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Abstract

Assessing the assumption of multivariate normality is required by many parametric multi-
variate statistical methods, such as MANOVA, linear discriminant analysis, principal component
analysis, canonical correlation, etc. It is important to assess multivariate normality in order to
proceed with such statistical methods. There are many analytical methods proposed for checking
multivariate normality. However, deciding which method to use is a challenging process, since
each method may give different results under certain conditions. Hence, we may say that there
is no best method, which is valid under any condition, for normality checking. In addition to
numerical results, it is very useful to use graphical methods to decide on multivariate normal-
ity. Combining the numerical results from several methods with graphical approaches can be
useful and provide more reliable decisions. Here, we present an R package, MVN, to assess
multivariate normality. It contains the three most widely used multivariate normality tests, in-
cluding Mardia’s, Henze-Zirkler’s and Royston’s, and graphical approaches, including chi-square
Q-Q, perspective and contour plots. It also includes two multivariate outlier detection methods,
which are based on robust Mahalanobis distances. Moreover, this package offers functions to
check the univariate normality of marginal distributions through both tests and plots. Further-
more, especially for non-R users, we provide a user-friendly web application of the package. This
application is available at http://www.biosoft.hacettepe.edu.tr/MVN/.

1 Introduction

Many multivariate statistical analysis methods, such as MANOVA and linear discriminant analysis
(MASS, [1]), principal component analysis (FactoMineR, [2], psych, [3]), canonical correlation
(CCA, [4]), etc., require multivariate normality (MVN) assumption. If the data are multivariate
normal (exactly or approximately), such multivariate methods provide more reliable results. The
performance of these methods dramatically decreases if the data are not multivariate normal. Hence,
researchers should check whether data are multivariate normal or not before continuing with such
parametric multivariate analyses.

Many statistical tests and graphical approaches are available to check the multivariate normality
assumption. Burdenski (2000) reviewed several statistical and practical approaches, including the
Q-Q plot, box-plot, stem and leaf plot, Shapiro-Wilk and Kolmogorov-Smirnov tests to evaluate the
univariate normality, contour and perspective plots for assessing bivariate normality, and the chi-
square Q-Q plot to check the multivariate normality [5]. The author demonstrated each procedure
using the real data from [6]. Ramzan et al. (2013) reviewed numerous graphical methods for
assessing both univariate and multivariate normality and showed their use in a real life problem to
check the MVN using chi-square and beta Q-Q plots [7]. Holgersson (2006) stated the importance
of graphical procedures and presented a simple graphical tool, which is based on the scatter plot
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of two correlated variables to assess whether the data belong to a multivariate normal distribution
or not [8]. Svantesson and Wallace (2003) applied Royston’s and Henze-Zirkler’s tests to multiple-
input multiple-output data to test MVN [9]. According to the review by Mecklin and Mundfrom
(2005), more than fifty statistical methods are available for testing MVN [10]. They conducted a
comprehensive simulation study based on type I and type II error and concluded that no single
test excelled in all situations. The authors suggested using Henze-Zirkler’s and Royston’s tests
among others for assessing MVN because of their good type I error control and power. Moreover,
to diagnose the reason for deviation from multivariate normality, the authors suggested the use of
Mardia’s multivariate skewness and kurtosis statistics test as well as graphical approaches such as
the chi-square Q-Q plot. Deciding which test to use can be a daunting task for researchers (mostly
for non-statisticians) and it is very useful to perform several tests and examine the graphical methods
simultaneously. Although there are a number of studies describing multifarious approaches, there
is no single easy-to-use, up-to-date and comprehensive tool to apply various statistical tests and
graphical methods together at present.

In this vignette, we introduce an R package, MVN, which implements the three most widely
used MVN tests, including Mardia’s, Henze-Zirkler’s, and Royston’s [11]. In addition to statistical
tests, the MVN also provides some graphical approaches such as chi-square Q-Q, perspective and
contour plots. Moreover, this package includes two multivariate outlier detection methods, which
are based on Mahalanobis distance. In addition to multivariate normality, users can also check
univariate normality tests and plots to diagnose the deviation from normality via package version
3.7 and later. Firstly, we discuss the theoretical background on the corresponding MVN tests.
Secondly, two illustrative examples are presented in order to demonstrate the applicability of the
package. Finally, we present a newly developed web interface of the MVN, which can be especially
handy for non-R users. The R version of the MVN is publicly available in the Comprehensive R
Archive Network (CRAN, http://CRAN.R-project.org/package=MVN).

2 Multivariate normality tests

2.1 Mardia’s MVN test

Mardia (1970) proposed a multivariate normality test which is based on multivariate extensions of
skewness (γ̂1,p) and kurtosis (γ̂2,p) measures as follows [12]:

γ̂1,p =
1

n2

n
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i=1
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ij and γ̂2,p =

1

n

n
∑
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where mij = (xi − x̄)′S−1(xj − x̄), i.e the squared Mahalanobis distance, and p is the number of
variables. The test statistic for skewness, (n/6)γ̂1,p, is approximately χ2 distributed with p(p+1)(p+
2)/6 degrees of freedom. Similarly, the test statistic for kurtosis, γ̂2,p, is approximately normally
distributed with mean p(p+ 2) and variance 8p(p+ 2)/n.

For small samples, the power and the type I error could be violated. Therefore, Mardia (1974)
introduced a correction term into the skewness test statistic, usually when n < 20, in order to
control type I error [13]. The corrected skewness statistic for small samples is (nk/6)γ̂1,p, where
k = (p+1)(n+1)(n+3)/(n(n+1)(p+1)− 6). This statistic is also distributed as χ2 with degrees
of freedom p(p+ 1)(p+ 2)/6.

2.2 Henze-Zirkler’s MVN test

The Henze-Zirkler’s test is based on a non-negative functional distance that measures the distance
between two distribution functions. If data are distributed as multivariate normal, the test statistic
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is approximately log-normally distributed. First, the mean, variance and smoothness parameter are
calculated. Then, the mean and the variance are log-normalized and the p-value is estimated [14–18].
The test statistic of Henze-Zirkler’s multivariate normality test is given in equation 2.
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From equation 2, Di gives the squared Mahalanobis distance of ith observation to the centroid
and Dij gives the Mahalanobis distance between ith and jth observations. If data are multivariate
normal, the test statistic (HZ) is approximately log-normally distributed with mean µ and variance
σ2 as given below:
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where a = 1+2β2 and wβ = (1+β2)(1+3β2). Hence, the log-normalized mean and variance of the
HZ statistic can be defined as follows:

log (µ) = log

(
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(3)

By using the log-normal distribution parameters, µ and σ, we can test the significance of multi-
variate normality. The Wald test statistic for multivariate normality is given in equation 4.

z =
log(HZ)− log(µ)

log(σ)
(4)

2.3 Royston’s MVN test

Royston’s test uses the Shapiro-Wilk/Shapiro-Francia statistic to test multivariate normality.
If kurtosis of the data is greater than 3, then it uses the Shapiro-Francia test for leptokurtic
distributions, otherwise it uses the Shapiro-Wilk test for platykurtic distributions [10, 15,19–23].

Let Wj be the Shapiro-Wilk/Shapiro-Francia test statistic for the jth variable ( j = 1, 2, . . . , p)
and Zj be the values obtained from the normality transformation proposed by [22].

if 4 ≤ n ≤ 11; x = n and wj = −log [γ − log (1−Wj)]
if 12 ≤ n ≤ 2000; x = log(n) and wj = log (1−Wj)

(5)
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As seen from equation 5, x and wj ’s change with the sample size (n). By using equation 5, trans-
formed values of each random variable can be obtained from equation 6.

Zj =
wj − µ

σ
(6)

where γ, µ and σ are derived from the polynomial approximations given in equation 7. The poly-
nomial coefficients are provided by [22] for different sample sizes.

γ = a0γ + a1γx+ a2γx
2 + · · ·+ adγx

d

µ = a0µ + a1µx+ a2µx
2 + · · ·+ adµx

d (7)

log(σ) = a0σ + a1σx+ a2σx
2 + · · ·+ adσx

d

The Royston’s test statistic for multivariate normality as follows:

H =
e
∑p

j=1 ψj

p
∼ χ2

e (8)

where e is the equivalent degrees of freedom (edf) and Φ(.) is the cumulative distribution function
for standard normal distribution such that,

e = p/[1 + (p− 1)c̄]

ψj =
{

Φ−1 [Φ(−Zj)/2]
}2
, j = 1, 2, . . . , p. (9)

As seen from equation 9, another extra term c̄ has to be calculated in order to continue with the
statistical significance of Royston’s test statistic given in equation 8. Let R be the correlation matrix
and rij be the correlation between ith and jth variables. Then, the extra term c̄ can be found by
using equation 10.
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∑

i

∑

j

cij
p(p− 1)

, {cij}i 6=j
(10)

where

cij =

{

g(rij , n) if i 6= j
1 if i = j

with the boundaries of g(.) as g(0, n) = 0 and g(1, n) = 1. The function g(.) is defined as follows:

g(r, n) = rλ
[

1− µ

ν
(1− r)µ

]

.

The unknown parameters, µ, λ and ν were estimated from a simulation study conducted by [24].
He found µ = 0.715 and λ = 5 for sample size 10 ≤ n ≤ 2000 and ν is a cubic function which can
be obtained as follows:

ν(n) = 0.21364 + 0.015124x2 − 0.0018034x3

where x = log(n).
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3 Implementation of MVN package

The MVN package contains several functions in the S4 class. The data to be analyzed should be
given in the "data.frame" or "matrix" class. In this example, we will work with the famous Iris

data set. These data are from a multivariate data set introduced by Fisher (1936) as an application of
linear discriminant analysis [25]. It is also called Anderson’s Iris data set because Edgar Anderson
collected the data to measure the morphologic variation of Iris flowers of three related species [26].
First of all, the MVN library should be loaded in order to use related functions.

# load MVN package

library(MVN)

Similarly, Iris data can be loaded from the R database by using the following R code:

# load Iris data

data(iris)

The Iris data set consists of 150 samples from each of the three species of Iris including setosa,
virginica and versicolor. For each sample, four variables were measured including the length
and width of the sepals and petals, in centimeters.

Example I: For simplicity, we will work with a subset of these data which contain only 50 samples
of setosa flowers, and check MVN assumption using Mardia’s, Royston’s and Henze-Zirkler’s tests.

# setosa subset of the Iris data

setosa <- iris[1:50, 1:4]

3.1 Mardia’s MVN test: mardiaTest(...)

The mardiaTest function is used to calculate the Mardia’s multivariate skewness and kurtosis
coefficients as well as their corresponding statistical significance. This function can also calculate
the corrected version of the skewness coefficient for small sample size (n < 20).

result <- mardiaTest(setosa, qqplot = FALSE)

result

## Mardia's Multivariate Normality Test

## ---------------------------------------

## data : setosa

##

## g1p : 3.079721

## chi.skew : 25.66434

## p.value.skew : 0.1771859

##

## g2p : 26.53766

## z.kurtosis : 1.294992

## p.value.kurt : 0.1953229

##

## chi.small.skew : 27.85973
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## p.value.small : 0.1127617

##

## Result : Data are multivariate normal.

## ---------------------------------------

Here:

g1p: Mardia’s estimation of multivariate skewness, i.e γ̂1,p given in equation 1,
chi.skew: test statistic for multivariate skewness,
p.value.skew: significance value of skewness statistic,
g2p: Mardia’s estimation of multivariate kurtosis, i.e γ̂2,p given in equation 1,
z.kurtosis: test statistic for multivariate kurtosis,
p.value.kurt: significance value of kurtosis statistic,
chi.small.skew: test statistic for multivariate skewness with small sample correction,
p.value.small: significance value of small sample skewness statistic.

As seen from the results given above, both the skewness (γ̂1,p = 3.0797, p = 0.1772) and kurtosis
(γ̂2,p = 26.5377, p = 0.1953) estimates indicate multivariate normality. Therefore, according to
Mardia’s MVN test, this data set follows a multivariate normal distribution.

3.2 Henze-Zirkler’s MVN test: hzTest(...)

One may use the hzTest function in the MVN to perform the Henze-Zirkler’s test.

result <- hzTest(setosa, qqplot = FALSE)

result

## Henze-Zirkler's Multivariate Normality Test

## ---------------------------------------------

## data : setosa

##

## HZ : 0.9488453

## p-value : 0.04995356

##

## Result : Data are not multivariate normal.

## ---------------------------------------------

Here, HZ is the value of the Henze-Zirkler’s test statistic at significance level 0.05 and p-value is
the significance value of this test statistic, i.e the significance of multivariate normality. Since the p-
value, which is derived from hzTest, is mathematically lower than 0.05, one can conclude that this
multivariate data set deviates slightly from multivariate normality (HZ = 0.9488, p = 0.04995).
Since the p-value is very close to 0.05, researchers should also check the multivariate graphical
approaches as well as univariate tests and plots to make a more reliable decision on multivariate
normality.

3.3 Royston’s MVN test: roystonTest(...)

In order to carry out the Royston’s test, roystonTest function in the MVN can be used as follows:
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## Royston's Multivariate Normality Test

## ---------------------------------------------

## data : setosa

##

## H : 31.51803

## p-value : 2.187653e-06

##

## Result : Data are not multivariate normal.

## ---------------------------------------------

Here, H is the value of the Royston’s test statistic at significance level 0.05 and p-value is
an approximate significance value for the test with respect to edf. According to Royston’s test,
the setosa data set does not appear to follow a multivariate normal distribution (H = 31.518,
p < 0.001).

3.4 Chi-square Q-Q plot

One can clearly see that different MVN tests may come up with different results. MVN assumption
was rejected by Henze-Zirkler’s and Royston’s tests; however, it was not rejected by Mardia’s test
at a significance level of 0.05. In such cases, examining MVN plots along with hypothesis tests can
be quite useful in order to reach a more reliable decision.

The Q-Q plot, where “Q” stands for quantile, is a widely used graphical approach to evaluate
the agreement between two probability distributions. Each axis refers to the quantiles of probability
distributions to be compared, where one of the axes indicates theoretical quantiles (hypothesized
quantiles) and the other indicates the observed quantiles. If the observed data fit hypothesized
distribution, the points in the Q-Q plot will approximately lie on the line y = x.

MVN has the ability to create three multivariate plots. One may use the qqplot = TRUE option
in the mardiaTest, hzTest and roystonTest functions to create a chi-square Q-Q plot. We can
create this plot for the setosa data set to see whether there are any deviations from multivariate
normality. Figure 1 shows the chi-square Q-Q plot of the first 50 rows of Iris data, which are
setosa flowers. It can be seen from Figure 1 that there are some deviations from the straight line
and this indicates possible departures from a multivariate normal distribution.
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Figure 1: Chi-Square Q-Q plot for setosa data set.
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As a result, we can conclude that this data set does not satisfy MVN assumption based on the
fact that the two test results are against it and the chi-square Q-Q plot indicates departures from
multivariate normal distribution.

3.5 Univariate plots and tests

As noted by several authors [5,27,28], if data have a multivariate normal distribution, then, each of
the variables has a univariate normal distribution; but the opposite does not have to be true. Hence,
checking univariate plots and tests could be very useful to diagnose the reason for deviation from
MVN. We can check this assumption through uniPlot and uniNorm functions from the package.
The uniPlot function is used to create univariate plots, such as Q-Q plots (Figure 2a), histograms
with normal curves (Figure 2b), box-plots and scatterplot matrices.

uniPlot(setosa, type = "qqplot") # creates univariate Q-Q plots

uniPlot(setosa, type = "histogram") # creates univariate histograms
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(a) Q-Q plots.
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Figure 2: Univariate plots of setosa.

As seen from Figure 2, Petal.Width has a right-skewed distribution whereas other variables
have approximately normal distributions. Thus, we can conclude that problems with multivariate
normality arise from the skewed distribution of Petal.Width. In addition to the univariate plots,
one can also perform univariate normality tests using the uniNorm function. It provides several
widely used univariate normality tests, including Shapiro-Wilk, Cramer-von Mises, Lilliefors and
Anderson-Darling. For example, the following code chunk is used to perform the Shapiro-Wilk’s
normality test on each variable and it also displays descriptive statistics including mean, standard
deviation, median, minimum, maximum, 25th and 75th percentiles, skewness and kurtosis:

uniNorm(setosa, type = "SW", desc = TRUE)
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## $`Descriptive Statistics`

## n Mean Std.Dev Median Min Max 25th 75th Skew Kurtosis

## Sepal.Length 50 5.006 0.352 5.0 4.3 5.8 4.8 5.200 0.113 -0.451

## Sepal.Width 50 3.428 0.379 3.4 2.3 4.4 3.2 3.675 0.039 0.596

## Petal.Length 50 1.462 0.174 1.5 1.0 1.9 1.4 1.575 0.100 0.654

## Petal.Width 50 0.246 0.105 0.2 0.1 0.6 0.2 0.300 1.180 1.259

##

## $`Shapiro-Wilk's Normality Test`

## Variable Statistic p-value Normality

## 1 Sepal.Length 0.9777 0.4595 YES

## 2 Sepal.Width 0.9717 0.2715 YES

## 3 Petal.Length 0.9550 0.0548 YES

## 4 Petal.Width 0.7998 0.0000 NO

From the above results, we can see that all variables, except Petal.Width in the setosa data
set, have univariate normal distributions at significance level 0.05. We can now drop Petal.With

from setosa data and recheck the multivariate normality. MVN results are given in Table 1.

Test Test Statistic p-value

Mardia
Skewness 11.249 0.338
Kurtosis 1.287 0.198

Henze-Zirkler 0.524 0.831
Royston 7.255 0.060

Table 1: MVN test results (setosa without Petal.Width).

According to the three MVN test results in Table 1, setosa without Petal.Width has a multi-
variate normal distribution at significance level 0.05.

Example II: Whilst the Q-Q plot is a general approach for assessing MVN in all types of nu-
merical multivariate datasets, perspective and contour plots can only be used for bivariate data. To
demonstrate the applicability of these two approaches, we will use a subset of Iris data, named
setosa2, including the sepal length and sepal width variables of the setosa species.

3.6 Perspective and contour plots

Univariate normal marginal densities are a necessary but not a sufficient condition for MVN. Hence,
in addition to univariate plots, creating perspective and contour plots will be useful. The perspective
plot is an extension of the univariate probability distribution curve into a 3·dimensional probability
distribution surface related with bivariate distributions. It also gives information about where data
are gathered and how two variables are correlated with each other. It consists of three dimensions
where two dimensions refer to the values of the two variables and the third dimension, which is likely
in univariate cases, is the value of the multivariate normal probability density function. Another
alternative graph, which is called the “contour plot”, involves the projection of the perspective plot
into a 2·dimensional space and this can be used for checking multivariate normality assumption.
For bivariate normally distributed data, we expect to obtain a three-dimensional bell-shaped graph
from the perspective plot. Similarly, in the contour plot, we can observe a similar pattern.
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To construct a perspective and contour plot for Example 2, we can use the mvnPlot function
in the MVN. This function requires an object in the “MVN” class that is one of the results from
MVN functions. In the following codes, the object from hzTest is used for the perspective plot
given in Figure 3a. It is also possible to create a contour plot of the data. Contour graphs are
very useful since they give information about normality and correlation at the same time. Figure 3b
shows the contour plot of setosa flowers. As can be seen from the graph, this is simply a top view
of the perspective plot where the third dimension is represented with ellipsoid contour lines. From
this graph, we can say that there is a positive correlation among the sepal measures of flowers since
the contour lines lie around the main diagonal. If the correlation were zero, the contour lines would
be circular rather than ellipsoid.

setosa2 <- iris[1:50, 1:2]

result <- hzTest(setosa2, qqplot=FALSE)

mvnPlot(result, type = "persp", default = TRUE) # perspective plot

mvnPlot(result, type = "contour", default = TRUE) # contour plot
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Figure 3: Perspective and contour plot for bivariate setosa2 data set.

Since neither the univariate plots in Figure 2 nor the multivariate plots in Figure 3 show any
significant deviation from MVN, we can now perform the MVN tests to evaluate the statistical
significance of bivariate normal distribution of the setosa2 data set.

Test Test Statistic p-value

Mardia
Skewness 0.760 0.944
Kurtosis 0.093 0.926

Henze-Zirkler 0.286 0.915
Royston 2.698 0.245

Table 2: MVN test results (setosa with sepal measures).

All three tests in Table 2 indicate that the data set satisfies bivariate normality assumption at
the significance level 0.05. Moreover, the perspective and contour plots are in agreement with the
test results and indicate approximate bivariate normality.
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Figures 3a and 3b were drawn using a pre-defined graphical option by the authors. However,
users may change these options by setting function entry to default = FALSE. If the default is
FALSE, optional arguments from the plot, persp and contour functions may be introduced to the
corresponding graphs.

3.7 Multivariate outliers

Multivariate outliers are the common reason for violating MVN assumption. In other words, MVN
assumption requires the absence of multivariate outliers. Thus, it is crucial to check whether the
data have multivariate outliers, before starting to multivariate analysis. The MVN includes two
multivariate outlier detection methods which are based on robust Mahalanobis distances (rMD(x)).
Mahalanobis distance is a metric which calculates how far each observation is to the center of joint
distribution, which can be thought of as the centroid in multivariate space. Robust distances are
estimated from minimum covariance determinant estimators rather than the sample covariance [29].
These two approaches, defined as Mahalanobis distance and adjusted Mahalanobis distance in the
package, detect multivariate outliers as given below,

Mahalanobis Distance:

1. Compute robust Mahalanobis distances (rMD(xi)),

2. Compute the 97.5 percent quantile (Q) of the chi-square distribution,

3. Declare rMD(xi) > Q as possible outlier.

Adjusted Mahalanobis Distance:

1. Compute robust Mahalanobis distances (rMD(xi)),

2. Compute the 97.5 percent adjusted quantile (AQ) of the chi-Square distribution,

3. Declare rMD(xi) > AQ as possible outlier.

The mvOutlier function is used to detect multivariate outliers as given below. It also returns a
new data set in which declared outliers are removed. Moreover, Q-Q plots can be created by setting
qqplot = TRUE within mvOutlier for visual inspection of the possible outliers. For this example, we
will use another subset of the Iris data, which is versicolor flowers, with the first three variables.

versicolor <- iris[51:100, 1:3]

# Mahalanobis distance

result <- mvOutlier(versicolor, qqplot = TRUE, method = "quan")

# Adjusted Mahalanobis distance

result <- mvOutlier(versicolor, qqplot = TRUE, method = "adj.quan")

From Figure 4, Mahalanobis distance declares 2 observations as multivariate outlier whereas ad-
justed Mahalanobis distance declares none. See [30] for further information on multivariate outliers.

4 Web interface for the MVN package

The purpose of the package is to provide MVN tests along with graphical approaches for assessing
MVN. Moreover, this package offers univariate tests and plots, and multivariate outlier detection
for checking MVN assumptions through R. However, using R codes might be challenging for new R

11
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Figure 4: Multivariate outlier detection.

users. Therefore, we also developed a user-friendly web application of MVN by using shiny1 [31].
This web-tool, which is an interactive application, has all the features that the MVN package has.
It is publicly available through http://www.biosoft.hacettepe.edu.tr/MVN.

5 Summary and further researches

As stated earlier, MVN is among the most crucial assumptions for most parametric multivariate
statistical procedures. The power of these procedures is negatively affected if this assumption is
not satisfied. Thus, before using any of the parametric multivariate statistical methods, MVN
assumption should be tested first of all. Although there are many MVN tests, there is not a
standard test for assessing this assumption. In our experience, researchers may choose Royston’s
test for data with a small sample size (n < 50) and Henze-Zirkler’s test for a large sample size
(n > 100). However, a more comprehensive simulation study is needed to provide more reliable
inference. Instead of using just one test, it is suggested that using several tests simultaneously
and examining some graphical representation of the data may be more appropriate. Currently, as
we know, there is no such extensive tool to apply different statistical tests and graphical methods
together.

In this vignette, we present the MVN package for multivariate normality checking. This package
offers comprehensive flexibility for assessing MVN assumption. It contains the three most widely
used MVN tests, including Mardia’s, Henze-Zirkler’s and Royston’s. Moreover, researchers can
create three MVN plots using this package, including the chi-square Q-Q plot for any data set and
perspective and contour plots for bivariate data sets. Furthermore, since MVN requires univariate
normality of each variable, users can check univariate normality assumption by using both univariate
normality tests and plots with proper functions in the package. In the first example, different results
on multivariate normality were achieved from the same data. When sepal and petal measures, i.e
four variables, were considered, Mardia’s test resulted in multivariate normality as well as Henze-
Zirkler’s test at the edge of type I error. However, Royston’s test strongly rejected the null hypothesis
in favor of non-normality. At this point, the only possible graphical approach is to use the chi-
square Q-Q plot since there are more than two variables. The next step was to identify the cause of
deviation from MVN by using univariate normality tests and plots. In the second example, all tests

1http://www.rstudio.com/shiny/
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suggested bivariate normality, as did the graphical approaches. Although some tests can not reject
null hypothesis, other tests may reject it. Hence, as stated earlier, selecting the appropriate MVN
test dramatically changes the results and the final decision is ultimately the researcher’s.

Currently, MVN works with several statistical tests and graphical approaches. It will continue
to add new statistical approaches as they are developed. The package and the web-tool will be
regularly updated based on these changes.
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