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CHAPTER 11

Survival Analysis:
Glioma Treatment and
Breast Cancer Survival

11.1 Introduction

11.2 Survival Analysis

11.3 Analysis Using R

11.3.1 Glioma Radioimmunotherapy

Figure 11.1 leads to the impression that patients treated with the novel
radioimmunotherapy survive longer, regardless of the tumor type. In order to
assess if this informal finding is reliable, we may perform a log-rank test via

R> survdiff(Surv(time, event) ~ group, data = g3)

Call:

survdiff(formula = Surv(time, event) ~ group, data = g3)

N Observed Expected (O-E)^2/E (O-E)^2/V

group=Control 6 4 1.49 4.23 6.06

group=RIT 11 2 4.51 1.40 6.06

Chisq= 6.1 on 1 degrees of freedom, p= 0.0138

which indicates that the survival times are indeed different in both groups.
However, the number of patients is rather limited and so it might be danger-
ous to rely on asymptotic tests. As shown in Chapter 4, conditioning on the
data and computing the distribution of the test statistics without additional
assumptions are one alternative. The function surv_test from package coin

(Hothorn et al., 2006, 2013) can be used to compute an exact conditional test
answering the question whether the survival times differ for grade III patients.
For all possible permutations of the groups on the censored response variable,
the test statistic is computed and the fraction of whose being greater than the
observed statistic defines the exact p-value:

R> library("coin")

R> surv_test(Surv(time, event) ~ group, data = g3,

+ distribution = "exact")

Exact Logrank Test

data: Surv(time, event) by group (Control, RIT)

Z = 2.17, p-value = 0.02877

alternative hypothesis: two.sided
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R> data("glioma", package = "coin")

R> library("survival")

R> layout(matrix(1:2, ncol = 2))

R> g3 <- subset(glioma, histology == "Grade3")

R> plot(survfit(Surv(time, event) ~ group, data = g3),

+ main = "Grade III Glioma", lty = c(2, 1),

+ ylab = "Probability", xlab = "Survival Time in Month",

+ legend.text = c("Control", "Treated"),

+ legend.bty = "n")

R> g4 <- subset(glioma, histology == "GBM")

R> plot(survfit(Surv(time, event) ~ group, data = g4),

+ main = "Grade IV Glioma", ylab = "Probability",

+ lty = c(2, 1), xlab = "Survival Time in Month",

+ xlim = c(0, max(glioma$time) * 1.05))
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Figure 11.1 Survival times comparing treated and control patients.

which, in this case, confirms the above results. The same exercise can be
performed for patients with grade IV glioma

R> surv_test(Surv(time, event) ~ group, data = g4,

+ distribution = "exact")

Exact Logrank Test

data: Surv(time, event) by group (Control, RIT)

Z = 3.22, p-value = 0.0001588

alternative hypothesis: two.sided

which shows a difference as well. However, it might be more appropriate to
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answer the question whether the novel therapy is superior for both groups of
tumors simultaneously. This can be implemented by stratifying, or blocking,
with respect to tumor grading:

R> surv_test(Surv(time, event) ~ group | histology,

+ data = glioma, distribution = approximate(B = 10000))

Approximative Logrank Test

data: Surv(time, event) by

group (Control, RIT)

stratified by histology

Z = 3.67, p-value = 1e-04

alternative hypothesis: two.sided

Here, we need to approximate the exact conditional distribution since the exact
distribution is hard to compute. The result supports the initial impression
implied by Figure 11.1.

11.3.2 Breast Cancer Survival

Before fitting a Cox model to the GBSG2 data, we again derive a Kaplan-Meier
estimate of the survival function of the data, here stratified with respect to
whether a patient received hormonal therapy or not (see Figure 11.2).

Fitting a Cox model follows roughly the same rules as shown for linear
models in Chapter 6 with the exception that the response variable is again
coded as a Surv object. For the GBSG2 data, the model is fitted via

R> GBSG2_coxph <- coxph(Surv(time, cens) ~ ., data = GBSG2)

and the results as given by the summary method are given in Figure 11.3. Since
we are especially interested in the relative risk for patients who underwent
hormonal therapy, we can compute an estimate of the relative risk and a
corresponding confidence interval via

R> ci <- confint(GBSG2_coxph)

R> exp(cbind(coef(GBSG2_coxph), ci))["horThyes",]

2.5 % 97.5 %

0.707 0.549 0.911

This result implies that patients treated with hormonal therapy had a lower
risk and thus survived longer compared to women who were not treated this
way.

Model checking and model selection for proportional hazards models are
complicated by the fact that easy-to-use residuals, such as those discussed in
Chapter 6 for linear regression models, are not available, but several possibil-
ities do exist. A check of the proportional hazards assumption can be done by
looking at the parameter estimates β1, . . . , βq over time. We can safely assume
proportional hazards when the estimates don’t vary much over time. The null
hypothesis of constant regression coefficients can be tested, both globally as
well as for each covariate, by using the cox.zph function

R> GBSG2_zph <- cox.zph(GBSG2_coxph)

R> GBSG2_zph
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R> data("GBSG2", package = "TH.data")

R> plot(survfit(Surv(time, cens) ~ horTh, data = GBSG2),

+ lty = 1:2, mark.time = FALSE, ylab = "Probability",

+ xlab = "Survival Time in Days")

R> legend(250, 0.2, legend = c("yes", "no"), lty = c(2, 1),

+ title = "Hormonal Therapy", bty = "n")
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Figure 11.2 Kaplan-Meier estimates for breast cancer patients who either re-

ceived hormonal therapy or not.

rho chisq p

horThyes -2.54e-02 1.96e-01 0.65778

age 9.40e-02 2.96e+00 0.08552

menostatPost -1.19e-05 3.75e-08 0.99985

tsize -2.50e-02 1.88e-01 0.66436

tgrade.L -1.30e-01 4.85e+00 0.02772

tgrade.Q 3.22e-03 3.14e-03 0.95530

pnodes 5.84e-02 5.98e-01 0.43941

progrec 5.65e-02 1.20e+00 0.27351

estrec 5.46e-02 1.03e+00 0.30967

GLOBAL NA 2.27e+01 0.00695

There seems to be some evidence of time-varying effects, especially for age and
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R> summary(GBSG2_coxph)

Call:

coxph(formula = Surv(time, cens) ~ ., data = GBSG2)

n= 686, number of events= 299

coef exp(coef) se(coef) z Pr(>|z|)

horThyes -0.346278 0.707316 0.129075 -2.68 0.00730

age -0.009459 0.990585 0.009301 -1.02 0.30913

menostatPost 0.258445 1.294915 0.183476 1.41 0.15895

tsize 0.007796 1.007827 0.003939 1.98 0.04779

tgrade.L 0.551299 1.735506 0.189844 2.90 0.00368

tgrade.Q -0.201091 0.817838 0.121965 -1.65 0.09920

pnodes 0.048789 1.049998 0.007447 6.55 5.7e-11

progrec -0.002217 0.997785 0.000574 -3.87 0.00011

estrec 0.000197 1.000197 0.000450 0.44 0.66131

exp(coef) exp(-coef) lower .95 upper .95

horThyes 0.707 1.414 0.549 0.911

age 0.991 1.010 0.973 1.009

menostatPost 1.295 0.772 0.904 1.855

tsize 1.008 0.992 1.000 1.016

tgrade.L 1.736 0.576 1.196 2.518

tgrade.Q 0.818 1.223 0.644 1.039

pnodes 1.050 0.952 1.035 1.065

progrec 0.998 1.002 0.997 0.999

estrec 1.000 1.000 0.999 1.001

Concordance= 0.692 (se = 0.018 )

Rsquare= 0.142 (max possible= 0.995 )

Likelihood ratio test= 105 on 9 df, p=0

Wald test = 115 on 9 df, p=0

Score (logrank) test = 121 on 9 df, p=0

Figure 11.3 R output of the summary method for GBSG2_coxph.

tumor grading. A graphical representation of the estimated regression coeffi-
cient over time is shown in Figure 11.4. We refer to Therneau and Grambsch
(2000) for a detailed theoretical description of these topics.

The tree-structured regression models applied to continuous and binary
responses in Chapter 9 are applicable to censored responses in survival analysis
as well. Such a simple prognostic model with only a few terminal nodes might
be helpful for relating the risk to certain subgroups of patients. Both rpart

and the ctree function from package partykit can be applied to the GBSG2
data, where the conditional trees of the latter select cutpoints based on log-
rank statistics

R> GBSG2_ctree <- ctree(Surv(time, cens) ~ ., data = GBSG2)

and the plotmethod applied to this tree produces the graphical representation
in Figure 11.6. The number of positive lymph nodes (pnodes) is the most
important variable in the tree, corresponding to the p-value associated with
this variable in Cox’s regression; see Figure 11.3. Women with not more than
three positive lymph nodes who have undergone hormonal therapy seem to
have the best prognosis whereas a large number of positive lymph nodes and
a small value of the progesterone receptor indicates a bad prognosis.



8 SURVIVAL ANALYSIS

R> plot(GBSG2_zph, var = "age")

Time

B
et

a(
t)

 fo
r 

ag
e

270 440 560 770 1100 1400 1800 2300

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

Figure 11.4 Estimated regression coefficient for age depending on time for the

GBSG2 data.
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R> layout(matrix(1:3, ncol = 3))

R> res <- residuals(GBSG2_coxph)

R> plot(res ~ age, data = GBSG2, ylim = c(-2.5, 1.5),

+ pch = ".", ylab = "Martingale Residuals")

R> abline(h = 0, lty = 3)

R> plot(res ~ pnodes, data = GBSG2, ylim = c(-2.5, 1.5),

+ pch = ".", ylab = "")

R> abline(h = 0, lty = 3)

R> plot(res ~ log(progrec), data = GBSG2, ylim = c(-2.5, 1.5),

+ pch = ".", ylab = "")

R> abline(h = 0, lty = 3)
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Figure 11.5 Martingale residuals for the GBSG2 data.
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R> plot(GBSG2_ctree)
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Figure 11.6 Conditional inference tree for the GBSG2 data with the survival func-

tion, estimated by Kaplan-Meier, shown for every subgroup of pa-

tients identified by the tree.
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