
A Handbook of Statistical Analyses
Using R

Brian S. Everitt and Torsten Hothorn

CHAPTER 8

Recursive Partitioning: Large
Companies and Glaucoma Diagnosis

8.1 Introduction

8.2 Recursive Partitioning

8.3 Analysis Using R

8.3.1 Forbes 2000 Data

For some observations the profit is missing and we first remove those compa-
nies from the list

R> data("Forbes2000", package = "HSAUR")

R> Forbes2000 <- subset(Forbes2000, !is.na(profits))

The rpart function from rpart can be used to grow a regression tree. The
response variable and the covariates are defined by a model formula in the
same way as for lm, say. By default, a large initial tree is grown.

R> library("rpart")

R> forbes_rpart <- rpart(profits ~ assets + marketvalue + sales,

+ data = Forbes2000)

A print method for rpart objects is available, however, a graphical represen-
tation shown in Figure 8.1 is more convenient. Observations which satisfy the
condition shown for each node go to the left and observations which don’t are
element of the right branch in each node. The numbers plotted in the leaves are
the mean profit for those observations satisfying the conditions stated above.
For example, the highest profit is observed for companies with a market value
greater than 89.33 billion US dollars and with more than 91.92 US dollars
sales.

To determine if the tree is appropriate or if some of the branches need to
be subjected to pruning we can use the cptable element of the rpart object:

R> print(forbes_rpart$cptable)

CP nsplit rel error xerror xstd

1 0.23748446 0 1.0000000 1.0010339 0.1946331

2 0.04600397 1 0.7625155 0.8397144 0.2174245

3 0.04258786 2 0.7165116 0.8066685 0.2166339

4 0.02030891 3 0.6739237 0.7625940 0.2089684

5 0.01854336 4 0.6536148 0.7842574 0.2093683

6 0.01102304 5 0.6350714 0.7925891 0.2106088

7 0.01076006 6 0.6240484 0.7931405 0.2128048

8 0.01000000 7 0.6132883 0.7902771 0.2128037

R> opt <- which.min(forbes_rpart$cptable[,"xerror"])

3

4 RECURSIVE PARTITIONING

R> plot(forbes_rpart, uniform = TRUE, margin = 0.1, branch = 0.5,

+ compress = TRUE)

R> text(forbes_rpart)

|marketvalue< 89.33

marketvalue< 32.72

assets>=329

marketvalue< 7.895

sales>=54.84

sales< 42.94

sales< 91.92

−3.366

0.07812 0.5045

−0.5994

1.872 4.633

5.211 11.82

Figure 8.1 Large initial tree for Forbes 2000 data.

The xerror column contains of estimates of cross-validated prediction error
for different numbers of splits (nsplit). The best tree has three splits. Now
we can prune back the large initial tree using

R> cp <- forbes_rpart$cptable[opt, "CP"]

R> forbes_prune <- prune(forbes_rpart, cp = cp)

The result is shown in Figure 8.2. This tree is much smaller. From the sample
sizes and boxplots shown for each leaf we see that the majority of companies
is grouped together. However, a large market value, more that 32.72 billion
US dollars, seems to be a good indicator of large profits.

ANALYSIS USING R 5

R> layout(matrix(1:2, nc = 1))

R> plot(forbes_prune, uniform = TRUE, margin = 0.1, branch = 0.5,

+ compress = TRUE)

R> text(forbes_prune)

R> rn <- rownames(forbes_prune$frame)

R> lev <- rn[sort(unique(forbes_prune$where))]

R> where <- factor(rn[forbes_prune$where], levels = lev)

R> n <- tapply(Forbes2000$profits, where, length)

R> boxplot(Forbes2000$profits ~ where, varwidth = TRUE,

+ ylim = range(Forbes2000$profit) * 1.3,

+ pars = list(axes = FALSE),

+ ylab = "Profits in US dollars")

R> abline(h = 0, lty = 3)

R> axis(2)

R> text(1:length(n), max(Forbes2000$profit) * 1.2,

+ paste("n = ", n))

|marketvalue< 89.33

marketvalue< 32.72 sales< 91.92

0.1771 1.728 5.211 11.82

●
●●●●●●
●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●
●●●
●
●●●●●●
●
●●●●●●●●●●●
●●●●●
●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●
●
●
●

●

●

●

●●●●
●●

●●
●
●
●●●

●

●●

●
●

●●

●

●●
●●●●●●
●
●
●

●

●

●●●
●
●●

●

●●
●
●●●
●
●●●

●

●
●●●●●●
●

●●●

●

●●

●
●
●

●
●●●●
●
●●●

●
●●●●●●●●●●●
●

●
●
●●●●●●●●●●●
●
●●●●●●●
●
●
●
●●●●●
●
●
●

●

●

●

●

●

●
●
●

●

●

P
ro

fit
s

in
 U

S
 d

ol
la

rs

−
30

−
20

−
10

0
10

20

n = 1845 n = 117 n = 24 n = 9

Figure 8.2 Pruned regression tree for Forbes 2000 data with the distribution of

the profit in each leaf depicted by a boxplot.

6 RECURSIVE PARTITIONING

8.3.2 Glaucoma Diagnosis

R> data("GlaucomaM", package = "TH.data")

R> glaucoma_rpart <- rpart(Class ~ ., data = GlaucomaM,

+ control = rpart.control(xval = 100))

R> glaucoma_rpart$cptable

CP nsplit rel error xerror xstd

1 0.65306122 0 1.0000000 1.5306122 0.06054391

2 0.07142857 1 0.3469388 0.3877551 0.05647630

3 0.01360544 2 0.2755102 0.3775510 0.05590431

4 0.01000000 5 0.2346939 0.4489796 0.05960655

R> opt <- which.min(glaucoma_rpart$cptable[,"xerror"])

R> cp <- glaucoma_rpart$cptable[opt, "CP"]

R> glaucoma_prune <- prune(glaucoma_rpart, cp = cp)

As we discussed earlier, the choice of the appropriate sized tree is not a
trivial problem. For the glaucoma data, the above choice of three leaves is
very unstable across multiple runs of cross-validation. As an illustration of
this problem we repeat the very same analysis as shown above and record the
optimal number of splits as suggested by the cross-validation runs.

R> nsplitopt <- vector(mode = "integer", length = 25)

R> for (i in 1:length(nsplitopt)) {

+ cp <- rpart(Class ~ ., data = GlaucomaM)$cptable

+ nsplitopt[i] <- cp[which.min(cp[,"xerror"]), "nsplit"]

+ }

R> table(nsplitopt)

nsplitopt

1 2 5

14 7 4

Although for 14 runs of cross-validation a simple tree with one split only is
suggested, larger trees would have been favored in 11 of the cases. This short
analysis shows that we should not trust the tree in Figure 8.3 too much.

One way out of this dilemma is the aggregation of multiple trees via bagging.
In R, the bagging idea can be implemented by three or four lines of code. Case
count or weight vectors representing the bootstrap samples can be drawn from
the multinominal distribution with parameters n and p1 = 1/n, . . . , pn =
1/n via the rmultinom function. For each weight vector, one large tree is
constructed without pruning and the rpart objects are stored in a list, here
called trees:

R> trees <- vector(mode = "list", length = 25)

R> n <- nrow(GlaucomaM)

R> bootsamples <- rmultinom(length(trees), n, rep(1, n)/n)

R> mod <- rpart(Class ~ ., data = GlaucomaM,

+ control = rpart.control(xval = 0))

R> for (i in 1:length(trees))

+ trees[[i]] <- update(mod, weights = bootsamples[,i])

ANALYSIS USING R 7

R> layout(matrix(1:2, nc = 1))

R> plot(glaucoma_prune, uniform = TRUE, margin = 0.1, branch = 0.5,

+ compress = TRUE)

R> text(glaucoma_prune, use.n = TRUE)

R> rn <- rownames(glaucoma_prune$frame)

R> lev <- rn[sort(unique(glaucoma_prune$where))]

R> where <- factor(rn[glaucoma_prune$where], levels = lev)

R> mosaicplot(table(where, GlaucomaM$Class), main = "", xlab = "",

+ las = 1)

|
varg< 0.209

mhcg>=0.1695
glaucoma

70/6

glaucoma
7/0

normal
21/92

2 6 7

glaucoma

normal

Figure 8.3 Pruned classification tree of the glaucoma data with class distribution

in the leaves depicted by a mosaicplot.

8 RECURSIVE PARTITIONING

The update function re-evaluates the call of mod, however, with the weights
being altered, i.e., fits a tree to a bootstrap sample specified by the weights.
It is interesting to have a look at the structures of the multiple trees. For
example, the variable selected for splitting in the root of the tree is not unique
as can be seen by

R> table(sapply(trees, function(x) as.character(x$frame$var[1])))

phcg varg vari vars

1 14 9 1

Although varg is selected most of the time, other variables such as vari occur
as well – a further indication that the tree in Figure 8.3 is questionable and
that hard decisions are not appropriate for the glaucoma data.
In order to make use of the ensemble of trees in the list trees we estimate

the conditional probability of suffering from glaucoma given the covariates for
each observation in the original data set by

R> classprob <- matrix(0, nrow = n, ncol = length(trees))

R> for (i in 1:length(trees)) {

+ classprob[,i] <- predict(trees[[i]],

+ newdata = GlaucomaM)[,1]

+ classprob[bootsamples[,i] > 0,i] <- NA

+ }

Thus, for each observation we get 25 estimates. However, each observation has
been used for growing one of the trees with probability 0.632 and thus was
not used with probability 0.368. Consequently, the estimate from a tree where
an observation was not used for growing is better for judging the quality of
the predictions and we label the other estimates with NA.

Now, we can average the estimates and we vote for glaucoma when the
average of the estimates of the conditional glaucoma probability exceeds 0.5.
The comparison between the observed and the predicted classes does not suffer
from overfitting since the predictions are computed from those trees for which
each single observation was not used for growing.

R> avg <- rowMeans(classprob, na.rm = TRUE)

R> predictions <- factor(ifelse(avg > 0.5, "glaucoma", "normal"))

R> predtab <- table(predictions, GlaucomaM$Class)

R> predtab

predictions glaucoma normal

glaucoma 77 12

normal 21 86

Thus, an honest estimate of the probability of a glaucoma prediction when
the patient is actually suffering from glaucoma is

R> round(predtab[1,1] / colSums(predtab)[1] * 100)

glaucoma

79

per cent. For

R> round(predtab[2,2] / colSums(predtab)[2] * 100)

ANALYSIS USING R 9

R> library("lattice")

R> gdata <- data.frame(avg = rep(avg, 2),

+ class = rep(as.numeric(GlaucomaM$Class), 2),

+ obs = c(GlaucomaM[["varg"]], GlaucomaM[["vari"]]),

+ var = factor(c(rep("varg", nrow(GlaucomaM)),

+ rep("vari", nrow(GlaucomaM)))))

R> panelf <- function(x, y) {

+ panel.xyplot(x, y, pch = gdata$class)

+ panel.abline(h = 0.5, lty = 2)

+ }

R> print(xyplot(avg ~ obs | var, data = gdata,

+ panel = panelf,

+ scales = "free", xlab = "",

+ ylab = "Estimated Class Probability Glaucoma"))

E
st

im
at

ed
 C

la
ss

 P
ro

ba
bi

lit
y

G
la

uc
om

a

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.5 1.0

●● ●●

●

●

●

●

●

●●

●

●

●

● ●●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●
●●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●● ●

●

● ●●

●

●

●

●
● ●

●

●●●

●

●●

●

●

●

●

●

●

●

varg
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

0.00 0.05 0.10 0.15 0.20 0.25

●● ●●

●

●

●

●

●

●●

●

●

●

● ●●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●
●●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●● ●

●

●● ●

●

●

●

●
● ●

●

● ●●

●

●●

●

●

●

●

●

●

●

vari

Figure 8.4 Glaucoma data: Estimated class probabilities depending on two im-

portant variables. The 0.5 cut-off for the estimated glaucoma proba-

bility is depicted as horizontal line. Glaucomateous eyes are plotted

as circles and normal eyes are triangles.

normal

88

per cent of normal eyes, the ensemble does not predict a glaucomateous dam-
age.

10 RECURSIVE PARTITIONING

R> plot(glaucoma_ctree)

vari
p < 0.001

1

≤ 0.059 > 0.059

vasg
p < 0.001

2

≤ 0.066 > 0.066

Node 3 (n = 79)

no
rm

al
gl

au
co

m
a

0

0.2

0.4

0.6

0.8

1
Node 4 (n = 8)

no
rm

al
gl

au
co

m
a

0

0.2

0.4

0.6

0.8

1

tms
p = 0.049

5

≤ −0.066 > −0.066

Node 6 (n = 65)

no
rm

al
gl

au
co

m
a

0

0.2

0.4

0.6

0.8

1
Node 7 (n = 44)

no
rm

al
gl

au
co

m
a

0

0.2

0.4

0.6

0.8

1

Figure 8.5 Glaucoma data: Conditional inference tree with the distribution of

glaucomateous eyes shown for each terminal leaf.

The bagging procedure is a special case of a more general approach called
random forest (Breiman, 2001). The package randomForest (Breiman et al.,
2006) can be used to compute such ensembles via

R> library("randomForest")

R> rf <- randomForest(Class ~ ., data = GlaucomaM)

and we obtain out-of-bag estimates for the prediction error via

R> table(predict(rf), GlaucomaM$Class)

glaucoma normal

glaucoma 80 11

normal 18 87

For the glaucoma data, such a conditional inference tree can be computed
using the ctree function

R> library("party")

R> glaucoma_ctree <- ctree(Class ~ ., data = GlaucomaM)

and a graphical representation is depicted in Figure 8.5 showing both the
cutpoints and the p-values of the associated independence tests for each node.
The first split is performed using a cutpoint defined with respect to the volume
of the optic nerve above some reference plane, but in the inferior part of the
eye only (vari).

Bibliography

Breiman, L. (2001), “Random forests,”Machine Learning , 45, 5–32.

Breiman, L., Cutler, A., Liaw, A., and Wiener, M. (2006), randomForest:

Breiman and Cutler’s Random Forests for Classification and Regression,
URL http://stat-www.berkeley.edu/users/breiman/RandomForests,
R package version 4.5-18.

http://stat-www.berkeley.edu/users/breiman/RandomForests

	Recursive Partitioning
	Introduction
	Recursive Partitioning
	Analysis Using R

