.CCC select all ”XXX” elements with class “CCC”

.CCC.DDD select all elements with class “CCC” and “DDD”

XXX>YYY select all “YYY” elements contained in “XXX” elements

XXX YYY select all “YYY” elements which have an “XXX” ancestor

Getting started with CSS package

First let’s create a fake html page.

doc <- "<html>

<head></head>

<body>

<div id='player1' class='player'>
Mike
10
Complete profile

</div>

<div id='player2' class='player'>
Stan
Complete profile

</div>

<div id='player3' class='player'>
Bruce
21
Complete profile

</div>

</body>

2

</html>"

The document contains information about three players. Information for
each player is contained in a div of class ”player” which contains the name of
the player, a link to his profile and eventually its level. Before extracting this
information, one need to parse the document with the function ”htmlParse”:

library(CSS)

doc <- htmlParse(doc)

To extract information, we need to use the function ”cssApply” and specify
which elements we want to select and which function to use to perform the
extraction. For instance, assume we want to know the name of the player. It
is contained in an element ”span” of class”name” which is contained in a div of
class ”player”. So we can extract the names with the following command :

names <- cssApply(doc, ".player>.name", cssCharacter)

Now let’s try to get the links to their profiles. they are in ”a” elements. Since
we want urls, we use ”cssLink” instead of ”cssCharacter”.

urls <- cssApply(doc, ".player>a", cssLink)

Finally, to get the level of players, we use the following command :

levels <- cssApply(doc, ".player>.level", cssNumeric)

But, here the level is missing for the second player is missing, so the variable
we just created contains only two values, but we would have prefered to have a
vector with three values, the second one being a NA value. To do so, we need
to use the function ”cssApplyInNodeSet”.

This function takes as input two CSS paths : the first one is the path of
the elements that may contain the element containing the information we want
(here ”.player”), the second one is the relative path of the element containing
the information (here ”.level”) :

levels <- cssApplyInNodeSet(doc, ".player", ".level", cssNumeric)

Finally, we can create a table containing the data we extracted :

data <- data.frame(Name = names, Level = unlist(levels), Profile = urls)

And here is the result :

> data

Name Level Profile

1 Mike 10 http://someurl.com

2 Stan NA http://someurl2.com

3 Bruce 21 http://someurl3.com

3

