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Abstract

Methods for unsupervised clustering is an important part of the statistical toolbox in
numerous scientific disciplines. Tewari, Giering, and Raghunathan (2011) proposed to use
so-called Gaussian Mixture Copula Models (GMCM) for general unsupervised clustering.
Li, Brown, Huang, and Bickel (2011) independently discussed a special case of these
GMCMs as a novel approach to meta-analysis in high-dimensional settings. GMCMs have
attractive properties which make them highly flexible and therefore interesting alternatives
to well-established methods. However, parameter estimation is hard because of intrinsic
identifiability issues and intractable likelihood functions. Both aforementioned papers
discuss similar expectation-maximization-like (EM) algorithms as their pseudo maximum
likelihood estimation procedure. We present and discuss an improved implementation
in R of both classes of GMCMs along with various alternative optimization routines to
the EM algorithm. The software is freely available through the accompanying R package
GMCM. The implementation is fast, general, and optimized for very large numbers of
observations. We demonstrate the use of GMCM through different applications.

Keywords: GMCM, unsupervised clustering, high-dimensional experiments, meta-analysis,
reproducibility, evidence aggregation, copulas, p-value combination, idr, Rcpp, R, C++.

1. Introduction

Unsupervised cluster analysis is an important discipline in many fields of science and engi-
neering for detection of clusters of data with similar properties. Gaussian mixture models
(GMM) is perhaps the most widely used method for unsupervised clustering of continuous
data. However, the assumption of jointly normally distributed clusters in GMMs is often
violated. Tewari et al. (2011) presented the semi-parametric class of Gaussian mixture cop-
ula models (GMCM) for general unsupervised clustering and highlighted them as a flexible
alternative to GMMs when obvious non-normally distributed clusters are present. The attrac-
tiveness of the GMCMs is predominantly due to an invariance under all monotone increasing
marginal transformations of the variables. This scale invariance of the variables stems from
the rank-based nature of copula models and make the GMCMs highly versatile.

The GMCMs have found some success in applications after Li et al. (2011) independently
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proposed using a special-case for a non-standard meta-analysis methodology named repro-
ducibility analysis. Their method have been adopted by the ENCODE project (Bernstein,
Birney, Dunham, Green, Gunter, and Snyder 2012, p. 58; The Encode Consortium 2011, p. 15)
and applied on ChIP-sequencing data. The meta-analysis approach with GMCMs works by
clustering genes or features that agree on statistical evidence and those that do not. In other
words, the features are clustered into a reproducible and an irreproducible group. The flexi-
bility of the GMCMs make them suitable for meta-analysis of multiple similar experiments.

The work of Li et al. (2011) is especially important in genomics as both data and results
are subject to substantial variability due to limited samples sizes, high dimensional feature
spaces, dependence between genes, and confounding technological factors. This high vari-
ability have brought into question the reliability and reproducibility of many genomic results
(Ioannidis, Ntzani, Trikalinos, and Contopoulos-Ioannidis 2001; Ein-Dor, Zuk, and Domany
2006; Tan, Downey, and Jr 2003). Others, however, argue that the lack of reproducibility is
only superficial (Zhang, Yao, Guo, Zou, Zhang, Xiao, Wang, Yang, Gong, Zhu, Li, and Li
2008). Together with a rapid evolution of many different high-throughput technologies and
vast online repositories of publicly available data, this motivates the need for a robust and
flexible meta-analysis toolbox, which can evaluate or aggregate results of multiple experiments
even across confounding factors such as differing technologies.

The high flexibility of the GMCMs comes at a cost, however. The likelihood is difficult to
evaluate and maximize, partly because of intrinsic identifiability problems as we describe in
detail later. We have solved some of the issues and implemented them in the package GMCM

for R (R Core Team 2012).

Though copula theory is an elegant way of approaching rank-based methods, we present the
GMCMs in a more traditional fashion. We refer to the general model of Tewari et al. (2011)
simply as the general model or general GMCM and the special case model of Li et al. (2011)
is referred to as the special model or special GMCM.

In the following, we present the general GMCM followed by the special case and the derivation
of the likelihood function. Subsequently, the key features of the GMCM software package are
presented and compared to the idr package. The technical details of the problematic maxi-
mization of the likelihood are then discussed. Finally, our package is evaluated by different
applications before concluding with a discussion of GMCMs.

This document was prepared and generated using knitr (Xie 2013), a dynamic report gener-
ation tool inspired by Sweave (Leisch 2002), and the R-packages Hmisc (Harrell 2014) and
RColorBrewer (Neuwirth 2011). The simulation study was carried out using parallel comput-
ing with doMC (Revolution Analytics 2014) and foreach (Revolution Analytics and Weston
2014).
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2. Gaussian mixture copula models

2.1. The general GMCM for unsupervised clustering

We consider a large p× d matrix [xgk] of observed values where the rows are to be clus-
tered into m groups. The general GMCM assumes an m-component Gaussian mixture model
(GMM) as a latent process, Z = (Z1, ..., Zd)

⊤, with the following distribution

GMM:

{

H ∼ Categorical(α1, ..., αm)
Z|H = h ∼ Nd(µh,Σh)

(1)

where H ∈ {1, 2, ...,m} corresponds to the class and α1, ..., αm are the mixture proportions
satisfying

∑m
h=1 αh = 1. Thus, the latent GMM is parameterized by

θ = (α1, ..., αm,µ1, ...,µm,Σ1, ...,Σm).

We denote the joint and k’th marginal cumulative distribution functions (cdf) of the GMM
by

Γ(z;θ) =
m
∑

h=1

αhΦ(z;µh,Σh) and Γk(z;θ) =
m
∑

h=1

αhΦk(z;µh,Σh),

respectively, where Φ and Φk are the joint and k’th marginal cdfs of the multivariate normal
distributions, respectively. Analogous equations hold for the joint and marginal probability
density functions (pdf) which we denote by lower-case γ and γk.

Let X = (X1, ..., Xd)
⊤ be an observation with known marginal cdfs F1, ..., Fd and assume the

relationship

Xk = F−1
k

(

Γk(Zk;θ)
)

, ∀k ∈ {1, ..., d} (2)

between the observed and the latent variables. By Equation 2 and the probability integral
transform the vector U = (U1, ..., Ud)

⊤ where Uk = Γk(Zk) = Fk(Xk) have uniformly dis-
tributed marginals.

When F1, ..., Fd are known we can derive an expression for the likelihood of this model. For
later use we simplify the notation by introducing the vector functions Γ◦ : R

d ×Θ → R
d and

F◦ : R
d → R

d defined by

Γ◦(Z;θ) =
(

Γ1(Z1;θ), ...,Γd(Zd;θ)
)⊤

and F◦(X) =
(

F1(X1), ..., Fd(Xd)
)⊤

,

where Θ is the parameter space. The vector function Γ◦ applies the k’th marginal transforma-
tion Γk on the k’th entry of the observation and similarly does F◦. Again by the probability
integral transform, Z is transformed by Γ◦ into the marginally uniformly distributed random
vector U with cdf

C(u;θ) = Γ
(

Γ−1
◦ (u;θ);θ

)

.

The pdf c of U is computed by the change of variables theorem or by differentiation of C
using the multivariable chain rule. If we abbreviate notationally by not explicitly stating
dependence on parameters θ, the pdf is given by

c(u;θ) = γ
(

Γ−1
◦ (u)

)

∣

∣

∣
JΓ−1

◦

(u)
∣

∣

∣
=

γ
(

Γ−1
◦ (u)

)

∏d
k=1 γk

(

Γ−1
k (uk)

)
(3)
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since the Jacobian matrix JΓ−1

◦

(u) is diagonal. The cdf C and pdf c are the so-called copula

and copula density of the GMM model, respectively (Nelsen 2006). Hence U is distributed
according to the Gaussian mixture copula density c, and the observation X is some marginal
transformation of U . The model is thus completely specified by

GMCM:















H ∼ Categorical(α1, ..., αm)
Z|H = h ∼ Nd(µh,Σh)
U = Γ◦(Z;θ)

X = F−1
◦ (U).

(4)

From this, we see the GMCM operates on three levels, a latent level Z, a copula level U ,
and an observed level X. Figure 1 (A-C) illustrates the three levels of a 2-dimensional 3-
component GMCM. Here, F◦ and F−1

◦ maps panel A to B and B to A, respectively. Likewise,
Γ◦ defines the mappings between panels C and B.

To assess the class of an observation, Tewari et al. (2011) proposed using

κh = P (H = h | u,θ), (5)

which is the a posteriori probability that the observation was generated from component h.
To decide the class for the observation, the maximum a posteriori (MAP) estimate can be
used. That is, the h corresponding to maxh(κh).

2.2. The special-case GMCM for meta-analysis

In the Li et al. (2011) reproducibility analysis, the p×d matrix [xgk] consists of test-statistics
or p-values interrogating the same null hypothesis for a large number p of e.g., genes for each of
d ≥ 2 studies. Rows corresponds to genes, indexed by g, and columns to experiments, indexed
by k. Without loss of generality, large values are considered to be indicative of the alternative
hypothesis. A prototypical example in genomics is a matrix of transformed p-values for the
hypothesis of no differential expression of genes between treatment and control groups for two
or more experiments. The task is here to determine which genes g are commonly significant in
all experiments. Ordinary meta-analysis methodologies involve combining confidence intervals
of effect sizes, test-statistics, or p-values in a row-wise manner and assessing the significance
whilst controlling the number of false positives (Owen 2009).

Li et al. (2011) proposed a special case of Equation 4 with m = 2 components corresponding
to whether the null or alternative hypothesis is true, where h = 1 corresponds to spurious
signals and h = 2 to genuine ones. Hence α1 and α2 = 1− α1 is the fraction of spurious and
genuine signals, respectively. Li et al. (2011) further assumes the following constraints on the
parameters

µ1 = 0d×1 = (0, 0, ..., 0)⊤,

µ2 = 1d×1µ = (µ, µ, ..., µ)⊤, µ > 0
(6)

and

Σ1 = Id×d =







1 0 · · ·
0 1 · · ·
...

...
. . .






, Σ2 =







σ2 ρσ2 · · ·
ρσ2 σ2 · · ·
...

...
. . .






, (7)
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where ρ ∈ [−(d − 1)−1, 1] and σ2 > 0. The lower bound on ρ is a requirement for Σ2 to be
positive semi-definite. In other words, if the null-hypothesis is true, the latent variable is a
d-dimensional standard multivariate normal distribution. If not, it is an latent d-dimensional
multivariate normal distribution with equal means and a compound symmetry covariance
structure. Figure 1 (D-F) shows an example of the observed, copula, and latent levels of the
special GMCM where d = 2.

With the above constraints the special model is parameterized by only θ = (α1, µ, σ
2, ρ)

whereby the dimensionality of the parameter space is substantially reduced. Furthermore, all
marginal cdfs are equal, Γ1 = · · · = Γd, and similarly are all pdfs equal, γ1 = · · · = γd.

Li et al. (2011) defines the local irreproducibility discovery rate of an observation as

idr(u) = κ1 = P (H = 1 | u,θ), (8)

analogously to local false discovery rate (Lfdr) of Efron (2004, 2005, 2007). Notice, that
Equation 5 coincide with Equation 8 for the special model. As the multiple testing problem
is present when more observations are obtained, an adjusted irreproducibility discovery rate

was also defined by Li et al. (2011):

IDR(α) = P (H = 1 | u ∈ Iα,θ) (9)

where Iα = {u | idr(u) < α}, i.e., the probability of a gene being non-reproducible while in
the rejection region. The adjusted IDR(α) relates to idr in the same manner as marginal false
discovery rate (mFDR) relates to the Lfdr.

2.3. The GMCM likelihood function

Suppose we have observed p i.i.d. samples x1 = (x11, ..., x1d), ...,xp = (xp1, ..., upd) from Equa-
tion 4 which can be arranged into the observation matrix introduced in Section 2. From these,
the marginal uniform variables u1 = F◦(x1) = (u11, ..., u1d), ...,up = F◦(xp) = (up1, ..., upd)
are computed and are independent and identically distributed according to the copula density
of Equation 3. The log-likelihood is thus given by

ℓ
(

θ;{xg}pg=1

)

∝ ℓ
(

θ; {ug}pg=1

)

=

p
∑

g=1

log c(ug;θ) (10)

=

p
∑

g=1

log
m
∑

h=1

αh
√

(2π)d|Σh|
exp

(

−1

2

(

Γ−1
◦ (ug)− µh

)⊤
Σ−1

h

(

Γ−1
◦ (ug)− µh

)

)

−
p

∑

g=1

d
∑

k=1

log
m
∑

h=1

αh√
2πΣhkk

exp

(

− 1

2Σhkk

(

Γ−1
k (ugk)− µhk

)2
)

,

since the Jacobian arising from transformation F◦ is not dependent on θ (and thus constant
when optimizing with respect to θ).

In practice, F1, ..., Fd are unknown and estimated by the empirical cdf

F̂
(p)
k (x) =

1

p

p
∑

g=1

1[xgk ≤ x].
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Figure 1: From left to right the observed, copula (or rank), and latent process is shown.
The first and second row of panels illustrate 10,000 realizations from the general and special
model, respectively. The component from which the realizations come are visualized by colour
and point-type. Each dimension in the special model corresponds to an experiment where
simultaneously high values in both experiments are indicative of good reproducibility.

Hence the pseudo-observations

ûgk = F̂
(p)
k (xgk) =

1

p
rank(xgk) (11)

of ugk are plugged into the log-likelihood and the maximizing parameters are found. However,

since p is large, F̂
(p)
k is a good estimate of Fk and thus ûgk = F̂

(p)
k (xgk) ≈ Fk(xgk) = ugk.

The GMCM is rank-based since plugging a variable into its empirical cdf corresponds to a
particular ranking scheme in which the lowest value is awarded rank 1 and ties are given their
largest available rank. To avoid infinities in the computations ûgk is rescaled by the factor
p

p+1 .

The usage of ûgk violate the assumption of independent observations as the ranking introduces
dependency between the observations. The introduced dependency is arguably negligible when
p is large. We ignore this problem and refer to Chen, Fan, and Tsyrennikov (2006) and the
references therein for a more detailed discussion about this problem which is common to all
copula model estimation procedures.



Bilgrau et. al. 7

Function Description

fit.full.GMCM Fit the general model (4)
fit.meta.GMCM Fit the special model (4)(6)(7)
get.prob Get class probabilities for the general model (5)
get.IDR Get class probabilities (idr and IDR) for the special model (8)(9)
SimulateGMCMData Generate samples from a GMCM (4)
SimulateGMMData Generate samples from a GMM (1)
Uhat Rank and scale the columns of the argument. (11)
choose.theta Choose starting parameters in the general GMCM.
full2meta Convert from theta-format to par.
meta2full Convert from par-format to theta.
rtheta Generate random theta.
is.theta Test if theta is correctly formatted.
rmvnormal Generate multivariate gaussian observations.
dmvnormal Fast evaluation of multivariate Gaussian pdf.

Table 1: Overview of the visible user functions and their purpose in approximate order of
importance. Confer the documentation (e.g., help("Uhat")) for function arguments and
return types. Relevant equations are right-justified.

3. The GMCM package

3.1. Package overview

The GMCM package currently have 14 user visible functions of which the majority are for
convenience. The functions are presented in Table 1 and the GMCM reference manual. Two
different parameter formats are used depending on use of the special or general model. In
the general model a specially formatted list of parameters is used, named theta in function
arguments and documentation. The rtheta function generates such a prototypical list with
random parameters and is.theta conveniently tests if the argument is properly formatted. If
the special model is to be used, the required parameters are simply given in a numeric vector
(α1, µ, σ, ρ) of length 4, named par in arguments and documentation. The useful functions
meta2full and full2meta provide easy conversion between the general theta and the special
par format.

The most important functions fit.full.GMCM and fit.meta.GMCM fit the general and special
GMCMs, respectively. The method argument of these functions specify the optimization
routine to be used. If the general model is used get.prob returns a matrix of posterior
probabilities κgk defined in Equation 5. In the special model, the get.IDR is used to compute
local idr (i.e., the posterior probability of belonging to the irreproducible component) and
adjusted IDR values.

The SimulateGMMData and SimulateGMCMData functions provide simulation of observations
from the models specified in Equations 1 and 4, respectively.

Beside the following tutorial, a small usage example of the special model is also found in
help("GMCM"). All simulations and computations were carried out on a regular laptop (1.7
GHz Intel Core i5, 4GB DDR3 RAM).
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Figure 2: Panel A shows realizations from the latent process and panel B the corresponding
marginally uniformly distributed process. Note, that while B shows true realizations from the
GMCM ug the ranked observed values ûg are almost visually identical because of the relative
large number of observations.

3.2. Using the package

We proceed with a small tutorial on the package. As an illustration, we load the package
and simulate 10,000 observations from a 2-dimensional 3-component GMCM with randomly
chosen parameters in the following manner:

> library("GMCM")

> set.seed(100)

> n <- 10000

> sim <- SimulateGMCMData(n = n, theta = rtheta(m = 3, d = 2))

The sim object is a list containing the matrix of the realized latent process (sim$z), the
matrix of true realizations from the GMCM density (sim$u), the formatted parameters
(sim$theta), and the component from which each observation is realized (sim$K). Figure
2 shows the realized data.

Subsequently, we select a starting estimate from the data, fit the ranked observed data using
Nelder-Mead (NM), and compute the posterior probabilities of each observation belonging to
each component:

> ranked.data <- Uhat(sim$u)

> start.theta <- choose.theta(ranked.data, m = 3)

> mle.theta <- fit.full.GMCM(u = ranked.data, theta = start.theta,

+ method = "NM", max.ite = 10000, reltol = 1e-4)

> kappa <- get.prob(ranked.data, theta = mle.theta)

> Khat <- apply(kappa, 1, which.max)

The function Uhat ranks and rescales as described in Section 2.3. The choose.theta function
uses the k-means algorithm on the rank-level to find an initial set of parameters. From the
k-means clustering, crude estimates of the mixture proportions, mean values, and variances
can be computed. The correlations in all components are taken to be zero. This usually
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Ĥ (GMCM) Ĥ (k-means)
1 2 3 1 2 3

H
1 2747 0 0 2693 54 0
2 0 2276 6 5 2270 7
3 0 57 4914 26 882 4063

Table 2: Confusion matrices of GMCM and k-means clustering results.

Figure 3: Panel A shows the estimated class labels of the observations by colour and point-
type. As a model control panel B and C shows 10,000 realizations from the GMM and GMCM
using the fitted parameters.

provides reasonable initial parameters. Objections may be made to using such a procedure
on the rank and not latent level. However, as we are only interested in the relative position
of the components this often serves as a reasonable starting parameter. The fit.full.GMCM
does the actual optimization of the likelihood to arrive at the MLE. The default Nelder-Mead
(NM) procedure converged in 499 iterations in about 4.6 seconds.

In serious applications the starting values should be chosen carefully and the algorithm ought
to be started at different positions of the parameter space to investigate the stability and
uniqueness of the maximum likelihood estimate. The estimate with the largest likelihood
should then be chosen.

The confusion matrix for the GMCM clustering, seen in Table 2, yields an accuracy of 99.4%.
In (unfair) comparison, the k-means algorithm have an accuracy of 90.3%. Figure 3 shows the
clustering results and simple model checks by simulation from the fitted parameters. Though
a high clustering accuracy is achieved, we see from the model check in Figure 3B compared to
Figure 2A that the underlying parameters are not really identifiable. However, we see from
panel C, that the fitted parameters model the observed ranks closely and thus provide a high
predictive accuracy.

3.3. Runtime and technical comparison

For the special model, the GMCM package implements an arbitrary number of dimensions (or
experiments) d to be included whereas the idr package only supports d = 2. The GMCM pack-
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p / Package Algorithm Runtime (s) Iterations (n) s/n Rel. speed

1,000
idr PEM 3.03 22 0.138 50.4
GMCM PEM 1.27 125 0.010 3.7
GMCM NM 0.75 275 0.003 1.0

10,000
idr PEM 17.64 15 1.176 143.7
GMCM PEM 4.16 163 0.025 3.1
GMCM NM 1.94 237 0.008 1.0

100,000
idr PEM 257.63 17 15.155 304.2
GMCM PEM 40.79 258 0.158 3.2
GMCM NM 10.71 215 0.050 1.0

Table 3: Runtime comparisons of the idr and GMCM packages with increasing number of
observations p. The benchmarked optimization procedures are the pseudo EM algorithm
(PEM) and the Nelder-Mead (NM) method. The runtime is given in seconds. The last
column shows the relative speed per iteration compared to the fastest procedure.

age considerably decreases the per iteration runtime of the pseudo expectation-maximization
(PEM) algorithm compared to the idr package. The optimization procedures such as Nelder-
Mead (NM), simulated annealing (SANN), and others which only rely on evaluations of the
likelihood further reduce the runtime compared to the PEM.

Run and iteration times for an increasing number of observations are seen in Table 3 on a
simulated dataset with parameters (α1, µ, σ, ρ) = (0.7, 2, 1, 0.9). The algorithms were all run
with the starting values (0.5, 2.5, 0.5, 0.8). The parameters were chosen such that the idr

package does not converge prematurely.

To assess the optimization routines in the idr and GMCM packages, 1000 datasets with 10,000
observations were simulated from the special model with parameters θ = (0.9, 3, 2, 0.5). The
special model was fitted to each of the datasets using each of the available routines with
random initial parameter values. Figure 4 shows the results from the fitting procedures. The
maximum number of iterations were set to 2,000. The SANN procedure was given 3,000
iterations.

The clusters of parameter estimates away from the true values seen in Figure 4 presumably
corresponds to local maxima of the likelihood. Hence many of the procedures are fairly often
caught in such local maxima. Interestingly, while the estimates of the standard deviation σ̂
and correlation ρ̂ for the PEM algorithm seem to be biased, the algorithm achieved a high
clustering accuracy. We also see that the PEM algorithms in GMCM and idr behave quite
differently. The maximal number of iterations, 2000, was hit only by the PEM algorithm 274
and 18 times for the idr and GMCM packages, respectively. Also notable is the factor 555
reduction in total runtime from between the fastest and slowest fitting procedures.

All warnings produced by the PEM algorithm in idr was "NaNs produced". PEM in GMCM

only warned that the maximum number of iterations was reached. The errors produced
by SANN and L-BFGS-B seemingly arise as the estimates of the covariance matrix became
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Figure 4: Parameter fitting results for the different optimization procedures. From left to
right, the first four panels show plots of the fitted parameter estimates. The true parameter
values are plotted as vertical lines. Next, the mean clustering accuracy (and standard devi-
ation), total run time in minutes for all 1000 fits, and the number of warnings and errors is
shown. The last panel shows the number of iterations for each fit. The black vertical lines
indicate the median.

singular. The vast majority of the errors by L-BFGS was divergence to non-finite likelihood
values. The only unique error thrown by PEM (idr), "missing value where TRUE/FALSE

needed", seems to stem from a simple bug.

Considering computational efficiency and robustness, accuracy, and precision of parameter
estimates, we chose the Nelder-Mead as the default optimization procedure.

3.4. Availability of the package

The GMCM package is open-source and available both at the CRAN (Comprehensive R

Archive Network) and at the GitHub repository https://github.com/AEBilgrau/GMCM.git

for bug reports as well as easy forking and editing.

4. Maximum likelihood estimation

4.1. Maximizing the likelihood

The optimization of the likelihood function in Equation 10 is non-trivial. There exists no
closed form expression for Γ−1

k . Furthermore there are intrinsic problems of identifiability of
the GMCM parameters. These problems will greatly affect any estimation procedure.

Both Li et al. (2011) and Tewari et al. (2011) make use of a pseudo EM (PEM) algorithm to
find the maximizing parameters. Tewari et al. (2011) use the PEM as a “burn-in” and switch

https://github.com/AEBilgrau/GMCM.git
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to a gradient decent algorithm. Both authors derive the likelihood function of the GMM,
ℓGMM, specified by Equation 1 and the estimators for the corresponding EM algorithm. The
PEM algorithm then iteratively alternates between estimating pseudo-observations ẑgk =
Γ−1
k (ûgk;θ) and subsequently updating θ by an E and M step. While this intuitively is a

viable approach, it effectively ignores the Jacobian of Equation 3 as the transformation Γ−1

depends on the parameters θ. In short, the wrong likelihood is thus optimized and a pseudo
(or quasi) maximum likelihood estimate is found. This may yield an inefficient optimization
routine and biased parameter estimates. This problem of the PEM is appreciated by Tewari
et al. (2011).

A fundamental problem with the PEM algorithm is the alternating use of pseudo-observations
and parameter updates. The pseudo data is not constant in the ℓGMM which implies no
guarantee of convergence nor convergence to the correct parameters.

To clarify, let θ(m) denote the m’th estimate of θ. From θ(m), pseudo data is estimated by

ẑ
(m)
gk = Γ−1

k

(

ûgk;θ
(m)

)

, g ∈ {1, ..., p}, k ∈ {1, ..., d}.

The PEM algorithm alternates between updating parameter estimates and pseudo data which
results in the following log-likelihood values,

. . . ,ℓGMM

(

θ(m)
∣

∣{ẑ(m)
g }g

)

, ℓGMM

(

θ(m+1)
∣

∣{ẑ(m)
g }g

)

,

ℓGMM

(

θ(m+1)
∣

∣{ẑ(m+1)
g }g

)

, ℓGMM

(

θ(m+2)
∣

∣{ẑ(m+1)
g }g

)

, . . . ,

given in the order of computation. Conventionally, convergence is established when the dif-
ference of successive likelihoods is smaller than some ǫ > 0. The implementation of Li et al.
(2011) through the package idr for R determines convergence if

ℓGMM

(

θ(m+1)
∣

∣{ẑ(m+1)
g }pg=1

)

− ℓGMM

(

θ(m)
∣

∣{ẑ(m)
g }pg=1

)

< ǫ,

where ǫ > 0 is pre-specified. However, an increase in successive likelihoods is only guaranteed
by the EM algorithm when the (pseudo) data are constant. Since both the pseudo data and
parameter estimate have changed the above difference can be, and often is to our experience,
negative. In the idr package this sometimes happens in the first iteration without warning.
Such cases arguably stops the procedure prematurely since a negative difference obviously is
smaller than some positive ǫ. The EM algorithm only guarantees that the difference

ℓGMM

(

θ(m+1)
∣

∣{ẑ(m)
g }pg=1

)

− ℓGMM

(

θ(m)
∣

∣{ẑ(m)
g }pg=1

)

is non-negative and thus might be more suitable for determining convergence.

The PEM convergence criterion used by Tewari et al. (2011) is when the difference in succes-
sive parameters estimates is sufficiently small while recording the highest observed likelihood
estimate which partly remedy the problem. However, the PEM still inherits the conventional
problems of the EM algorithm. It often exhibit slow convergence and offers no guarantee for
finding the global optimum.

Our software package GMCM offers fast optimization of both the general and special models.
Our implementation of the PEM algorithm supports various convergence conditions. By
default, it determines convergence when

∣
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∣{û(m)
g }pg=1

)

− ℓGMCM

(

θ(m)
∣

∣{û(m)
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∣

∣
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and returns the parameters which yield the largest likelihood. This is not necessarily the
one obtained in the last iteration. The internal function PseudoEMAlgorithm is called when
fit.full.GMCM or fit.meta.GMCM are run with method = "PEM"..

Instead of the EM approach, however, we propose optimizing the GMCM likelihood function
in Equation 10 using procedures relying only on likelihood evaluations. To make this a
feasible approach considerable effort has been put into evaluating the log-likelihood function
of Equation 10 in a fast manner by implementing core functions in C++ using Rcpp and
RcppArmadillo (Eddelbuettel 2013; Eddelbuettel and François 2011; François, Eddelbuettel,
and Bates 2012). With fast likelihood evaluations the standard optim optimization procedure
in R is used with various optimization procedures, such as Nelder-Mead (the amoeba method),
simulated annealing, and BFGS quasi-Newton methods.

When the parameters are passed to optim we use various transformations to reformulate the
optimization problem as an unconstrained one. We logit-transform the mixture proportions.
In the general model, a Cholesky decomposition combined with a log-transformation is used
to ensure positive definiteness of the covariance matrices. In the special model, the variance
σ2 is ensured positive by a log-transform. The restriction on the correlation ρ to the interval
[−(d− 1)−1, 1] is guaranteed by an affine and logit function composition.

Additional speed have also been obtained by faster inversion of the marginals Γk. Similarly to
Li et al. (2011), we linearly interpolate between function evaluations. However, we distribute
the default 1,000 function evaluations to each component according to the current estimate
of the mixture proportions. The determined number of function evaluations for component h
within the k’th dimension is then sampled equidistantly in the interval µhk ± a

√
Σhkk where

a = 5 by default. Lastly, the monotonicity of Γk is used to quickly invert the function by
reflection around the identity line. Furthermore, we approximate the mixture cdf Γk by using
the approximation of the error function erf(x) ≈ 1 − (a1t + a2t

2 + a3t
3) exp(−x2) where

t = 1/(1 + bx) and a1, a2, a3, and b are constants (Abramowitz and Stegun 1970, p. 299;
Hastings, Hayward, and Wong 1955).

4.2. Identifiability of parameters

The model suffers from unidentifiable parameter configurations. As a consequence of the
GMCM invariance to translations only relative distances between the location parameters
µ1, ...,µm can be inferred. We arbitrarily anchor the first component at µ1 = 0 as a partial
solution. To account for scaling invariance, the first component is required to have unit
variance in each dimension, that is Σ1kk = 1 for all k. However, problems of identifiability
persists in a number of scenarios. In cases where two or more components in the latent
GMM are well-separated from each other the relative distances and component variances are
not identifiable for all practical purposes. For example in the special GMCM, the parameter
configuration θ = (0.5, 10, 1, 0), say, will be indistinguishable from (0.5, 100, 1, 0). The ranking
destroys all information about the relative variances and distances between the well-separated
components.

The clustering might also easily fail when the location and variation parameters for two or
more components are similar along the same dimension. Suppose for example that µ1 = (0, 0),
µ2 = (4, 0), and Σ1 = Σ2 = I2×2 where the location and variation parameters equal along
the ordinate axis. In such cases, the ranking will create a homogeneous cluster which cannot
be easily be separated.
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Situation α1 µ σ ρ

1 1 · · ·
2 0 · · 0
3 · 0 1 0

Table 4: Equivalent optima in pure noise. A dot (·) denotes an arbitrary value. The given
values need only to be approximate.

Even though the parameters may not be fully estimable in all cases, the general model can
still be an effective clustering algorithm if measured by clustering accuracy.

Table 4 describes three situations in the special model where the parameter estimates and thus
the following clustering should be carefully interpreted. If the parameter estimate approaches
any of the given numbers then the remaining parameters, represented by dots, are effectively
non-identifiable. For example in Situation 1, if the mixture proportion α1 approaches 1 then
the remaining parameters can easily diverge as they no longer contribute to the likelihood. In
Situation 2 where θ = (0, ·, ·, ρ) extra caution should be displayed if ρ becomes substantially
different from zero as all observations will be deemed reproducible. While the above cor-
rections somewhat remedy these issues, the three situations can still be observed, especially
when data consisting of nearly pure noise is supplied.

5. Applications

5.1. Reproducibility of microarray results

In molecular biology, microarrays are often used to screen large numbers of candidate markers
for significant differences between case and control groups. Microarrays simultaneously probe
the genetic DNA composition or transcribed RNA activity of multiple genes in a biological
sample. The number of probes ranges in the orders of 10,000 to 6,000,000, depending on the
specific microarray.

In the study of haematological malignancies it is of biological interest to know how normal
B-lymphocytes develop (Lenz and Staudt 2010; Rui, Schmitz, Ceribelli, and Staudt 2011;
Küppers 2005). Hence, B-cells from removed tonsil tissue of six healthy donors were sorted
and isolated using fluorescence-activated cell sorting (FACS) into five subtypes of B-cells:
Näıve (N) B-cells, Centrocytes (CC), Centroblasts (CB), Memory (M) B-cells, and Plas-
mablasts (PB). As part of the immune response to an infection, the CBs proliferate rapidly
and become CCs within the so-called germinal centres (GC). The 6× 5 samples were profiled
with Affymetrix GeneChip HG-U133 plus 2.0 (U133) microarrays (See Bergkvist, Nyegaard,
Bøgsted, Schmitz, Bødker, Rasmussen, Perez-Andres, Falgreen, Bilgrau, Kjeldsen et al. 2014,
for further details).

It is e.g., of interest to identify which genetic expressions have been altered within the GCs
from which the CCs and CBs come. We therefore tested the hypothesis of no difference in
genetic expression between CC and CB samples against N, M, and PB samples for all the
gene expressions present on the U133 array.

Since genetic profiling technologies are rapidly evolving the experiment was later repeated
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Figure 5: Panel A shows a plot of the scaled ranks of p-values for the exon experiment against
the scaled ranks of the p-values for the U133 experiment. Presumably, genes located in the
upper left or lower right of the plots are false positive results in either experiment. Panel B
shows the estimated latent GMM process. The fitted parameters shown are used to marginally
transform panel A into the B.

with new donors and on the newer GeneChip Human Exon 1.0 ST (Exon) microarray.

The 30 samples on the U133 arrays and the 30 samples on Exon arrays were preprocessed
and summarized to gene level separately and independently using the RMA algorithm with
the R/Bioconductor package affy using custom CDF-files (Dai, Wang, Boyd, Kostov, Athey,
Jones, Bunney, Myers, Speed, Akil, Watson, and Meng 2005). This preprocessing resulted in
the genetic expression levels of 37,923 probe-sets for the U133 array and 19,750 probe-sets for
the Exon array both annotated with Ensembl gene identifiers (ENSG identifiers).

Each experiment was analysed separately using a mixed linear model and empirical Bayes
approach using the limma package (Smyth 2004) to test the hypothesis of no differential
expression for each gene between the CC + CB and the N + M + PB groups. The tests yield
two lists of p-values for the U133 and Exon arrays.

The p-value lists were reduced to the 19,577 common genes present on both array types and
combined into a matrix [xgk]19577×2 where xgk is one minus the p-value for varying gene
expression for gene g in experiment k ∈ {U133,Exon}.
To determine the genes which are reproducibly differentially expressed, the special GMCM
were fitted with the Nelder-Mead optimization procedure using fit.meta.GMCM. The proce-
dure was started in 3 different starting values and the estimate with the largest log-likelihood
was chosen. The best estimate converged in 311 iterations. Subsequently, the local and ad-
justed IDR values were computed with get.IDR. A total of 3546 genes (18.1%) were found to
have an adjusted IDR value below 0.05 and deemed reproducible. The results are illustrated
in Figure 5 along with the parameter estimates. The algorithm successfully picks p-values
which are high-ranking in both experiments.

If the MAP estimate, corresponding to a local idr value less than 0.5, is used then 4510 genes,
corresponding to 23%, are deemed reproducible. This agrees with the estimate of the mixture
proportion of the null component α1 = 0.71.

Note, since no biological ground truth is available, the accuracy cannot be determined. How-
ever, since genes which are not differentially expressed are expected to be irreproducible the
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accuracy may be high.

For comparison, the number of genes marginally significant at 5% significance level after
Benjamini-Hochberg (BH) correction (Benjamini and Hochberg 1995) is 3968 and 6713 for
the U133 and Exon experiments, respectively. The number of commonly significant genes
(i.e., simultaneously significant in both experiments) is 3140 or 16%. This corresponds to the
common approach of using Venn diagrams.

The list of reproducible genes, which can be ranked by their idr-values, provides a more
accessible list of genes for further biological down-stream analyses than the unordered list of
genes obtained by the Venn diagram approach.

The p-values from the experiments are available in GMCM via data("u133VsExon").

5.2. Effects of cryopreservation on reproducibility

Cryopreservation is a procedure for preserving and storing tissue samples by cooling them to
sub-zero temperatures. It is convenient for researchers and a crucial component of biobanking.
Cryopreservation is usually assumed by default to alter the biological sample since many
cryopreserving substances are toxic, the freezing procedure may damaged the sample due to
ice crystallization, and it may induce cellular stress response. Fresh is therefore considered
favorable to cryopreserved tissue. Few studies have analysed the effect of the cryopreservation
on phenotyping and gene expression. Recently, we studied cryopreservation to gauge the
actual impact of the cryopreservation on global gene expression in a controlled comparison of
cryopreserved and fresh B-lymphocytes. Similarly to the above, the B-cells were prepared from
peripheral blood of 3 individual healthy donors and FACS sorted into 2× 4 B-cell subtypes,
Immature (Im), Näıve (N), Memory (M), and Plasmasblasts (PB). Half of the samples were
cryopreserved and thawed prior to the gene expression profiling using the Exon array while the
other half was profiled fresh. The resulting data was preprocessed using RMA (See Rasmussen,
Bilgrau, Schmitz, Falgreen, Bergkvist, Tramm, Bæch, Jacobsen, Gaihede, Kjeldsen, Bødker,
Dybkær, Bøgsted, and Johnsen 2014, for further details). As a supplement to the manuscript,
we performed a reproducibility analysis using the special model which however was omitted
due to our concerns about complexity and added length to the manuscript.

If cryopreservation has relatively negligible effects on global screenings, then a high repro-
ducibility should be expected for differential expression analyses within the fresh and frozen
samples – however only for the true differentially expressed genes. For each probe set, the
samples were analysed using linear mixed models as described in Rasmussen et al. (2014) and
the hypothesis of no differential expression between pre (Im + N) and post germinal centre (M
+ PB) cells was tested for both fresh and cryopreserved samples separately to mimic the sit-
uations where only fresh or frozen samples are available. The special GMCM was fitted using
the resulting absolute value of the test-statistics to determine the level of reproducibility of
each probe set. Local and adjusted irreproducible discovery rates were computed for all probe
sets and this level of reproducibility was discretized into three groups: highly reproducible
(IDRg < 0.05, cf. Equation 9), reproducible (idrg < 0.5, cf. Equation 8), and irreproducible
(idrg ≥ 0.5).

The best parameter estimate of 40 fits was θ = (α1, µ, σ, ρ) = (0.73, 1.08, 1.32, 0.86). The
reproducibility analysis deemed 1,667 (8.9%), 1,402 (7.5%), and 15,639 (83.6%) genes highly
reproducible, reproducible, and irreproducible, respectively. Figure 6 shows these classifica-
tions of the p-values for differential expression between pre and post germinal cells for the
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Figure 6: Results from the reproducibility analysis of cryopreserved samples. Panel A shows
the p-values pg for the test of no differential expression between the pre- and post germinal
centre groups for fresh and frozen samples. Panel B shows the corresponding ranked p-values
ûg, and panel C shows the estimated latent process ẑg. The estimated level of reproduciblity
for each probe set is colour coded according to the legend in panel C. Genes significantly differ-
ent across fresh and frozen samples are plotted as red squares regardless of the reproducibility
level.

fresh and frozen samples. The total of 3,069 (16.4%) reproducible probe sets seems quite high
and agree with the estimated mixture proportion of 0.73. Again, the model correctly captures
the genes with simultaneously low p-values. Recall also that non-differentially expressed genes
are expected to be irreproducible and the actual accuracy is thus much higher although it
(again) cannot easily be estimated when no biological ground truth is available.

Naturally, one might wonder whether genes changed due to cryopreservation to a large extent
are deemed irreproducible. The paired design allowed us to investigate this hypothesis. The
hypothesis of no difference in expression between fresh and frozen samples for each gene
was therefore tested and the significant BH-adjusted p-values at the 5% level are highlighted
in Figure 6. The expectation above was then tested using a test for non-zero Spearman
correlation between the p-values and idr-values which yielded a non-significant correlation
(ρ = 0.009, p = 0.21). In other words, high evidence for a change between fresh and frozen
is not associated with greater irreproducibility (idr). Alternatively, a Fisher’s exact test also
did not yield a difference in odds (odds ratio = 0.67, 95 % CI = (0.36, 1.32), p-value = 0.23)
of having a BH-adjusted significant change due to cryopreservation in the reproducible group
(odds = 48/(15591−48)) compared to the irreproducible (odds = 14/(3055−14)). Thus there
is no evidence for an over-representation of the irreproducible genes among the significant
one. We might thus conclude that though some genes change due to cryopreservation, the
differential analysis between subgroups to a great extent still yields the same results whether
the samples are fresh or frozen.

Lastly, notice that some genes in the lower-left of Figure 6 (A-C) near the origin are also
being deemed reproducible. This is an artifact of the model due to the high correlation of
ρ = 0.86 in the reproducible component.

The p-values and test scores are available in GMCM via data("freshVsFrozen").
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5.3. Image segmentation using the general GMCM

In computer vision and graphics, image segmentation is useful to simplify and extract features
of pictures. To illustrate the flexibility of the model and the computational capability of the
GMCM package a 1.4 Mpx (965× 1500 px) image of the Space Shuttle Atlantis, seen at the
top of Figure 7, was segmented into 10 colours.

The JPEG image can be represented as a 1,447,500 × 3 matrix where each column corre-
sponds to a colour channel in the RGB colour space and each row corresponds to a pixel and
observation in the GMCM. The values are in this case on the interval [0, 1].

A 3-dimensional, 10-component GMCM was fitted using the PEM algorithm which resulted in
the middle image of Figure 7. The segmented colours were chosen using the location estimates
µ̂1, ..., µ̂10. That is, the three dimensional vector F̂−1

◦ (Γ◦(µ̂h;θ)) ∈ [0, 1]3 in the RGB space
was used as the colour of cluster h. Alternatively, the average RGB value of each cluster could
be used.

For comparison the 1.4 Mpx image was also segmented with the k-means algorithm. The
results are seen at the bottom of Figure 7. The final colours given to each cluster was the
means estimated by the algorithm.

As seen, the k-means and GMCM yield quite different segmentations and different details of
the image are captured. For example, the GMCM seem to capture more details of the bottom
of the orange external tank. However perhaps erroneously, the GMCM also cluster the black
left edge of the photo together with a light cluster. The superior method is dependent on the
application at hand. We acknowledge that disregarding spatial correlations between pixels
is quite näıve. However, this example should illustrate the computational capability of the
package of handling large datasets with a high number of clusters.

The package jpeg was used to read, manipulate, and write the JPEG image from R (Urbanek
2012).

6. Concluding remarks

The software for the gradient decent algorithm used by Tewari et al. (2011) to arrive at
a maximum likelihood estimate is written in the proprietary language MATLAB but not
provided as open source. Hybrid procedures, similar to the one proposed by Tewari et al.

(2011), can easily be constructed with the GMCM package. The GMCM package solves some
of the previously described issues regarding the maximum likelihood estimation and provides
a considerable speed-up in computation times. However, there seems to be no complete
remedy for all of the challenges of the GMCMs. As stated, the transformation into uniform
marginal distributions by ranking will result in a loss of information about the distance
between components that are well separated.

The intrinsic identifiability problems of GMCMs may in practice often not be a big issue.
Even though the parameters of the assumed underlying GMM can be difficult to estimate due
to the flat likelihood function, the clustering accuracy can still be very high. Furthermore, the
actual parameters, except perhaps the mixture proportions, does often not seem of particular
interest in applications. Hence, the merit of the GMCMs should be measured by predictive
accuracy which still remains to be explored. In this respect, we believe that the theoretical
and practical properties of the special GMCM and IDR approach should be studied further
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Figure 7: Top: The original 1.4 Mpx JPEG image of the space shuttle Atlantis’ climb to orbit
during mission STS-27 in December 1988. Middle: The image segmented into 10 colours by
the GMCM. Bottom: The image segmented into 10 colours by k-means clustering. Image
credit: NASA.
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and compared to common p-value combining meta analyses, such as the methods of Fisher,
Stouffer, Wilkinson, Pearson, and others, see e.g., Owen (2009). Interestingly and perhaps
of slight concern, it can be seen that the IDR approach would be deemed unreasonable by
Condition 1 in Birnbaum (1954) whenever ρ 6= 0. It is unclear whether the method fulfills
properties such as admissibility (Birnbaum 1954) and relative optimality in Bahadur’s sense
(Littell and Folks 1971).

The simulation study in Section 3.3 revealed relatively many errors thrown by the GMCM

package. We are committed to pinpoint the exact sources of the errors and provide fixes in
future versions. We suspect the errors encountered are due to divergence of the parameters
and should therefore be treated as such. With this in mind we believe that software should
fail loudly with error or warning when it indeed fails.

In conclusion, the GMCM package provides a fast implementation of the flexible and widely
applicable tool for reproducibility analysis and unsupervised clustering. The flexibility and
applicability is however gained at the cost of a complicated likelihood function.
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A. Session information

The sessionInfo() output:

• R version 3.1.3 (2015-03-09), x86_64-apple-darwin13.4.0

• Locale: C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

• Base packages: base, datasets, grDevices, graphics, grid, methods, stats, utils

• Other packages: Formula 1.2-1, GMCM 1.2, Hmisc 3.15-0, RColorBrewer 1.1-2,
foreach 1.4.2, ggplot2 1.0.1, idr 1.2, jpeg 0.1-8, knitr 1.9, lattice 0.20-31, survival 2.38-1

• Loaded via a namespace (and not attached): MASS 7.3-40, Rcpp 0.11.5,
acepack 1.3-3.3, cluster 2.0.1, codetools 0.2-10, colorspace 1.2-6, compiler 3.1.3,
digest 0.6.8, evaluate 0.5.5, foreign 0.8-63, formatR 1.1, gtable 0.1.2, highr 0.4.1,
iterators 1.0.7, latticeExtra 0.6-26, munsell 0.4.2, nnet 7.3-9, plyr 1.8.1, proto 0.3-10,
reshape2 1.4.1, rpart 4.1-9, scales 0.2.4, splines 3.1.3, stringr 0.6.2, tools 3.1.3
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