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Introduction

When several plausible models are available, the tra-
ditional approach is to use a selection method to find
a single model. The selected model is then use for
inference and prediction. Selection methods ignore
model selection uncertainty and can lead, in some
cases, to poor estimations and predictions. Model
mixing (combining) provides an alternative to model
selection. The basic idea is to combine all the avail-
able models (or at least several of these models) us-
ing a weighted average of the individual model es-
timations and predictions. Several model mixing
methods have been proposed for linear and logistic
regression: Bayesian Model Averaging (Raftery et al.
(1997); Viallefont et al. (2001)), AIC-based mixing
(Burnham and Anderson (2002)), Adaptative Regres-
sion by mixing with a model screening step (Yuan
and Yang (2005); Yuan and Ghosh (2008)). These
methods deal with model selection uncertainty and
their implementation can lead to better parameter es-
timates and model predictions than model selection
(e.g., Yuan and Yang (2005); Yuan and Ghosh (2008)).

In this article, we introduce the R package MMIX
that implements several model-mixing methods for
linear and logistic regression. This package can also
be used to analyze the instability of stepwise selec-
tion method by bootstrapping and to assess the ac-
curacy of model predictions by cross-validation.

Model mixing methods

In a linear regression model, the expected value of a
response variable Y is related to a set of p explana-
tory variables X = (X1, . . . , Xp) as:

E(Y|X) = θ0 + θ1X1 + . . . + θiXi + . . . + θpXp

In a logistic regression model, the relationship be-
tween Y and the p explanatory variables is expressed
as:

logit(E(Y|X)) = θ0 + θ1X1 + . . . + θiXi + . . . + θpXp

The models defined above correspond to full
models i.e the models including all the explanatory
variables. Other models can be defined by relating Y
to a subset of the p explanatory variables. The set of
models corresponding to all the subsets of X is noted
further Γ, dim(Γ) = K = 2p.

ARMS

The Adaptative Regression by mixing with a Model
Screening step (ARMS) was proposed by Yuan and
Yang (2005) for the linear regression model and by
Yuan and Ghosh (2008) for the logistic regression
model. Giving a sample of size n, weights are cal-
culated as follows:
1. A training dataset J1 of size [ n

2 ](=
n
2 if n is even) is

randomly drawn from the original dataset.
2. A set of m best models, Γs ⊂ Γ, is selected using
BIC or/and AIC.
3. Parameters of models Mk ∈ Γs are estimated from
J1: θ̂

(k)
i J1

, i = 0, . . . , p, is set equal to the maximum like-

lihood parameter estimate if the ith explanatory vari-
able is included in Mk, and is set to zero otherwise.
For linear model, the residual error is also estimated
at this step and is noted σ̂(k).
4. Weights wk of models Mk ∈ Γs are calculated from
the second part of the dataset, J2, using the parame-
ter values estimated in step 3. Two kinds of weights
can be computed by MMIX:

• Likelihood-weights :

linear model:

Bk = Lk =
1√

2πσ̂(k) exp{−
∑Yj∈J2

[Yj−(θ̂
(k)
0J1

+∑
p
i=1 θ̂

(k)
i J1

Xij)]
2

2σ̂(k)2 }

logistic model:

Bk = Lk = ∏Yj∈J2
p̂

Yj
j (1− p̂j)

1−Yj

where p̂j =
exp{θ̂(k)0J1

+∑
p
i=1 θ̂

(k)
i J1

Xij}

1+exp{θ̂(k)0J1
+∑

p
i=1 θ̂

(k)
i J1

Xij}

• AIC-weights :

Bk = Lkexp{−[Qk + 1]} where Qk is the num-
ber of explanatory variables included in Mk.

The weights of the models not included in Γs are
set to zero and the normalized weights are finally
computed as:

wk =
Bk

∑K
b=1 Bb

5. The four previous steps are repeated N times and
the weight of model Mk is defined by:

wk =
1
N

N

∑
l=1

wk(l)

where wk(l) is the weight of model Mk computed
from the lth sample.
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Model weights can be used to estimate the parame-
ters as a weighted sum over models:

θ̂i = ∑
Mk∈Γi

wk θ̂
(k)
i

where Γi is the set of the models including the ith

explanatory variable, and θ̂
(k)
i is the value of θi esti-

mated for model Mk from the full dataset, i = 0, . . . , p.
The probability that a parameter θi is non zero can
also be computed from the model weights as:

P̂(θi 6= 0) = ∑
Mk∈Γi

wk

The function arms in the package MMIX imple-
ments this algorithm, with the following arguments:
data : a data frame including the response variable
and the explanatory variables. All the variables must
be numeric and the response variable value must be
0 or 1 for the logistic model.
family : a description of the error distribution (gaus-
sian or binomial).
nsample : number of generated samples (N).
nbest : number of models selected at the screening
step (m).
criterion : selection criterion used at the screening
step: "aic", "bic" or "both". "both" means that the
nbest models according to AIC and the nbest model
according to "bic" are selected.
weight : model weight type, "likeli" for likelihood-
weights or "aic" for AIC-weights.
maxVar : maximum number of explanatory variables
to include in the models. If maxVar < p, at most
maxVar variables are selected before step 1 by a step-
wise selection in the direction "forward" using the
Akaike criterion.

arms output is a data frame including the esti-
mated coefficients by ARMS (coef) and the probabil-
ities that coefficients are different from zero (pne0).
The function plot displays variable weights in a
graph, and more results are available with the func-
tion summary. The output is also a list contain-
ing coef, pne0, the response variable predictions
(fitted.values), a list of the explanatory variables
included in each model (label), model weights
(modweights) and a matrix of coefficient estimations
for all the models in Γ (allcoef).

BIC-based mixing method

Bayesian Model Averaging was presented by Raftery
et al. (1997), Hoeting et al. (1999), and Viallefont et al.
(2001). The principle is to calculate the posterior dis-
tribution of the parameters (θi)i=0,...,p, conditionally
to the observed dataset D, but unconditionally to the
model :

p(θi|D) = ∑
Mk∈Γi

p(θi|D, Mk)p(Mk|D)

θi = E(θi|D) = ∑
Mk∈Γi

E(θi|D, Mk)p(Mk|D)

Function bmaBic of MMIX implements this
method by estimating the posterior probabilities of
the models using the BIC approximation:

p(Mk|D) ≈ exp(−BICk/2)

∑K
l=1 exp(−BICl/2)

= wBIC
k

where BICk is the Bayesian Information Criterion of
the model Mk. The posterior expected parameter val-
ues E(θi|D, Mk) are estimated by the maximum like-
lihood estimators θ̂

(k)
i , Mk ∈ Γi, i = 0, ..., p, and θi is es-

timated by :
θ̂i = ∑

Mk∈Γi

wBIC
k θ̂

(k)
i

The variance of θ̂i unconditioned by the model
choice is estimated in bmaBic by:

ˆVar(θ̂i|D) =
K

∑
k=1

wBIC
k [σ̂

(k)2
i + (θ̂

(k)
i − θ̂i)

2]

where σ̂
(k)2
i is the estimated variance of θ̂

(k)
i .

A similar Bayesian Model Averaging method can
be also applied using BMA (Raftery et al. (2005)). The
function bmaBic of MMIX has three arguments only
(data, family and maxVar, see section ARMS). This
function is more restrictive than BMA, but can be eas-
ily applied and compared to the other methods im-
plemented in MMIX. bmaBic output is a data frame
including the coefficient estimates (coef), the proba-
bilities that coefficients are different from zero (pne0),
and the unconditioned standard deviation of the co-
efficients (sd). The function plot displays variable
weights in a graph, and more results are available
with the function summary. A bmaBic object is also a
list including fitted.values, modweights, allcoef,
label (see section ARMS), and the best three models
according to the BIC criterion (BestModels).

AIC-based mixing method

Burnham and Anderson (2002) presented a simple
model averaging technique where the model weights
are computed from AIC as:

wAIC
k =

exp(−AICk/2)

∑K
l=1 exp(−AICl/2)

where wAIC
k is the weight of model Mk, and AICk

is the value of the Akaike Information Criterion for
model Mk. The parameter values θi, i = 0, . . . , p,
are estimated unconditionally to the model choice,
by the sum of the maximum likelihood estimators
weighted by the Akaike weights:

θ̂i = ∑
Mk∈Γi

wAIC
k θ̂

(k)
i
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where θ̂
(k)
i is equal to the maximum likelihood es-

timate obtained with the model Mk. Variance of
the estimators are computed like in bmaBic function
using the AIC weights instead of the BIC weights.
mixAic provides the same output as bmaBic. Sepa-
ration problems may occur with logistic regression
models.

Computation time can be long with the mixing
methods implemented in MMIX when the number
of explanatory variables is higher than 12-15, espe-
cially with arms due to the resampling procedure.
Computation time can be reduced by setting maxVar,
nsample, and nbest to low values.

bootFreq function

The bootFreq function assesses the stability of step-
wise selection and mixing methods by bootstrap
(Prost et al. (2008)). This function generates sam-
ples from the original dataset by sampling data with
replacement (Efron and Tibshirani (1993)). Stepwise
selection methods and mixing methods are then ap-
plied to each sample in order to compute the fre-
quencies of variable selection and the standard devi-
ation of the coefficient estimates over samples. Selec-
tion frequencies close to zero or one indicate stable
results whereas selection frequencies close to 0.5 in-
dicate instability. The function bootFreq implements
this technique with the following arguments:
data : a data frame including the response variable
and the explanatory variables. All the variables must
be numeric and the response variable value must be
0 or 1 for the logistic model.
family : a description of the error distribution (gaus-
sian or binomial).
nboot : number of bootstrap samples drawn from
the original dataset.
method : the statistical method used to estimate the
model parameters. method = 1 for fullModel: the
model is estimated by maximum likelihood without
any variable selection, method = 2 for stepSel: vari-
ables are selected by a stepwise selection method,
method = 3 for bmaBic, method = 4 for mixAic,
method = 5 for arms.
file : the path of the file where the results are stored
during the run. If file = NULL no file is created.
. . . : the specific arguments of the called method.

bootFreq returns an object of class "classMMIX".
A data frame with the main results is printed and
a graph with the weights of the explanatory vari-
ables is available with the function plot. A bootFreq
object is also a list including the frequency of selec-
tion of each variable across the bootstrap samples
(frequency), the estimated parameter values for all
the bootstrap samples (coef), the mean of the esti-
mated parameter values across the bootstrap sam-
ples (mean), the standard deviation of the estimated

parameter values across the bootstrap samples (sd)
and pne0, the mean values of the variable weights
computed using a model mixing method, or fre-
quency if method= 1 or 2.

Performance criteria

MMIX can be used to compare the performances of
stepwise selection methods and model mixing meth-
ods. Two criteria can be computed: PMSE (Predic-
tive Mean Square Error) for linear models and AUC
(Area Under Roc Curve) for logistic models. The
function pmseCV estimates PMSE by a "leave-np-out"
cross-validation, which means that np data are re-
moved for parameter estimation but used to estimate
the mean square error. This is done for all the sets
of np observations (only if np=1), or for a number of
random drawing specified in npermu:

PMSE =
1

npermu

npermu

∑
l=1

PMSEl

=
1

npermu

npermu

∑
l=1

1
np ∑

Yj∈Jl

(Yj −Y∗j (l))
2

Jl is the sample left out and Y∗j (l) the prediction

of Yj at the lth iteration of the cross-validation proce-
dure.

For logistic models, the function aucCV estimates
AUC by a "leave-np-pair-out" cross-validation,
which means that data are removed by pairs of in-
dividuals (one from each of the two modalities).
At each iteration j the AUC is estimated with the
Wilcoxon statistic by AUCj and the final AUC is cal-
culated as:

AUC =
1

npermu

npermu

∑
j=1

AUCj

For these two functions, arguments are:
data : a data frame including the response variable
(first column) and the explanatory variables. All the
variables must be numeric and the response variable
value must be 0 or 1 for the logistic model.
method : the statistical method used to estimate the
model parameters. method = 1 for fullModel, method
= 2 for stepSel, method = 3 for bmaBic, method = 4 for
mixAic, method = 5 for arms.
np : number of observations (pmseCV) or pairs of ob-
servations (aucCV) left out for computing the PMSE
or AUC.
random : observations are selected at random if
TRUE. random can be FALSE only if np = 1. In this
case all the possible sets are selected.
npermu : number of random samples of np observa-
tions if random = TRUE.
file : the path of the file where the results are stored
during the run. If file is not NULL the np predic-
tions (first column) and the np corresponding obser-
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vations (second column) are saved at each iteration.
... : the specific arguments of the called method.

Example : Wheat grain number and
grain protein content

We present here the results of an application of the
package MMIX to two real datasets. Experiments
were carried out in 16 organic winter wheat plots
in France (Casagrande et al. (In press)) where grain
number per m2 (GN) and a binary variable indicat-
ing high (PC=1) or low (PC=0) grain protein content
were measured. Nine additional variables were mea-
sured in each plot: Water Balance during the Veg-
etation period (WBV), Photothermal Quotient dur-
ing the Vegetation period (PQV), and after flower-
ing (PQG), Weed Density (WD), Nitrogen Nutrition
Index (NNI), cultivar type (BAF), Soil Compaction
(SC), Soil nitrogen before flowering (NV) and after
flowering (NG). The explanatory variables consid-
ered for GN are: WBV, PQV, WD, NNI, BAF and
SC. The explanatory variables considered for PC are:
NNI, WD, PQG, NG, NV and BAF. Two data frames
including the response variables and the explanatory
variables were created; tabPC for the response vari-
able PC and tabGN for the response variable GN.

>tabGN<-read.table("tabGN.txt",header=TRUE)
>tabGN

GN        WBV     PQV   WD     NNI    BAF SC
11439.12  -8.55   1.56  105.09 0.59   0   0
17036.09  -28.94  1.38  77.00  0.66   0   0
3770.00   -2.33   0.98  24.00  0.27   1   0
9065.44   -4.81   1.43  13.33  0.62   1   0
14002.14  -21.69  1.17  91.00  0.69   1   0
15803.02  -2.98   1.11  36.00  0.46   0   1
13567.92  -16.29  1.23  117.00 0.57   0   0
6831.00   -39.95  0.80  5.00   0.67   1   1
11444.00  -24.31  0.80  66.00  0.49   0   0
7662.27   -21.44  1.25  493.50 0.34   0   0
11637.31  -3.49   1.11  42.67  0.46   0   1
12972.65  -12.76  1.20  178.25 0.48   0   0
15843.75  -22.96  1.17  62.50  0.49   0   0
6834.85   -12.25  1.25  150.00 0.49   1   0
3874.00   -6.46   0.60  113.00 0.48   1   1
7168.00   -24.16  0.80  48.00  0.52   1   0

>read.table("tabPC.txt",header=TRUE)
>tabPC

PC   NNI    WD     PQG    NG   NV    BAF
0    0.59   105.09  1.34   141   30    0
1    0.66   77     1.07   132   0     0
0    0.27   24     1.26   33   0     1
1    0.62   13.33   0.92   84   -10   1
1    0.69   91     1.16   144   20    1
0    0.46   36     1.26   50   20    0
1    0.57   117     1.1    127   30    0
0    0.67   5     1.08   110   10    1
0    0.49   66     1.15   217   0     0
1    0.34   493.5   1.07   264   0     0
0    0.46   42.67   1.26   50   20    0
0    0.48   178.25  1.13   176   20    0
0    0.49   62.5    1.17   132   0     0
1    0.49   150     1.07   127   30    1
1    0.48   113     0.93   110   0     1
1    0.52   48     1.17   0   30    1

Linear regression models were fitted to tabGN
to relate the response variable Grain Number to the
explanatory variables. Model parameters were es-
timated by using several methods: the full linear
model fitted by maximum likelihood (full), stepwise
selection in direction "both" using the criteria AIC
and BIC (stepA and stepB), bayesian model averag-
ing (bma), AIC-based mixing (mixA), and ARMS us-
ing both criterion AIC and BIC at the screening step,
with likelihood or AIC weights (armsL, armsA). Esti-
mation results are summarized in Figure 1 and Ta-
ble 1. Only two variables (NNI and BAF) were se-
lected by the stepwise selection methods. For these
variables, the weights computed by the model mix-
ing methods ranged from 0.5 to 1. A weight higher
than 0.5 was also computed for WD by mixAic.
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Figure 1: Weights of the six explanatory variables of
the "Grain Number" dataset, estimated by four dif-
ferent mixing methods (bmaBic, mixAic, arms with
likelihood and AIC weights) with linear models.

A bootstrap analysis applied to the stepwise se-
lection methods showed that selection frequencies
were close to 0.5 for several variables (Table 2). Only
the variable BAF was always selected, whereas the
five other variable selection frequencies varied from
0.5 to 0.7. This result shows that there is significant
uncertainty about variable selection. Method perfor-
mances were compared by computing PMSE with
the pmseCV function. The most accurate predictions
were obtained with bmaBic. Performances of mixAic
and arms with likelihood weights were quite similar.
The full model and the stepwise selection methods
led to less accurate predictions for this dataset.

RPMSE RPMSE−min(RPMSE)
min(RPMSE)

full 4070.1 37%
stepA 3735.9 26%
stepB 3735.9 26%
bma 2960.4 0%
mixA 3112.1 5%
armsA 3554.9 20%
armsL 3245.1 10%

The same type of analysis was performed with
the "Protein Content" dataset using logistic regres-
sion models to relate the response variable to six
explanatory variables. We only present below
the AUC values estimated by leave-one-pair-out
cross-validation, obtained with aucCV, np=1 and
random=FALSE. According to the AUC values, the
best results were obtained with the two arms proce-

dures, with bmaBic and mixaic.

AUC max(AUC)−AUC
max(AUC)

full 0.69 13%
stepA 0.69 13%
stepB 0.69 13%
bma 0.76 4%
mixA 0.76 4%
armsA 0.77 2%
armsL 0.80 0%

Conclusion

Package MMIX provides functions for estimating the
parameters of linear and logistic regression models
using stepwise selection techniques and model mix-
ing methods. It also includes functions for assessing
the stability and the performance of these methods.
MMIX can thus be used to compare the performances
of selection and model mixing methods for different
types of dataset. This package is available on CRAN.
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full stepA stepB bma mixA armsA armsL
coef coef coef coef pne0 sd coef pne0 sd coef pne0 coef pne0

Int. 4943 3626 3626 4534 1.0 4009 4597 1.0 4071 6384 1.0 4939 1.0
WBV -3.1 0.0 0 2.6 0.2 41.6 2.4 0.3 48 -6 0.2 -4 0.3
PQV 1882 0.0 0 727 0.3 2142.5 931 0.4 2435 1395 0.3 1479 0.4
WD -9 0.0 0 -3.7 0.4 6.1 -4.6 0.5 6.5 -2 0.2 -3 0.3
NNI 14226 18673 18673 16283 0.9 7605 15950 0.9 7766 9369 0.5 12802 0.7
BAF -6283 -6239 -6239 -6244 1.0 1359 -6255 1 1370 -4807 0.8 -5482 0.9
SC -929 0 0.0 -273 0.3 932 -364 0.3 1074 -113 0.1 -189 0.2

Table 1: Results of the estimation methods (full model, stepwise using AIC, stepwise using BIC, BMA, AIC
based mixing model, ARMS using AIC weights, ARMS using likelihood weights), applied to the "Grain Num-
ber" dataset with linear models.

stepA stepB
mean sd frequency mean sd frequency

Int. -859.8 118539.7 1.0 6227.2 28931.7 1.0
WBV -25.2 679.2 0.6 -47.7 304.8 0.5
PQV 4914.5 69988.2 0.6 1223.8 22305.2 0.6
WD -6.3 29.7 0.7 -9.4 32.9 0.6
NNI 17697.2 104793.9 0.7 11910.0 25173.3 0.7
BAF -4656.0 23613.1 1.0 -5971.5 9201.8 1.0
SC -366.5 6854.2 0.6 -484.3 10393.6 0.5

Table 2: Results obtained from 500 bootstrap samples for two stepwise selection methods (using AIC and BIC),
applied to the "Grain Number" dataset with linear models.

M1 <- fullModel(data=tabGN, family=gaussian("identity")) 
M2 <- stepSel(data=tabGN, family=gaussian("identity"), direction="both", criterion="aic") 
M3 <- stepSel(data=tabGN, family=gaussian("identity"), direction="both", criterion="bic") 
M4 <- bmaBic(data=tabGN, family=gaussian("identity")) 
M5 <- mixAic(data=tabGN, family=gaussian("identity")) 
M6 <- arms(data=tabGN, family=gaussian("identity"), nbest=40, criterion="both", weight="aic") 
M7 <- arms(data=tabGN, family=gaussian("identity"), nbest=40, criterion="both", weight="likeli") 
 
B2 <- bootFreq(data=tabGN, family=gaussian('identity'), nboot=500, method=2, criterion='aic', trace=0) 
B3 <- bootFreq(data=tabGN, family=gaussian('identity'), nboot=500, method=2, criterion='bic',trace=0) 
 
par(mfcol=c(2,2)) 
plot(M4) 
title(sub="bma") 
plot(M5) 
title(sub="mixaic") 
plot(M6)  
title(sub="arms aic") 
plot(M7) 
title(sub="arms likeli") 
 
P1 <- pmseCV(data=tabGN, method=1, np=1, random=F) 
P2 < -pmseCV(data=tabGN, method=2,np=1,criterion="aic", random=F, trace=0) 
P3 < -pmseCV(data=tabGN, method=2,np=1, criterion="bic", random=F) 
P4 <- pmseCV (data=tabGN, method=3, random=F,np=1) 
P5 <- pmseCV (data=tabGN, method=4, random=F,np=1) 
P6 <- pmseCV (data=tabGN, method=5, weight="aic", nbest=40, nsample=20, random=F, np=1) 
P7 <- pmseCV (data=tabGN, method=5, weight="likeli", nbest=40, nsample=20, random=F, np=1) 
rpmseCv <-sqrt(rbind(P1, P2, P3, P4, P5, P6, P7)[,1]) 
 

Figure 2: Commands used for the "Grain Number" case study: implementation of the five estimation methods,
plot of the variable weights, bootstrap analysis for stepwise selection methods, and PMSE estimations.

6



BIBLIOGRAPHY BIBLIOGRAPHY

A. Raftery, I. Painter, and C. Volinsky. Bma : An r
package for bayesian model averaging. R News, 5:
2–8, 2005.

V. Viallefont, A. Raftery, and S. Richardson. Variable
selection and bayesian model averaging in case-
control studies. Statistics in medicine, 20:3215–3230,
2001.

Z. Yuan and D. Ghosh. Combining multiple
biomarker models in logistic regression. Biomet-
rics, 64:431–439, 2008.

Z. Yuan and Y. Yang. Combing linear regression
models: When and how? Journal of the American
Statistical Association, 100:1202–1214, 2005.

Marie Morfin, David Makowski
UMR 211 Agronomie INRA/AgroParisTech
Thiverval-Grignon, France
UMR 518 Mathématiques et Informatiques Appliquées
INRA/AgroParisTech
Paris, France
makowski@grignon.inra.fr

7


	MMIX: An R package for model mixing methods 

