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Abstract

This paper presents the R package HAC, which provides user friendly methods for
dealing with hierarchical Archimedean copulae (HAC). Computationally efficient estima-
tion procedures allow to recover the structure and the parameters of HAC from data. In
addition, arbitrary HAC can be constructed to sample random vectors and to compute
the values of the corresponding cumulative distribution plus density functions. Accurate
graphics of the HAC structure can be produced by the plot method implemented for
these objects.
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1. Introduction

The use of copulae in applied statistics began in the end of the 90ies, when Embrechts,
McNeil, and Straumann (1999) introduced copula to empirical finance in the context of risk
management. Nowadays, quantitative orientated sciences like biostatistics and hydrology
use copulae to attempt measuring the dependence of random variables, e.g., Lakhal-Chaieb
(2010); Acar, Craiu, and Yao (2011); Bárdossy (2006); Genest and Favre (2007); Bárdossy
and Li (2008). In finance, copulae became a standard tool, explicitly on value at risk (VaR)
measurement and in valuation of structured credit portfolios, see Mendes and Souza (2004);
Junker and May (2005) and Li (2000). This paper aims at providing the necessary tools for
academics and practitioners for simple and effective use of hierarchical Archimedean copulae
(HAC) in their statistical analysis.

A copula is the function splitting a multivariate distribution into its margins and a pure
dependency component. Formally, copulae are introduced in Sklar (1959) stating that if F
is an arbitrary d-dimensional continuous distribution function of the random vector X =
(X1, . . . , Xd)

>, then the associated copula is unique and defined as the continuous mapping
C : [0, 1]d → [0, 1] which satisfies the equality

C(u1, . . . , ud) = F{F−11 (u1), . . . , F
−1
d (ud)}, u1, . . . , ud ∈ [0, 1],

where F−11 (·), . . . , F−1d (·) are the quantile functions of the corresponding continuous marginal
distribution functions F1(x1), . . . , Fd(xd). Accordingly, a d-dimensional density f(·) can be
split in the copula density c(·) and the product of the marginal densities. For an overview and
recent developments of copulae we refer to Nelsen (2006), Cherubini, Luciano, and Vecchiato
(2004), Joe (1997) and Jaworski, Durante, and Härdle (2013). If F (·) belongs to the class
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of elliptical distributions, then C(·) is an elliptical copula, which in most cases cannot be
given explicitly because the distribution function F (·) and the inverse marginal distributions
Fj(·) usually have integral representations. One of the classes that overcomes this drawback
of elliptical copulae is the class of Archimedean copulae, which, however, is very restrictive
yet for moderate dimensions. Among other R (R Core Team 2014) packages dealing with
Archimedean copula (see for example Dutang 2014), we would like to mention the copula
and the fCopulae package, c.f. Yan (2007); Kojadinovic and Yan (2010); Hofert and Maechler
(2011); Hofert, Kojadinovic, Maechler, and Yan (2014) and Wuertz et al. (2013).

HAC generalize the concept of simple Archimedean copulae by substituting (a) marginal dis-
tribution(s) by a further HAC. This class is thoroughly analyzed in Embrechts, Lindskog, and
McNeil (2003); Whelan (2004); Savu and Trede (2010); Hofert (2011); Okhrin, Okhrin, and
Schmid (2013b). The first sampling algorithms for special HAC structures were provided by
the QRMlib package of McNeil and Ulman (2011), which is not updated anymore, but several
functions were ported to the QRM package (see Pfaff and McNeil 2013). Hofert and Maechler
(2012) presented the comprehensive nacopula package which, among other features, allows
sampling from arbitrary HAC and was integrated into the package copula from version 0.8-1
on. The central contribution of the HAC package (Okhrin and Ristig 2014) is the estimation
of the parameter and the structure for this class of copulae, as discussed in Okhrin, Okhrin,
and Schmid (2013a), including a simple and intuitive representation of HAC as R objects of
the class ‘hac’. The main estimation procedure relies on a recursive multi-stage maximum
likelihood (ML) procedure, which determines the parameter and the structure simultane-
ously. This elegant procedure endows the estimator with the usual asymptotic properties but
avoids the computationally intensive one-step ML estimation, which is also implemented for
a predetermined structure. Besides, the package offers functions for producing graphics of
the copula’s structure, for sampling random vectors from a given copula and for computing
values of the corresponding distribution and density.

The paper is organized as follows. Section 2 describes shortly the theoretical aspects of HAC
and its estimation. Section 3 presents the functions of the HAC package and Section 4 a
simulation study. Section 5 concludes.

2. Hierarchical Archimedean copulae

As mentioned above, the large class of copulae, which can describe tail dependency, non-
ellipticity, and, most importantly, has close form representation

C(u1, . . . , ud; θ) = φθ
{
φ−1θ (u1) + · · ·+ φ−1θ (ud)

}
, u1, . . . , ud ∈ [0, 1], (1)

where φθ(·) ∈ L = {φθ : [0;∞) → [0, 1] |φθ(0) = 1, φθ(∞) = 0; (−1)jφ
(j)
θ ≥ 0; j ∈ N} and

(−1)jφ
(j)
θ (x) being non-decreasing and convex on [0,∞), for x > 0, is the class of Archimedean

copulae. The function φ(·) is called the generator of the copula and commonly depends on a
single parameter θ. For example, the Gumbel generator is given by φθ(x) = exp(−x1/θ) for
0 ≤ x < ∞, 1 ≤ θ < ∞. Detailed reviews of the properties of Archimedean copulae can be
found in McNeil and Nešlehová (2009) and in Joe (1997).

A disadvantage of Archimedean copulae is the fact that the multivariate dependency structure
is very restricted, since it typically depends on a single parameter of the generator function
φ(·). Moreover, the rendered dependency is symmetric with respect to the permutation of
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Figure 1: Fully and partially nested Archimedean copulae of dimension d = 4 with structures
s = (((12)3)4) on the left and s = ((43)(12)) on the right.

variables, i.e., the distribution is exchangeable. HAC (also called nested Archimedean copulae)
overcome this problem by considering the compositions of simple Archimedean copulae. For
example, the special case of four-dimensional fully nested HAC can be given by

C(u1, u2, u3, u4) = C3{C2(u1, u2, u3), u4} (2)

= φ3{φ−13 ◦ C2(u1, u2, u3) + φ−13 (u4)},

where Cj(u1, . . . , uj+1) = φj [φ
−1
j {Cj−1(u1, . . . , uj)}+ φ−1j (uj+1)], j = 2, . . . , d− 1, and C1 =

φ1{φ−11 (u1) + φ−11 (u2)}. The functional form of Cj(·) indicates that the composition can be
applied recursively. A different segmentation of the variables leads naturally to more complex
HAC. In the following, let d-dimensional HAC be denoted by C(u1, . . . , ud; s,θθθ), where θθθ
denotes the vector of feasible dependency parameters and s = (. . . (igik)i` . . .) the structure
of the entire HAC, where im ∈ {1, . . . , d} is a reordering of the indices of the variables with
m = 1 . . . , d, and g, k, ` ∈ {1, . . . , d : g 6= k 6= `}. Structures of subcopulae are denoted
by sj with s = sd−1. For instance, the structure according to Equation 2 is s = (s2)4 with
sj = (sj−1(j+1)), j = 2, 3, for the sucopulae and s1 = (12). A clear definition of the structure
is essential, as s is in fact a parameter to estimate. Thus, Equation 2 can be rewritten as

C(u1, u2, u3, u4; s = (((12)3)4), θθθ) = C{u1, u2, u3, u4; (s24), (θ1, θ2, θ3)
>}

= φθ3(φ−1θ3 ◦ C2{u1, u2, u3; (s1(3)), (θ1, θ2)
>}+ φ−1θ3 (u4)).

Figure 1 presents the four-dimensional fully and partially nested Archimedean copula.

HAC can adopt arbitrarily complex structures s. This makes it a very flexible and simul-
taneously parsimonious distribution model. The generators φθj (·) within a single nested
Archimedean copula can come either from a single generator family or from different genera-
tor families. If the φθj (·)’s belong to the same family, then the required complete monotonicity

of φ−1θi+j
(·) ◦ φθj (·) usually imposes some constraints on the parameters θ1, . . . , θd−1. Theorem

4.4 of McNeil (2008) provides sufficient conditions on the generator functions to guarantee
that C(·) is a copula. It holds that if φθj (·) ∈ L, for j = 1, . . . , d−1, and φ−1θj+1

(·)◦φθj (·) have

completely monotone derivatives, then C(·) is a copula for d ≥ 2. For the majority of gener-
ators feasible HAC require decreasing parameters from the highest to the lowest hierarchical
level. However, in the case of different families within a single HAC, the condition of complete
monotonicity is not always fulfilled, see Hofert (2011). In our study, we consider HAC with
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generators from the same family only. If we use the same single-parameter generator function
on each level, but with a different value of θ, we may specify the whole distribution with
at most d − 1 parameters. From this point of view, the HAC approach can be seen as an
alternative to covariance driven models. Nevertheless, for HAC not only the parameters are
unknown, but also the structure has to be determined. One possible procedure for estimating
both the parameters and the structure is to enumerate all possible structures and to estimate
at first the parameters only. Next, the optimal structure can be determined by a suitable
goodness-of-fit test. This approach is, however, unrealistic in practice because the variety of
different structures is enormously large even in moderate dimensions. Okhrin et al. (2013a)
suggest computationally efficient procedures, which allow to estimate HAC recursively. The
HAC package provides these methods for estimating the parameters and structure in a user-
friendly way.

2.1. Estimation of HAC

The entire procedure can be described in a recursive way where at the first iteration step
we fit a bivariate copula to every couple of the variables. The couple of variables with the
strongest dependency is selected. We denote the respective estimator of the parameter at the
first level by θ̂1 and the set of indices of the variables by I1. The selected couple is joined

together to define the pseudo-variable ZI1
def
= C{(I1); θ̂1, φ1}. At the next step, we proceed in

the same way by considering the remaining variables and the new pseudo-variable as the new
set of variables. This procedure allows us to determine the estimated structure of the copula.
As the restrictions on the parameters are always fulfilled due to shortening the parameter
space, the procedure leads to a feasible copula funciton with d− 1 parameters. Nevertheless,
if the true copula is not binary, the procedure might return a slightly misspecified structure.
Despite a difference in the structures, the difference in the distribution functions is in general
minor. To allow more sophisticated structures, we aggregate the variables of the estimated
copula afterwards. This is possible if the absolute value of the difference of two successive
nodes is smaller than a fixed small threshold, i.e., θ1 − θ2 < ε, with θ1 > θ2, as suggested by
Okhrin et al. (2013a).

For better understanding, let us consider a three-dimensional example with uj , j = 1, 2, 3,

being uniformly distributed on [0, 1]. All possible pairs C(12)(u1, u2, θ̂(12)), C(13)(u1, u3, θ̂(13))

and C(23)(u2, u3, θ̂(23)) are estimated by regular ML, see Franke, Härdle, and Hafner (2011).
To compare the strengths of the fit one can use computationally complicated goodness-of-
fit tests, which do not necessarily lead to a function which will be a copula on the final
level of aggregation due to the restrictions on θθθ. For that reason we compare simply the
estimates θ̂(12), θ̂(13) and θ̂(23). This is due to the fact that for most Archimedean copulae,
the larger the parameter the stronger is the dependency (the larger the parameter the larger

is Kendall’s correlation coefficient). Let the strongest dependence be in the first pair θ̂1
def
=

θ̂(12) = max{θ̂(12), θ̂(13), θ̂(23)}, then I1 = {1, 2} and we introduce the pseudo-variable Z1
def
=

C1(I1; θ̂1) = C1(u1, u2; θ̂(12)). At the next and final step for this example we join together u3
and Z1. The theoretical validation is also reported by Proposition 1 of Okhrin et al. (2013b)
stating that HAC can be uniquely recovered from the marginal distribution functions and
all bivariate copula functions. Crucially for the superior recursive ML estimation procedure,
pseudo-variables are regarded as functions of the underlying random variables X1, . . . , Xd and
are not explicitly computed.
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In practice, the marginal distributions Fj , j = 1, . . . , d, are either parametrically F̂j(·) =
Fj(·, α̂ααj), where αααj denotes the vector of parameters of the jth margin, or non-parametrically

F̂ (x) = (n+ 1)−1
n∑
i=1

I (Xi ≤ x) (3)

estimated in advance. Accordingly, the marginal densities f̂j(·), j, . . . , d, are estimated by an
appropriate kernel density estimator or using a parametric density.

Following Okhrin et al. (2013a), the estimation of the copula parameters at each step of the
iteration can be sketched as follows: at first stage, we estimate the parameter of the copula
at the first hierarchical level assuming that the marginal distributions are known. At further
stages, the next level copula parameter is estimated assuming that the margins as well as the
copula parameters at lower levels are known. Let X = {xij}> be the respective sample, for
i = 1, . . . , n, j = 1, . . . , d, and θθθ = (θ1, . . . , θd−1)

> be the parameters of the copula starting

with the lowest up to the highest level. The recursive multi-stage ML estimator θ̂θθ solves the
system (

∂L1
∂θ1

, . . . ,
∂Ld−1
∂θd−1

)>
= 0, (4)

where for j = 1, . . . , d− 1

Lj =
n∑
i=1

lj(Xi),

with for i = 1 . . . , n

lj(Xi) = log

cj[{F̂m(xim)}m∈sj ; sj , θj
] ∏
m∈sj

f̂m(xim)

 ,

where sj refers to the (pseudo)-variables considered at the jth estimation stage. Chen and
Fan (2006) and Okhrin et al. (2013a) provide asymptotic behaviour of the estimates. At the
moment, there are three different ways to estimate HAC:

(i) Ordinary (full) ML estimation, also denoted by FML, which is based on the complete
log-likelihood and hence on a predetermined structure.

(ii) The ML setup is based on realized pseudo-variables, e.g., the pseudo-variable for the
variables uk and u` are computed according to Górecki, Hofert, and Holeňa (2014) as

Zk`
def
= φ

[
2φ−1 {max(uk, u`)}

]
, so that the bivariate density is maximized with respect

to the copula parameter at each step of the procedure. This diagonal transformation of
the copula avoids the bias around the initial node arising from the similar transformation

Zk`
def
= φ

{
φ−1 (uk) + φ−1 (u`)

}
. Note that this procedure is not supported by asymptotic

theory.
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(iii) More precise results can be obtained by the recursive ML (RML) procedure discussed
in Okhrin et al. (2013a). The difference between the ML method and the recursive ML
procedure results from the maximized log-likelihood. While the bivariate log-likelihood is
considered at each estimation step of the ML method, the log-likelihood of the recursive
ML procedure corresponds at each estimation step to the full log-likelihood for the
marginal HAC regarded at that step. Compared to the full ML approach, the log-
likelihood is only optimized with respect to the parameter at the root node taken the
estimated parameter(s) at lower hierarchical levels as given, so that the final HAC being
a copula is ensured by shortening the feasible parameter interval from above. From this
point of view, the computational challenge is to build the log-likelihood for the full ML
estimation, which is almost solved by constructing the d-dimensional density, see Section
3.4.

3. Applications of HAC

Core of the HAC package is the function estimate.copula estimating the parameter and
determining the structure for given data. Let us consider the dataset finData included in the
HAC package. It contains the residuals of the filtered daily log-returns of four oil corporations:
Chevron Corporation (CVX), Exxon Mobil Corporation (XOM), Royal Dutch Shell (RDSA) and
Total (FP), covering n = 283 observations from 2011-02-02 to 2012-03-19. Intertemporal
dependence is removed by usual ARMA-GARCH models, whose standardized residuals are
plotted in Figure 2 and used in the subsequent analysis:

R> library("HAC")

R> data("finData")

R> system.time(result <- estimate.copula(finData, margins = "edf"))

user system elapsed

0.05 0.00 0.05

R> result

Class: hac

Generator: Gumbel

((FP.RDSA)_{2.09}.(XOM.CVX)_{2.83})_{1.51}

The returned object result is of class ‘hac’, whose properties are explored below. A practical
illustration of the mechanism of estimate.copula related to the previous real data example
is presented in Table 1.

At the lowest hierarchical level, the parameters of all bivariate copulae are estimated. The
couple (XCVX, XXOM) produces the strongest dependency, hence the best fit. Then, the pseudo-
variable

Z(CVX.XOM)
def
= φθ̂(CVX.XOM)

[
φ−1
θ̂(CVX.XOM)

{
F̂XOM (XXOM)

}
+ φ−1

(θ̂CVX.XOM)

{
F̂CVX (XCVX)

}]
(5)
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Figure 2: Scatterplot of the sample finData.

is defined, whose values are however not computed in practice, as the recursive ML procedure
(method = 3) is used by default. At the next nesting level the parameters of all bivariate
subsets are estimated and the variables XFP and XRDSA exhibit the best fit. Finally, the real-
izations of the remaining random variables Z(CVX.XOM) and Z(FP.RDSA) are grouped at the highest
level of the hierarchy, where Z(FP.RDSA) is defined analogously to Z(CVX.XOM).

In general, estimate.copula includes the following arguments:

R> names(formals(estimate.copula))

[1] "X" "type" "method" "hac" "epsilon"

[6] "agg.method" "margins" "na.rm" "max.min" "..."

The whole procedure is divided in three (optional) computational blocks. First, the margins
are specified. Secondly, the copula parameter, θθθ, is estimated and finally the HAC is checked
for aggregation possibilities. The margins of the (n × d) data matrix, X, are assumed to
follow the standard uniform distribution by default, i.e., margins = NULL, but the function
also permits non-uniformly distributed data as input if the argument margins is specified.
The marginal distributions can be determined non-parametrically, margins = "edf", or in a
parametric way, e.g., margins = "norm". Following the latter approach, the log-likelihood of
the marginal distributions is optimized with respect to the first (and second) parameter(s) of
the density dxxx. Based on these estimates, the values of the univariate margins are computed.
If the argument is defined as scalar, all margins are computed according to this specification.
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Otherwise, different margins can be defined, e.g., margins = c("norm", "t", "edf") for a
three-dimensional sample. Except the uniform distribution, all continuous distributions of
the stats package (see ?Distributions; R Core Team 2014) are available: "beta", "cauchy",
"chisq", "exp", "f", "gamma", "lnorm", "norm", "t" and "weibull". The values of non-
parametrically estimated distributions are computed according to Equation 3.

Inappropriate usage of this argument might lead to misspecified margins, e.g.,
margins = "exp" although the sample contains negative values. Even though the mar-
gins might be assumed to follow parametric distributions if margins != NULL, no joint log-
likelihood is maximized, but the margins are estimated in advance. As the asymptotic theory
works well for parametric and nonparametric estimation of margins, for the univariate analy-
sis we refer to other built-in packages. In practice, the column names of X should be specified,
as the default names X1, X2, ... are given otherwise.

A further optional argument of estimate.copula determines the estimation method. As
discussed above, we present three procedures: ML (method = 1), which is based on the
bivariate density, full ML (method = 2) and recursive ML (method = 3) respectively. The
routines of the copula package are imported if a simple Archimedean copula is fitted to the
data, see Yan (2007); Kojadinovic and Yan (2010); Hofert and Maechler (2011).

At the final computational step of the procedure the binary HAC is checked for aggregation
possibilities, if epsilon > 0. The new dependency parameter is computed according to the
specification agg.method, i.e., the "min", "max" or "mean" of the original parameters. To
emphasize this point, recall the four-dimensional binary HAC

C(u1, . . . , u4; (((12)3)4), θθθ) = φθ3

{
φ−1θ3 ◦ C{u1, . . . , u3; ((12)3), (θ1, θ2)

>}+ φ−1θ3 (u4)
}
, (6)

from Section 2. If we assume additionally θ1 ≈ θ2, such that θ1 − θ2 < ε, the copula C(·) can
be approximated by

C∗(u1, . . . , u4; ((123)4), θθθ) = φθ3

{
φ−1θ3 ◦ C{u1, . . . , u3; (123), θ∗}+ φ−1θ3 (u4)

}
, (7)

where θ∗ = (θ1 + θ2)/2 for instance. This is referred to as the associativity property of
Archimedean copulae, see Theorem 4.1.5 of Nelsen (2006). If the variables of two nodes
are aggregated, the new copula is checked for aggregation possibilities as well. Beside this
threshold approach, the realized estimates θ̂1 and θ̂2 can obviously be used to test H0 :
θ1 − θ2 = 0, since the asymptotic distribution is known. On the other hand, this approach is
extremely expensive computationally. The estimation results for the non-aggregated and the
aggregated cases are presented in the following:

R> result.agg = estimate.copula(sample, margins = "edf", epsilon = 0.3)

R> plot(result, circles = 0.3, index = TRUE, l = 1.7)

R> plot(result.agg, circles = 0.3, index = TRUE, l = 1.7)

3.1. The ‘hac’ object

‘hac’ objects can be constructed by the general function hac, with the same name as the object
it creates, and its simplified version hac.full for building fully nested HAC. For instance,
consider the construction of a four-dimensional fully nested HAC with Gumbel generator, i.e.,
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●

FP RDSA XOM CVX

θ(FP.RDSA) = 2.09 θ(XOM.CVX) = 2.83

θ((FP.RDSA).(XOM.CVX)) = 1.51 ●

FP RDSA XOM CVX

θ(FP.RDSA) = 2.09 θ(XOM.CVX) = 2.83

θ((FP.RDSA).(XOM.CVX)) = 1.51

Figure 3: Plot of result on the left and result.agg on the right hand side.

R> G.cop = hac.full(type = 1,

+ y = c("X4", "X3", "X2", "X1"),

+ theta = c(1.1, 1.8, 2.5))

R> G.cop

Class: hac

Generator: Gumbel

(((X1.X2)_{2.5}.X3)_{1.8}.X4)_{1.1}

where y denotes the vector of variables of class ‘character’ and theta denotes the vector
of dependency parameters. The parameters should be in ascending order, so that the first
parameter, 1.1, refers to the initial node of the HAC and the last parameter, 2.5, corresponds
to the first hierarchical level with variables "X1" and "X2". The vector y has to contain one
element more than the vector theta.

The S3 print method for ‘hac’ objects gives an output structured in three lines: (i) the
object’s Class, (ii) the Generator family and (iii) the HAC structure s. The structure can
also be produced by the supplementary function tree2str. Variables, grouped at the same
node are separated by a dot “.” and the dependency parameters are printed within the curly
parentheses.

Partially nested Archimedean copulae are constructed by hac with the main argument tree.
For a better understanding let us first consider a four-dimensional simple Archimedean copula
with dependency parameter θ = 2:

R> hac(type = 1, tree = list("X1", "X2", "X3", "X4", 2))

Class: hac

Generator: Gumbel

(X1.X2.X3.X4)_{2}

The copula tree is constructed by a list consisting of four character objects, i.e.,
"X1", "X2", "X3", "X4", and a number, which denotes the dependency parameter of the
Archimedean copula. According to the theoretical construction of HAC in Section 2, we can
induce structure by substituting margins through a subcopula. The four variables "X1", "X2",
"X3", "X4" can, for example, be structured by
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R> hac(type = 1, tree = list(list("X1", "X2", 2.5), "X3", "X4", 1.5))

Class: hac

Generator: Gumbel

((X1.X2)_{2.5}.X3.X4)_{1.5}

where the nested component, list("X1", "X2", 2.5), is the subcopula at the lowest hi-
erarchical level. Note that the nested component is of the same general form list(...,

numeric(1)) as the simple Archimedean copula, where numeric(1) denotes the dependency
parameter and “...” refers to arbitrary variables and subcopulae, which may contain sub-
copulae as well, like shown in the following:

R> HAC = hac(type = 1, tree = list(list("Y1", list("Z3", "Z4", 3), "Y2", 2.5),

+ list("Z1", "Z2", 2), list("X1", "X2", 2.4),

+ "X3", "X4", 1.5))

R> HAC

Class: hac

Generator: Gumbel

((Y1.(Z3.Z4)_{3}.Y2)_{2.5}.(Z1.Z2)_{2}.(X1.X2)_{2.4}.X3.X4)_{1.5}

We cannot avoid the notation becoming more cumbersome for higher dimensions, but the
principle stays the same for arbitrary dimensions, i.e., variables are substituted by lists of
the general form list(..., numeric(1)). The function hac provides a further argument for
specifying the type of the HAC.

3.2. Graphics

As the string representation of the structure becomes more unclear as dimension increases,
the package allows to produce graphics of ‘hac’ objects using the S3 plot method for these
objects. Figure 4 illustrates for example the dependence structure of the already defined
object HAC.

R> plot(HAC, cex = 0.8, circles = 0.35)

The explanatory power of these plots can be enhanced by several of the usual plot parameters:

R> names(formals(plot.hac))

[1] "x" "xlim" "ylim" "xlab" "ylab"

[6] "col" "fg" "bg" "col.t" "lwd"

[11] "index" "numbering" "theta" "h" "l"

[16] "circles" "digits" "..."

The optional, boolean argument theta determines whether the dependency parameter of
the copula θ or Kendall’s τ is printed, whereby Kendall’s τ cannot be easily interpreted in
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●

Y1

Z3 Z4

Y2 Z1 Z2 X1 X2

X3 X4θ = 2.5

θ = 3

θ = 2 θ = 2.4

θ = 1.5

Figure 4: Plot of the object HAC.

the usual way for more than two dimensions. The supplementary function theta2tau com-
putes Kendall’s rank correlation coefficient based on the value of the dependency parameter,
whereas tau2theta corresponds to the inverse function, see Table 2. If index = TRUE, strings
illustrating the subcopulae of the nodes are used as subscripts of the dependency parameters.
If, additionally, numbering = TRUE, the parameters are numbered, such that the subscripts
correspond to the estimation stages if the non-aggregated output of estimate.copula is plot-
ted. The radius of the circles, the width l and the height h of the rectangles and the specific
colors of the lines and the text can be adjusted. Further arguments “...” can, for example,
be used to modify the font size cex or to include a subtitle sub.

3.3. Random sampling

To be in line with other R packages providing tools for different univariate and multivariate
distributions we provide: (i) dHAC for computing the values of the copula density, (ii) pHAC

for the cumulative distribution function and (iii) rHAC for simulations. Sampling methods are
imported from the copula package and rely on the algorithm suggested in Hofert and Maechler
(2011), who summarize the sampling procedure as follows:

Algorithm 1. Let C(·) be a nested Archimedean copula with root copula C0(·) generated by
φ0. Let U be a vector of the same dimension as C0(·).

1. Sample from inverse Laplace transform LS−1 of φ0(·), i.e., V0 ∼ F0(·)
def
= LS−1 {φ0(·)}.

2. For all components u of C0(·) that are nested Archimedean copulae do:

(a) Set C1(·) with generator φ1(·) to the nested Archimedean copula u.

(b) Sample V01 ∼ F01(·)
def
= LS−1 {φ01 (·;V0)}.

(c) Set C0(·)
def
= C1(·), φ0(·)

def
= φ1(·), and V0

def
= V01 and continue with 2.

3. For all other components u of C0(·) do:

(a) Sample R ∼ Exp(1).

(b) Set the component of U corresponding to u to φ0 (R/V0).
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Figure 5: Scatterplot of the sample sim.data, which is simulated from G.cop associated with
a four dimensional HAC-based Gumbel copula.

4. Return U .

The function rHAC requires only two arguments: (i) the sample size n and (ii) an object of
the class ‘hac’ specifying the characteristics of the underlying HAC, e.g.,

R> sim.data = rHAC(500, G.cop)

R> pairs(sim.data, pch = 20)

In particular, the contributions of McNeil (2008), Hofert (2008) and Hofert (2011) provide
the theoretical foundations to sample computationally efficient random vectors from HAC.
Algorithm 1 exploits the recursively determined structure of HAC and samples from F0 and
F01, which are comprehensively discussed in Hofert (2011) and Hofert and Maechler (2011).

3.4. The CDF and density

The arguments for pHAC are a ‘hac’ object and a sample X, whose column names should be
identical to the variables’ names of the ‘hac’ object, e.g.,

R> probs = pHAC(X = sim.data, hac = G.cop)

As the copula density is defined as dth derivative of the copula C(·) with respect to the
arguments uj , j = 1, . . . , d, c.f. Savu and Trede (2010), the explicit form of the density varies
with the structure of the underlying HAC. Hence, including the explicit form of all possible d-
dimensional copula densities is absolutely unrealistic. Our function dHAC derives an analytical
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Figure 6: The values of probs on the x-axis against the values of probs.emp.

expression of the density for a given ‘hac’ object, which can be instantaneously evaluated if
eval = TRUE. The analytical expression of the density is found by subsequently using the D

function to differentiate the algebraic form of the copula “symbolically” with respect to the
variables of the inserted ‘hac’ object. Although the derivation and evaluation of the density
is computationally and numerically demanding, dHAC provides a flexible way to work with
HAC densities in practice, because they do not need to be manually derived or numerically
approximated. Since the densities of the two-dimensional Archimedean copulae are frequently
called during the pseudo multi-stage estimation procedure (1), their closed form expressions
are given explicitly.

3.5. Empirical copula

As long as our package does not cover goodness-of-fit tests, which are difficult to implement
in general and involve computational intensive techniques via bootstrapping, see Genest,
Rémillard, and Beaudoin (2009), it might be difficult to justify the choice of a parametric
assumption. However, the values of probs can be compared to those of the empirical copula,
i.e.,

Ĉ (u1, . . . , ud) = n−1
n∑
i=1

d∏
j=1

I
{
F̂j (Xij) ≤ uj

}
, (8)

where F̂j(·) denotes the estimated marginal distribution function of variable Xj . Figure 6
suggests a proper fit of the empirical copula computed by

R> probs.emp = emp.copula.self(sim.data, proc = "M")

There are two functions which can be used for computing the empirical copula:
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Figure 7: The plot shows the computational times for an increasing sample size but a fixed
dimension d = 5 on a log-log scale. The solid line refers to proc = "M" and the dashed line
to proc = "A".

R> emp.copula(u, x, proc = "M", sort = "none", margins = NULL,

+ na.rm = FALSE, ...)

R> emp.copula.self(x, proc = "M", sort = "none", margins = NULL,

+ na.rm = FALSE, ...)

The difference between the arguments of these functions is that emp.copula requires a matrix
u, at which the estimated function is evaluated. This can, in particular, be helpful, when the
sample is decomposed to evaluate the out-of-sample performance as the empirical copula
can be regarded as natural benchmark. In contrast, emp.copula.self evaluates Ĉ(·) at the
sample x used for the estimation and thus, the returned values can be considered as in-sample
fit. The argument proc enables the user to choose between two computational methods. We
recommend to use the default method, proc = "M", which is based on matrix manipulations,
because its computational time is just a small fraction of the time taken by method "A",
which is based on apply, see Figure 7. However, method "M" is sensitive with respect to
the size of the working memory and therefore inapplicable for very large datasets. Note
that standard applications, e.g., measuring the VaR of a portfolio, are based on 250 or 500
observations. Figure 7 illustrates rapidly increasing computational times of the matrix-based
method for more than 5000 observations until the method collapses. In contrast, the runtimes
of the alternative method proc = "A" are more robust against an increasing sample size. The
computational times are less sensitive with respect to the dimension and we recommend using
the default method up to d = 100 for non-large sample sizes. Another possibility to deal with
large datasets is specifying the matrix u manually in order to reduce the number of vectors
which are to be evaluated.

4. Simulation study
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To ensure the accuracy of the proposed methods, we generate random data from six copula

models of different dimension Cji
def
= Cj (·; si, θθθi), for i = 1, 2, 3 and j = C,G, and show that

the estimates almost coincide with the true model specification. Here, j denotes the copula
family (Clayton or Gumbel) and the structures are given by s1 = ((12)3), s2 = ((((12)3)4)5)
and s3 = ((12)(34)5). The values of θθθi are presented in Tables 3 and 4. They are chosen to
obtain a similar strength of dependence by the Clayton and Gumbel based models.

The summary statistics of Tables 3 and 4 rely on n = 1000 estimates, whereby only esti-
mates with the same structure can be compared. For this reason the procedure was m times
replicated till n = 1000 estimates were available. As estimate.copula approximates the
true structure, we set epsilon = 0.15 for CG

3 and epsilon = 0.20 for CC
3 , which are not

based on a binary structure and employ the RML procedure. Note that the RML procedure
attempts at aggregating the copula tree after each estimation step. The simulated samples
for the copula estimation consist of 250 observations for the copula types in order to illustrate
the finite sample properties of the procedures. Tables 3 and 4 indicate, that the estimation
procedure works properly for the suggested models, as the estimates are on average consis-
tent with the true parameters. Nevertheless, a few points deserve being mentioned: (i) The
multi-stage procedure detects the true structure for the binary HAC in n/m = 100% and the
recursive ML procedure for the non-binary HAC in at least n/m = 99% of the cases as long as
the parameters exhibit the imposed distance and the permutation symmetry of the variables
at the same node is taken into consideration. (ii) The estimates at lower hierarchical levels
show a higher volatility than the estimates close to the initial node and the estimates for
the Clayton models are more volatile than the estimates of the Gumbel based HAC. (iii) All
estimated models indicate more imprecise estimates for higher nesting levels, but the gains
from full ML estimation regarding the precision are only observable for the estimates at the
root node of CG

3 , see Table 4. However, this minor improvement is costly since the results
are based on a preestimated structure. (iv) These observations justify choosing different val-
ues of epsilon for CG

3 and CC
3 , as the tuning parameter should reflect the variability of the

parameters. Theoretically, epsilon can be different for each aggregation of the structure so
that the parameter variability is correctly represented. This, however, becomes infeasible in
practice, because the number of nodes contained in the true structure is generally unknown.
If the parameters are closer and/or the value of epsilon is chosen smaller, the amount of
correctly classified structures declines. On the other hand, larger sample sizes permit smaller
values of epsilon as the parameters are more precisely estimated.

5. Conclusion

The HAC package focuses on the computationally efficient estimation of hierarchical Archime-
dean copulae, which is based on grouping binary structures within a recursive multi-stage ML
procedure. Its theoretical and practical advantages are (i) avoiding the demanding asymp-
totic theory, which arises due to constrained one-step ML estimation and (ii) the consecutive
optimization of the log-likelihood instead of the singular optimization of the d-dimensional
one with respect to several parameters. Since HAC permit modeling large-dimensional ran-
dom vectors, the package provides a function for producing plots of the related ‘hac’ objects.
According to the usual naming of distributions in R, we provide dHAC, pHAC and rHAC to
compute the values of density- and distribution functions or to sample from arbitrary HAC.
Finally, the accuracy of the methods has been shown in a small simulation study.
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Statistics
Model θθθ min median mean max sd

CG
1

θ2 = 1.500 1.29 1.50 1.50 1.79 0.07
θ1 = 3.000 2.55 3.00 3.00 3.60 0.16

CC
1

θ2 = 1.000 0.62 1.00 1.00 1.55 0.12
θ1 = 4.000 3.26 4.01 4.01 5.00 0.27

CG
2

θ4 = 1.125 1.00 1.13 1.13 1.29 0.05
θ3 = 1.500 1.25 1.50 1.50 1.86 0.08
θ2 = 2.250 1.95 2.25 2.25 2.62 0.12
θ1 = 4.500 3.79 4.51 4.52 5.51 0.24

CC
2

θ4 = 0.250 0.02 0.26 0.26 0.57 0.09
θ3 = 1.000 0.62 1.00 1.00 1.50 0.12
θ2 = 2.500 1.95 2.52 2.52 3.19 0.20
θ1 = 7.000 5.95 7.00 7.02 8.40 0.43

Table 3: The models for the Gumbel family CG
1 , CG

2 and for the Clayton family CC
1 , CC

2 ,
where θθθ denotes the true copula parameters.

Statistics for recursive ML
Model θθθ s̄ min median mean max sd

CG
3

θ3 = 1.125
(((34)5)(12)) = 0.50%

1.01 1.10 1.11 1.22 0.03
θ2 = 1.500

((534)(12)) = 0.10%
1.28 1.50 1.50 1.87 0.07

θ1 = 3.000 2.58 2.99 3.00 3.64 0.16

CC
3

θ3 = 0.250
(((34)5)(12)) = 0.40%

0.09 0.25 0.25 0.46 0.06
θ2 = 1.000

(((12)(34))5) = 0.30%
0.62 1.00 1.01 1.42 0.13

θ1 = 4.000 3.08 4.00 4.01 5.05 0.29

Statistics for full ML

CG
3

θ3 = 1.125
−

1.05 1.13 1.13 1.23 0.03
θ2 = 1.500 1.29 1.50 1.50 1.86 0.07
θ1 = 3.000 2.58 2.99 3.00 3.65 0.16

CC
3

θ3 = 0.250
−

0.13 0.25 0.25 0.42 0.05
θ2 = 1.000 0.60 1.00 1.01 1.42 0.13
θ1 = 4.000 3.10 4.00 4.01 5.05 0.29

Table 4: The model for the Gumbel family CG
3 and for the Clayton family CC

3 , where θθθ
denotes the true copula parameters and the column s̄ refers to the percentage of incorrectly
classified structures based on n = 1000 replications.

Acknowledgments

The authors are grateful to the editors of the Journal of Statistical Software and two anony-
mous referees for several helpful comments and suggestions. The research was supported
by the Deutsche Forschungsgemeinschaft through the CRC 649 “Economic Risk”, Humboldt-
Universität zu Berlin and the International Research Training Group 1792.

References



18 Hierarchical Archimedean Copulae: The HAC Package

Acar EF, Craiu RV, Yao F (2011). “Dependence Calibration in Conditional Copulas: A
Nonparametric Approach.” Biometrics, 67(2), 445–453.
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