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Abstract

The R package MfUSampler provides Monte Carlo Markov Chain machinery for gen-
erating samples from multivariate probability distributions using univariate sampling al-
gorithms such as Slice Sampler and Adaptive Rejection Sampler. The sampler function
performs a full cycle of univariate sampling steps, one coordinate at a time. In each step,
the latest sample values obtained for other coordinates are used to form the conditional
distributions. The concept is an extension of Gibbs sampling where each step involves,
not an independent sample from the conditional distribution, but a Markov transition for
which the conditional distribution is invariant. The software relies on proportionality of
conditional distributions to the joint distribution to implement a thin wrapper for pro-
ducing conditionals. Examples illustrate basic usage as well as methods for improving
performance. By encapsulating the multivariate-from-univariate logic, MfUSampler pro-
vides a reliable library for rapid prototyping of custom Bayesian models while allowing
for incremental performance optimizations such as utilization of conjugacy, conditional
independence, and porting function evaluations to compiled languages.

Keywords: monte carlo markov chain, slice sampler, adaptive rejection sampler, gibbs sam-
pling.

1. Introduction

Bayesian inference software such as Stan (Stan Development Team 2014), OpenBUGS (Thomas,
O’Hara, Ligges, and Sturtz 2006), and JAGS (Plummer 2004) provide high-level, domain-
specific languages (DSLs) to specify and sample from probabilistic Directed Acyclic Graphs
(DAGs). In some Bayesian projects, the convenience of using such DSLs comes at the price
of reduced flexibility in model specification, and suboptimality of the underlying sampling
algorithms used by the compilers. Furthermore, for large projects the end-goal might be to
implement all or part of the sampling algorithm in a high-performance - perhaps parallel -
language. In such cases, researchers may choose to start their development work by ‘rolling
their own’ joint probability distributions from the DAG specification, followed by application
of their choice of a sampling algorithm to the joint distribution.

Many Monte Carlo Markov Chain (MCMC) algorithms have been proposed over the years for
sampling from complex posterior distributions. Perhaps the most widely-known algorithm is
Metropolis (Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller 1953) and its generaliza-
tion, Metropolis-Hastings (MH) (Hastings 1970). These multivariate algorithms are very easy



2 Multivariate-from-Univariate MCMC Sampler: R Package MfUSampler

to implement, but they can be slow to converge without a carefully-selected proposal distri-
bution. A particular flavor of MH is the Stochastic Newton Sampler (Qi and Minka 2002),
where the proposal distribution is a multivariate Gaussian based on the second-order Taylor
series expansion of the log-probability. This method has been implemented in the R package
sns (Mahani, Hasan, Jiang, and Sharabiani 2014). This algorithm can be quite effective for
twice-differentiable, log-concave distributions such as those encountered in Generlized Linear
Regression (GLM) problems. Hamiltonian Monte Carlo (HMC) algorithms (Girolami and
Calderhead 2011; Neal 2011) have also gained popularity due to development of techniques
for automated tuning of their parameters (Hoffman and Gelman 2014).

Univariate samplers tend to have few tuning parameters and thus well suited for black-box
MCMC software. Two important examples are Adaptive Rejection Sampling (Gilks and Wild
1992) (or ARS) and Slice Sampling (Neal 2003). ARS requires log-density to be concave, and
needs the first derivative, while slice sampler is generic and derivative-free. To apply these
univariate samplers to multivariate distributions, they must be applied one-coordinate-at-a-
time according to the Gibbs sampling algorithm (Geman and Geman 1984), where at the end
of each univariate step the sampled value is used to update the conditional distribution for
the next coordinate. MfUSampler encapsulates this logic into a library function, providing
a fast and reliable path towards Bayesian model estimation for researchers working on novel
DAG specifications.

When posterior distribution exhibits strong correlation structure, one-coordinate-at-a-time al-
gorithms can become inefficient as they fail to capture important geometry of the space (Giro-
lami and Calderhead 2011). This has been a key motivation for research on black-box multi-
variate samplers, such as adaptations of slice sampler (Thompson 2011).

The rest of this article is organized as follows. In Section 2 we provide a brief overview of the
extended Gibbs sampling framework used in MfUSampler. In Section 3 we illustrate how to
use the software with an example. Section 4 shows how MfUSampler can be used to expedite
the prototyping stage in Bayesian modeling problems. Finally, Section 5 provides a summary
and concluding remarks.

2. Implementation

MfUSampler relies on three components:

1. Univariate MCMC samplers: As of version 0.9.1 of MfUSampler, two such samplers
are supported: Univariate Slice Sampler with Stepout and Shrinkage (Neal 2003) and
Adaptive Rejection Sampler (Gilks and Wild 1992). For slice sampler, we have imported
- with small modifications - Radford Neal’s R code, posted on his website1, while for
ARS we use the R package ars (Rodriguez, Wild, and Gilks 2014). For technical details
on the univariate sampling algorithms, see aforementioned publications or statistical
textbooks (Robert and Casella 1999).

2. Main sampling routine, MfU.Sample: This function is essentially a for loop for applying
the underlying univariate sampler to each coordinate of the multivariate distribution.
We refer to this as ‘extended Gibbs sampling’ (Section 2.1). The function MfU.Control

allows the user to set the tuning parameters of the univariate sampler. Both MfU.Sample

1http://www.cs.toronto.edu/~radford/ftp/slice-R-prog

http://www.cs.toronto.edu/~radford/ftp/slice-R-prog
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and MfU.Control are public functions, and their detailed behavior can be examined by
consulting the package documentation.

3. Wrapper functions MfU.fEval, MfU.fgEval.f and MfU.fgEval.g (all internal functions)
that return the conditional distribution and its gradients for each coordinate, using the
underlying joint distribution and its gradient vector (Section 2.2).

2.1. Extended Gibbs Sampling

The for loop inside MfU.Sample is a direct implementation of Gibbs sampling (Bishop 2006),
with one conceptual extension: rather than requiring an independent sample from each co-
ordinate’s conditional distribution, we expect a Markov transition for which the conditional
distribution is an invariant distribution. Among the current univariate samplers implemented
in MfUSampler, Adaptive Rejection Sampler produces a standard Gibbs sampler while the
Slice Sampler falls under the ‘extended’ Gibbs sampler. The following lemma provides the
proof of invariance. (For a discussion of ergodicity for slice sampler, see Roberts and Rosen-
thal (1999)).

Lemma 1. If a coordinate-wise Markov transition leaves the conditional distribution invari-
ant, it will also leave the joint distribution invariant.

Proof. The premise can be mathematically expressed as

p(x′k|x\k) =

∫
xk

T (x′k, xk|x\k)p(xk|x\k) dxk, (1)

while the conclusion can be expressed as

p(x′k,x\k) =

∫
xk

T (x′k, xk|x\k)p(xk,x\k) dxk. (2)

In the above x\k denotes all coordinates except for xk and T (x′k, xk|x\k) denotes the coordinate-
wise Markov transition density from x′k to xk. Employing the Product Rule of Probability,
we have p(xk,x\k) = p(x′k|x\k) × p(x\k). Since the coordinate-wise Markov transition does
not change x\k, we can factor p(x\k) out of the integral, thereby easily reducing Equation 2
to Equation 1.

Note that standard Gibbs sampling is a special case of the above lemma where T (x′k, xk|x\k) =
p(x′k|x\k). (The reader can easily verify that this special transition density satifies the
premise.) A full Gibbs cycle is simply a succession of coordinate-wise Markov transitions,
and since each one leaves the target distribution invariant according to the above lemma,
same is true of the resulting composite Markov transition density.

2.2. Producing the Conditional Distributions

The internal function MfU.fEval is responsible for producing coordinate-wise conditional
distributions used by the slice sampler:
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R> MfU.fEval <- function(xk, k, x, f, ...) {

+ x[k] <- xk

+ return (f(x, ...))

+ }

The implementation is deceptively simple, but warrants some explanation. The funcion ac-
cepts xk - the value of the k’th coordinate - and inserts it into the K-dimensional vector x. It
then evaluates and returns the joint distribution f at x (fixed arguments are passed via ...).
Returning the joint distribution in lieu of the conditional distribution is correct because, from
the perspective of each coordinate, the two are proportional:

p(xk|x\k) =
p(xk,x\k)

p(x\k)
∝ p(xk,x\k) (3)

where the first step follows from the Product Rule and in the second step, we have taken
advantage of the fact that p(x\k) is constant in terms of xk. A multiplicative constant for
density translates into an additive constant for log-density, and can be safely ignored in most
MCMC algorithms, including the slice sampler and ARS.

Functions MfU.fgEval.f and MfU.fgEval.g produce log-density and its gradient for each
coordinate, to be consumed by ARS. Since R package ars expects vector forms of input and
output for log-density and its gradient, the above two functions implement such vectorization.

3. Using MfUSampler

In this section, we illustrate the use of MfUSampler using both slice sampler and ARS as
underlying univariate distributions.

3.1. Example 1: Bayesian Logistic Regression

We use a Bayesian logistic regression problem (N observations, K coefficients) as an example.
The DAG corresponding to this simple problem is shown in Figure 1. We assume a non-
informative, Gaussian prior on each of the K regression coefficients in β (assuming proper
scaling of the covariate matrix X), using a mean of µ = 0.0 and a standard deviation of
σ = 1e+ 6. The full joint distribution corresponding to this DAG is given in Equation 4.

L(β) = −
N∑
n=1

{
(1− yn)xtnβ + log(1 + exp(−xtnβ))

}
− 1

2σ2

K∑
k=1

(βk − µ)2 + C, (4)

where the first term corresponds to the log-likelihood, the second term represents the log-prior,
and C captures any terms that are independent of β. Note that, while the log-prior term
is separable in β, same is not true for log-likelihood. This means the joint log-distribution
L(β) cannot be written as

∑
k Lk(βk). Therefore, conditional distributions used in each of

the K steps in a Gibbs sampling cycle will depend on the latest draws from the other K − 1
elements.

3.2. Slice Sampling using MfUSampler
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Figure 1: Directed Acyclic Graph representing a Bayesian logistic regression problem, with
N observations and K coefficients. A non-informative Gaussian prior is imposed on each of
the K elements of β using mean µ = 0.0 and standard deviation σ =1e+6. Plate notation is
used to show the links from β to each of the N response values yn.

First, we must load the package into an R session. We also set the random seed for repor-
duciblity of results:

R> library("MfUSampler")

R> set.seed(0)

Applying slice sampler to a log-density in MfUSampler is quite straightforward. First we
must implement a function that returns the log-density. For the log-density of Equation 4,
we can do:

R> logit.f <- function(beta, X, y, mu=0.0, sigma=1e+6) {

+ Xbeta <- X %*% beta

+ return (-sum((1-y) * Xbeta + log(1 + exp(-Xbeta)))

+ - sum((beta - mu)^2)/(2*sigma^2))

+ }

where we have ignored the constant term C. Note that the first argument to logit.f is the
argument for which we want to draw samples, which is beta in this case. Also note that X is
a N -by-K matrix whose n’th row corresponds to xn in Equation 4. To test MfUSampler on
logit.f, we first generate some simulated data:

R> N <- 1000

R> K <- 5

R> X <- matrix(runif(N*K, -0.5, +0.5), ncol=K)

R> beta <- runif(K, -0.5, +0.5)

R> y <- 1*(runif(N) < 1/(1+exp(-X %*% beta)))

We now initialize β with zeros, draw samples from logit.f, and save the sampled coefficients
to beta.smp:

R> nsmp <- 100

R> beta.ini <- rep(0.0, K)

R> beta.smp <- array(NA, dim=c(nsmp,K))

R> for (i in 1:nsmp) {
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+ beta.ini <- MfU.Sample(beta.ini, f=logit.f, uni.sampler="slice", X=X, y=y)

+ beta.smp[i,] <- beta.ini

+ }

We can compare the mean of the sampled coefficients (beta.mcmc) with the MLE estimate
(beta.glm), throwing away the first half of the samples for burn-in:

R> beta.mcmc <- colMeans(beta.smp[(nsmp/2+1):nsmp,])

R> beta.glm <- glm(y~X-1, family="binomial")$coefficients

R> cbind(beta.glm,beta.mcmc)

beta.glm beta.mcmc

X1 -0.4265100 -0.4013649

X2 -0.5416799 -0.5814078

X3 -0.1684548 -0.1717733

X4 -0.4056165 -0.4323484

X5 0.4914152 0.5592871

Increasing nsmp should bring beta.mcmc closer to beta.glm.

3.3. Adaptive Rejection Sampling using MfUSampler

In order to perform ARS using MfUSampler, we must construct a function that outputs either
the log-density or its gradient vector, depending on the value of the boolean argument grad:

R> logit.fg <- function(beta, X, y, mu=0.0, sigma=1e+6, grad) {

+ Xbeta <- X %*% beta

+ if (grad) return (t(X) %*% (1/(1+exp(Xbeta)) - (1-y))

+ - (beta - mu)/(2*sigma^2))

+ return (logit.f(beta, X, y, mu, sigma))

+ }

We can now apply MfU.Sample, this time setting uni.sampler argument to "ars":

R> beta.ini <- rep(0.0, K)

R> beta.smp <- array(NA, dim=c(nsmp,K))

R> for (i in 1:nsmp) {

+ beta.ini <- MfU.Sample(beta.ini, f=logit.fg, uni.sampler="ars", X=X, y=y)

+ beta.smp[i,] <- beta.ini

+ }

R> beta.mcmc <- colMeans(beta.smp[(nsmp/2+1):nsmp,])

R> cbind(beta.glm,beta.mcmc)

beta.glm beta.mcmc

X1 -0.4265100 -0.4118904

X2 -0.5416799 -0.4960775

X3 -0.1684548 -0.1691510

X4 -0.4056165 -0.4288610

X5 0.4914152 0.4751731
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Again, larger values of nsmp would lead to closer match between beta.mcmc and beta.glm.

So far, we ignored the control parameters of Slice sampler and ARS, thus falling back to
the default values provided for each algorithm. Sometimes it is necessary to override the
default values, which is possible by calling MfU.Control. To see a description of the control
parameters, type ?MfU.Control in your R session. More details on each algorithm and its
tuning parameters can be found by consulting the paper (Neal 2003) for the Slice sampler,
and the software documentation (Rodriguez et al. 2014) as well as the paper (Gilks and Wild
1992) for ARS.

The Bayesian logistic regression example is somewhat contrived. For example, the log-
posterior of Equation 4 can be shown to have a negative-definite Hessian matrix and therefore
log-concave, thus being eligible for the multivariate Stochastic Newton Sampling (Mahani
et al. 2014). The real power of MfUSampler, however, comes from its application to novel
Bayesian models where developers seek to rapidly prototype flexible DAGs to validate their
model specification, while having a path towards high-peformance applications. Section 4
contains one such example.

4. MfUSampler for Bayesian Prototyping

With MfUSampler, prototyping a novel Bayesian model can be quite fast. Encapsulation of
Gibbs cycles inside the MfU.Sample function circumvents subtle bugs during implementation
of Gibbs sampling, and allows the researcher to focus his/her mental power on other, more
important complexities of the problem such as model specification, MCMC diagnostics, etc.

4.1. Example 2: Heteroscedastic Linear Regression

Consider a linear regression problem where we suspect heteroscedasticity of regression residu-
als, and that the non-uniform residual variance is itself dependent on the same covariates that
are used to explain the mean response. To model such behavior, we assume the N response
measurements, yn, are independently drawn from this normal distribution:

yn ∼ N (xtnβ, σ
2
max/(1 + exp(−xtnγ))) (5)

This specification digresses from ordinary linear regression by making the variance parameter
data-dependent. The nonlinear transformation ensures that the variance for all points is
bounded between 0 and σ2max. Given the matrix of covariates X and the response vector
y, our goal is to estimate β, γ and σmax. There can be several reasons for our interest
in a Bayesian treatment of this problem, and in drawing samples from the joint posterior
distribution on (β,γ, σmax): 1) future extension of the model in a probabilistic framework,
e.g. using a Hierrarchical Bayesian approach to pool data across heterogneous observation
units, 2) our suspicion that the posterior distribution is not globally convex, has a complex
shape with multiple possible maxima, and thus sampling the its entire landscape can be safer
than looking for a single, local optimum, and 3) fully probabilistic treatment of parameter
estimation as well as response prediction.

To avoid clutter, we assume non-informative priors on all parameters and ignore them to focus
only on the log-likelihood function corresponding to Equation 5, which can be implemented
using this R function:



8 Multivariate-from-Univariate MCMC Sampler: R Package MfUSampler

R> loglike <- function(beta, gamma, sigmamax, X, y) {

+ mean.vec <- X%*%beta

+ sd.vec <- sigmamax/sqrt(1+exp(-X%*%gamma))

+ return (sum(dnorm(y, mean.vec, sd.vec, log=TRUE)))

+ }

To feed the log-likelihood function into MfU.Sample, we write a thin wrapper around it:

R> loglike.wrapper <- function(coeff, X, y) {

+ K <- ncol(X)

+ beta <- coeff[1:K]

+ gamma <- coeff[K+1:K]

+ sigmamax <- coeff[2*K+1]

+ return (loglike(beta, gamma, sigmamax, X, y))

+ }

We can now generate some data and draw samples from the resulting log-likelihood. Note
the use of MfU.Control to set a lower bound of 1e-3 on sigmax:

R> # generate simulated data

R> K <- 5

R> N <- 1000

R> X <- matrix(runif(N*K, -0.5, +0.5), ncol=K)

R> beta <- runif(K, -0.5, +0.5)

R> gamma <- runif(K, -0.5, +0.5)

R> sigmamax <- 0.75

R> mu <- X%*%beta

R> var <- sigmamax^2/(1+exp(-X%*%gamma))

R> y <- rnorm(N, mu, sqrt(var))

R> # initialize and sample

R> coeff <- c(rep(0.0, 2*K), 0.5)

R> mycontrol <- MfU.Control(n = 2*K+1, slice.lower = c(rep(-Inf,2*K), 0.001))

R> coeff.smp <- array(NA, dim=c(nsmp, 2*K+1))

R> t <- proc.time()[3]

R> for (i in 1:nsmp) {

+ coeff <- MfU.Sample(coeff, f=loglike.wrapper, X=X, y=y, control = mycontrol)

+ coeff.smp[i,] <- coeff

+ }

R> t <- proc.time()[3]-t

R> cat("time:", t, "\n")

time: 1.723

R> beta.est <- colMeans(coeff.smp[(nsmp/2+1):nsmp, 1:K])

R> gamma.est <- colMeans(coeff.smp[(nsmp/2+1):nsmp, K+1:K])

R> sigmamax.est <- mean(coeff.smp[(nsmp/2+1):nsmp, 2*K+1])

R> cbind(beta, beta.est, gamma, gamma.est)
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beta beta.est gamma gamma.est

[1,] -0.08169418 0.01082307 0.3845259 0.3442652

[2,] -0.36962596 -0.33175088 0.4858229 0.4563613

[3,] 0.46721080 0.42836681 0.2954812 0.1705552

[4,] -0.17247123 -0.25379361 0.3079317 0.3556921

[5,] 0.33722306 0.23397001 0.1617440 -0.3678595

R> c(sigmamax, sigmamax.est)

[1] 0.750000 0.753041

Note that we applied MfU.Sample to sigmamax even though it is a scalar rather than a vector.
In principle, we could directly call the slice sampler, but using the same higher level function
MfU.Sample call keeps the code more organized and easier to track. Despite nsmp being small,
we see general agreement between actual and estimated parameters, especially for sigsq and
beta. Of course, proper MCMC diagnostics including trace plot examination, histogram
examination, and effective size calculation must be done to adjust sampling parameters and
determine the next step in the modeling process, including model re-specification.

4.2. Performance Improvement Techniques

Feeding the full joint distribution for a DAG into MfU.Sample is often a good, first step
but it can be computationally brute-force. There are several opportunities for performance
improvement once the foundation is laid and the model structure is somewhat validated. The
root-cause of inefficiency in our brute-force approach is that we are evaluating the full, joint
density during univariate sampling of each coordinate of the state space. This may not be
necessary for several reasons:

1. For some variables or variable groups, exact sampling techniques may be possible. This
often arises when the likelihood and prior terms in a hierarchical model are conjugate,
making the posterior distribution have the same functional form as the likelihood. When
conjugacy allows for exact sampling, it is often the preferred route compared to MCMC
sampling (Robert and Casella 1999).

2. If some variables (or groups of variables) are conditionally-independent, their joint dis-
tribution, conditioned on the remaining variables, is separable (Wilkinson 2006). There-
fore, while sampling each variable, we only need to evaluate a subset of additive terms
comprising log-likelihood. This situation can arise, for example, in Hierarchical Bayesian
regression models (Rossi and Allenby 2003; Gelman and Hill 2006). In addition to per-
mitting lighter conditional posterior evaluations, conditional independence can also be
taken advantage of in parallel Gibbs sampling (Wilkinson 2006).

3. Even when conditional independence does not exist, we may still find opportunities to
drop some of the additive terms in the log-posterior for all or a subset of the variables,
thereby reducing the time needed to evaluate conditional posteriors during Gibbs cycles.

In the above cases, the general strategy is to split the full state space into subspaces and
apply the more efficient techniques within each subspace. Bayesian compilers are effective to
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varying degrees at identifying and taking advantage of such optimization opportunities. A
detailed discussion of these topics is beyond the scope of this paper. Here we illustrate the last
item in the above list, continuing the heteroscedastic linear regression example of Section 4.1.

The loglike function of Section 4.1 can be expanded as below (ignoring constant terms):

L(β,γ, σmax) = −N logσmax +
1

2

N∑
n=1

log
(
1 + exp(−xtnγ)

)
− 1

2σ2max

N∑
n=1

{
(yn − xtnβ)2

(
1 + exp(−xtnγ)

)}
(6)

We see that, of the above three additive terms, only the last term depends on all three variable
blocks β, γ and σmax, while the first two depend only on σmax and γ, respectively. Taking
advantage of this, we can write simplified conditional log-likelihood functions as below:

L(β |γ, σmax) = − 1
2σ2

max

∑N
n=1

{
(yn − xtnβ)2

(
1 + exp(−xtnγ)

)}
L(γ |β, σmax) = 1

2

∑N
n=1 log

(
1 + exp(−xtnγ)

)
− 1

2σ2
max

∑N
n=1

{
(yn − xtnβ)2

(
1 + exp(−xtnγ)

)}
L(σmax |β,γ) = −N logσmax − 1

2σ2
max

∑N
n=1

{
(yn − xtnβ)2

(
1 + exp(−xtnγ)

)}
(7)

Referring to the three terms on the right-hand side of Equation 6 as components 1-3, the R
implementation of the above conditional distributions will be:

R> loglike.component1 <- function(sigmamax, N) -N*log(sigmamax)

R> loglike.component2 <- function(gamma, X) 0.5*sum(log(1 + exp(-X%*%gamma)))

R> loglike.component3 <- function(beta, gamma, sigmamax, X, y) {

+ -sum((y-X%*%beta)^2*(1+exp(-X%*%gamma)))/(2*sigmamax^2)

+ }

R> loglike.beta <- function(beta, gamma, sigmamax, X, y) {

+ loglike.component3(beta, gamma, sigmamax, X, y)

+ }

R> loglike.gamma <- function(gamma, beta, sigmamax, X, y) {

+ loglike.component2(gamma, X) +

+ loglike.component3(beta, gamma, sigmamax, X, y)

+ }

R> loglike.sigmamax <- function(sigmamax, beta, gamma, sigma, X, y) {

+ loglike.component1(sigmamax, nrow(X)) +

+ loglike.component3(beta, gamma, sigmamax, X, y)

+ }

Each Gibbs cycle will be broken into 3 steps, corresponding to β, γ and σmax:

R> beta.ini <- rep(0.0, K)

R> gamma.ini <- rep(0.0, K)

R> sigmamax.ini <- 0.5
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R> mycontrol.sigmamax <- MfU.Control(n = 1, slice.lower = 0.001)

R> coeff.smp <- array(NA, dim=c(nsmp, 2*K+1))

R> t <- proc.time()[3]

R> for (i in 1:nsmp) {

+ beta.ini <- MfU.Sample(beta.ini, loglike.beta, gamma=gamma.ini

+ , sigmamax=sigmamax.ini, X=X, y=y)

+ gamma.ini <- MfU.Sample(gamma, loglike.gamma, beta=beta.ini

+ , sigmamax=sigmamax.ini, X=X, y=y)

+ sigmamax.ini <- MfU.Sample(sigmamax, loglike.sigmamax

+ , beta=beta.ini, gamma=gamma.ini

+ , X=X, y=y, control = mycontrol.sigmamax)

+ coeff.smp[i,] <- c(beta.ini, gamma.ini, sigmamax.ini)

+ }

R> t <- proc.time()[3]-t

R> cat("time:", t, "\n")

time: 1.577

R> beta.est <- colMeans(coeff.smp[(nsmp/2+1):nsmp, 1:K])

R> gamma.est <- colMeans(coeff.smp[(nsmp/2+1):nsmp, K+1:K])

R> sigmamax.est <- mean(coeff.smp[(nsmp/2+1):nsmp, 2*K+1])

R> cbind(beta, beta.est, gamma, gamma.est)

beta beta.est gamma gamma.est

[1,] -0.08169418 0.0009252645 0.3845259 0.3583743

[2,] -0.36962596 -0.3330523615 0.4858229 0.4546368

[3,] 0.46721080 0.4348825919 0.2954812 0.0726346

[4,] -0.17247123 -0.2702465415 0.3079317 0.2755692

[5,] 0.33722306 0.2422290123 0.1617440 -0.3499572

R> c(sigmamax, sigmamax.est)

[1] 0.7500000 0.7532132

In this case, the time savings from our improvements is modest, but for other problems the
impact can be more pronounced. For example, for HB regression problems the speedup from
breaking down the conditional posterior across regression groups will roughly be proportional
to the number of groups, even before applying any parallelization (which could theoretically
offer another multiplicative speedup equal to number of groups, given sufficient number of
processing cores available).

For statistical problems of moderate to large size (i.e. number of observations and/or covari-
ates) and in the absence of conjugacy for coefficients that are directly involved in explaining
the response, the majority of time is often spent in log-density evaluations, rather than other
activities such as random number generation or the sampling algorithm itself. Therefore,
the next most rewarding optimization step is likely to be porting of log-density functions to
high-performance languages such as C, C++, FORTRAN. For large problems, even parallel
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hardware such as Graphic Processing Units (GPUs) can be utilized by writing log-density
functions in languages such as CUDA, while continuing to take advantage of MfUSampler
for sampler control logic. Minimizing data movement between processor and co-processor is
a key performance factor in such cases. Finally, should further performance improvement
necessitate a rewrite of the MfUSampler logic in a high-peformance language, the package
source code can be used as a blue-print for efficient development.

5. Summary

The R package MfUSampler enables MCMC sampling of multivariate distributions using uni-
variate algorithms. It relies on an extension of Gibbs sampling from univariate independent
samplig to univariate Markov transitions, and proportionality of conditional and joint distri-
butions. By encapsulating these two concepts in a library, it reduces the possibility of subtle
mistakes by researchers while re-implementing the Gibbs sampler and thus allows them to
focus on other, more innovative aspects of their Bayesian modeling. Brute-force application
of MfUSampler allows researchers to get their project off the ground, maintain full control
over model specification, and utilize robust univariate samplers. This can be followed by an
incremental optimization approach by taking advantage of DAG properties such as conjugacy,
conditional independence and by porting log-density functions to high-peformance languages
and hardware.
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