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Abstract

This introduction to the R package alphashape3d is a (slightly) modified version of La-
farge, Pateiro-López, Possolo, and Dunkers (2014), published in the Journal of Statistical
Software. This work presents the implementation in R of the α-shape of a finite set of
points in the three–dimensional space R3. This geometric structure generalizes the convex
hull and allows to recover the shape of non–convex and even non–connected sets in 3D,
given a random sample of points taken into it. Besides the computation of the α-shape,
the R package alphashape3d provides users with tools to facilitate the three–dimensional
graphical visualization of the estimated set as well as the computation of important char-
acteristics such as the connected components or the volume, among others.
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1. Introduction

Point sets are a fundamental source of information in many disciplines: they may be sam-
ples from probability distributions, portions of realizations of point processes observed within
bounded sampling windows, or have substantive meaning (for example, landmarks in indus-
trial parts or in biological structures). In many cases, a primary goal is to recover the size
and shape of the set the points originate from (set estimation). In some applications the set is
known but a sample of points is taken from it anyway, and used as a discrete approximation
that facilitates the estimation of selected geometric attributes of the set (morphometry).

Besides the long-standing models for two-dimensional (2D) data, there is now an increasing
interest in modeling techniques for three-dimensional (3D) data. Widely available technolo-
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gies for measurement of 3D structures — including 3D laser-scanning, confocal microscopy,
and computed tomography from nano to macro scales — are generating high-quality digital
datasets that may be point clouds, or sets whose geometry can be probed using point clouds,
in cellular biology, medicine, material science, engineering, etc. Consequently, a rich branch
of image analysis has been developing rapidly to deal with the reconstruction of 3D objects
from point clouds, and to study geometrical attributes after discretization by sampling with
point clouds.

Statistical morphometry seeks to characterize the variability of shape and size, which is essen-
tial in a wide range of disciplines that include biology, material science, geology, archaeology,
geography, etc. We refer to Small (1996) and Grenander and Miller (2007) for an extensive re-
view of the methods and applications of shape analysis. See also Claude (2008) for a guide on
how to perform morphometrics with R. The geometric characterization of an object includes
the computation of volumes and surface areas, surface roughness, deviations from convexity,
porosity and permeability, among many other attributes, in many cases from points sampled
within the object. In practice, the user defines a sampling procedure to obtain points in the
set of interest, and thus the problem relates to the problem of set estimation.

The goal of set estimation is to produce estimates of compact subsets of an Euclidean space
based on random samples of points from probability distributions whose supports are those
sets, and then to study the statistical properties of the corresponding estimators (asymptotic
properties, types of convergence, convergence rates, etc.). Cuevas and Fraiman (2009) surveys
the most relevant theory on set estimation.

There are different geometrical structures that can capture the shape of a set from a sample
of points taken from it. The extent to which these structures manage faithfully to reproduce
the original set depends heavily on the geometrical characteristics of the set. For instance, if
the original set is convex, the convex hull of the sample is the natural estimator. See Geffroy
(1964), Rényi and Sulanke (1963, 1964), Schneider (1988), Dümbgen and Walther (1996) for
results about the convex hull estimator. However, in many applications the sets or objects
of interest are not strictly convex, but only approximately so. There is, therefore, a need to
define relaxed convexity shape restrictions.

The α-convexity is one such restriction that mildly relaxes the assumption of convexity, and
does so in a tunable manner (determined by the value of the parameter α): it appears in the
literature on set estimation, see Walther (1997, 1999), Rodŕıguez-Casal (2007). By analogy
with the characterization of a convex set as the intersection of half-spaces defined by planes
tangent to the set, a set is said to be α-convex if it can be expressed as an intersection of the
complements of open balls of radius α not intersecting the set. Section 2 provides details on
α-convex sets. The so-called α-convex hull of the sample is a suitable estimator of α-convex
sets (think of what’s left if carving out all the space with a spherical scoop of radius α without
removing any of the points in the sample). Rodŕıguez-Casal (2007) studies the asymptotic
performance of this estimator.

The boundary of the α-convex hull comprises arcs of circles (in 2D), or spherical caps (in
3D), and intersections thereof. If now we approximate the boundary of the α-convex hull
by a polygonal curve (in 2D) or by a polyhedral surface (in 3D), then we get another object
that approximates the original set, called the α-shape. Edelsbrunner, Kirkpatrick, and Seidel
(1983) defined it in the case of R2, and Edelsbrunner and Mücke (1994) generalized it to
three-dimensional Euclidean space. The α-shapes have been widely used in several different
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fields: for example, to characterize biological systems, and the structure, surface and cavities of
molecules and proteins, as described by Liang, Edelsbrunner, Fu, Sudhakar, and Subramaniam
(1998a,b), Edelsbrunner and Facello (1998), Zhou and Yan (2010), among others. Also in
cosmology, by van de Weygaert, Platen, Vegter, Eldering, and Kruithof (2010), to study
the topology of the distribution of galaxies. Vauhkonen, Tokola, Maltamo, and Packalén
(2008) describe applications of α-shapes in remote sensing, where tree characteristics are
determined from laser scanning data. There are also connections between α-shapes and
pattern recognition and clustering techniques. Given a porous material, the α-shape of a
sample of points drawn from the material can be used to characterize the geometry of the
pores; alternatively, the α-shape of a sample of points drawn from the voids can be used to
study the permeability of the material.

It is becoming increasingly clear that R (R Core Team (2013)) has grown to become one of
the most powerful tools for statistical data analysis, and in fact the lingua franca for the
interchange of ideas and methods in computational statistics and probability. R is a high-
level language that offers powerful graphical capabilities and a wide variety of facilities for
statistical modeling and data analysis in many fields of research. Many of the techniques
discussed in this paper have been developed over the last couple of decades, and there exist
several R packages that, in one form or another, address issues of set estimation. For example,
the convex hull of a set of points in d–dimensional Euclidean space can be computed using
functions in package geometry (Barber, Habel, Grasman, Gramacy, Stahel, and Sterratt
2013). Objects analyzed in the disciplines mentioned above are mostly two-dimensional or
three-dimensional. The two-dimensional α-shape and the α-convex hull are implemented
in the R package alphahull by Pateiro-Lopez and Rodriguez-Casal. (2011). Edelsbrunner
et al. (1983) describe the algorithm for the computation of the α-shape and α-convex hull
in 2D. Pateiro-López and Rodŕıguez-Casal (2010) provide further details on the library and
applications. However, and in spite of its potential usefulness in statistical analysis, the
α-shape in 3D had not yet been implemented in R. Cognizant of the importance of the
development of a free, open-source software environment for statistical computing, we have
produced the R package alphashape3d, see Lafarge and Pateiro-Lopez (2014).

The paper is organized as follows. In Section 2 we provide some background in set estimation
theory and describe the estimator under study, the α-shape of a random sample of points
in the three-dimensional Euclidean space. In Section 3 we briefly describe the algorithm by
Edelsbrunner and Mücke (1994) and give the details about its implementation in R. Further
computational details are given in Section 4.

2. The α-shape in 3D

This work is based on the computation of α-shapes in R
3 as defined by Edelsbrunner and

Mücke (1994). The α-shape is computationally practicable, and it is closely related to the
α-convex hull estimator, which has been studied predominantly from a theoretical viewpoint.
As mentioned in the Introduction, in order to estimate an unknown set effectively, from points
drawn from it, some geometrical assumptions have to be made. Even though convex sets have
many useful and well-known properties, restricting attention to estimators that are convex
sets rules out consideration of many sets of great practical interest. There are meaningful
extensions of the notion of convexity, such as α-convexity. A set A ⊂ R

d is said to be α-convex,



4 The alphashape3d package

for α > 0, if A = Cα(A), where

Cα(A) =
⋂

{B̊(x,α): B̊(x,α)∩A=∅}

(

B̊(x, α)
)c

(1)

is called the α-convex hull of A. In (1), B̊(x, α) denotes the open ball with center x and radius
α. Walther (1999) describes properties of α-convex sets and relations between convexity and
α-convexity. Let S be a nonempty compact subset in R

d, equipped with the norm ‖·‖. Assume
that we are given a random sample Xn = {X1, . . . , Xn} from a probability distribution PX

on R
d with support S. The goal is to approximate S based on the sample. If we assume that

the set S is α-convex then the natural estimator of S is Cα(Xn), the α-convex hull of the
sample. Rodŕıguez-Casal (2007) characterizes the performance of the estimator. In Figure 1
we represent the α-convex hull estimator in the two-dimensional case. If we straighten the
α-convex hull in Figure 1 by substituting straight edges for the circular arcs, we obtain a
straight line graph known as α-shape: this is computationally more practicable than the
α-convex hull. Edelsbrunner et al. (1983) give a formal definition of the α-shape in R

2.

α = 0.04 
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Figure 1: In pink, boundary of the α-convex hulls of a uniform random sample of size n = 300
on a ring in R

2 for different values of α. In blue, the corresponding α-shapes.

In R
3, one can visualize the α-convex hull estimator by thinking of a sphere of radius α

scooping up space around the points without removing any of them. By replacing each
spherical cap with the largest triangle circumscribed by the cap we obtain the α-shape, see
Figure 2. The formal definition of the α-shape in 3D can be found in Edelsbrunner and Mücke
(1994). It can be computed from the α-complex of the sample, also defined in Edelsbrunner
and Mücke (1994), which is a subcomplex of the Delaunay triangulation. The α-shape is the
polytope (in a general sense) formed by the union of all simplices of the α-complex. Further
details are given in Section 3. The value of α controls the spatial scale of the shape of the
estimator. As α decreases, the α-shape shrinks and cavities appear among the sample points.
As α tends to ∞, the α-shape tends to the the convex hull of the sample, see Figure 2. This
emphasizes the fact that the α-shape can be considered a generalization of the convex hull.
The flexibility that varying α affords is very useful to characterize the geometry of porous
materials. When studying some of the properties of these materials, it may be preferable to
focus on the α-shape of the voids: for example, to characterize the geometry of tunnels that
link different pores, as will be illustrated in Section ??.
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Figure 2: From left to right, α-shapes of a point cloud in R
3 for increasing values of α.

3. Implementation

The R package alphashape3d comprises functions to compute, represent and display the α-
shape of a given sample of points in three-dimensional Euclidean space. We restrict ourselves
to point sets in R

3 because we are mainly motivated by the applications of the α-shape in 3D,
even though the definition of the α-shape can be generalized to higher dimensions (increasing
the difficulty of the implementation).

The main function in the package is ashape3d, that implements in R the algorithm specified
by Edelsbrunner and Mücke (1994). The α-shape is computed from the three-dimensional
Delaunay triangulation of the point set. Subsection 3.1 describes the computation of that
triangulation, and Section 3.2 describes the computation of the α-shape. Subsection 3.3 gives
details about the three-dimensional graphical representation of the α-shape. Subsection 3.4
describes functions to compute and visualize the connected components of the α-shape. Sub-
section 3.5 describes other important features of the α-shape that can be computed with
functions in the library alphashape3d.

3.1. Delaunay triangulation in 3D. The package geometry

The computation of the α-shape is closely related to the construction of the Delaunay tri-
angulation of the given point set. Edelsbrunner et al. (1983) makes precise the relationship
that exists between these two geometric structures in the bidimensional case by proving that
the α-shape is a subgraph of the Delaunay triangulation. This simplifies the computation of
the α-shape since we only have to consider the edges of the Delaunay triangulation as can-
didates to form the α-shape. The relationship between α-shape and Delaunay triangulation
is also decisive in R

3. The problem of triangulation in R
3 arises in the decomposition of

three-dimensional objects, for example, in solid modeling. The Delaunay triangulation is an
essential geometric structure with a large number of applications, such as mesh generation and
cluster analysis, crystallography, metallurgy, image processing, etc. For in-depth discussions
of these problems we refer the reader to Aurenhammer (1991) and Preparata and Shamos
(1985).

Similarly to the two-dimensional case, the Delaunay triangulation in R
3 is defined as the dual

of the Voronoi diagram (or, tessellation). Recall that the Voronoi diagram of a finite sample
of points is the partition of space into cells such that each cell comprises the points which are
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closer to one particular sample point than to any other sample point. In the simplest, two-
dimensional case, the data are a sample of points in the plane, which are the Voronoi point
sites. Each point site has associated a closed and convex Voronoi cell, defined by an open
and convex Voronoi region, Voronoi edges and Voronoi vertices, as illustrated in Figure 3.
In R

3, each Voronoi cell is defined by a Voronoi region that is a three-dimensional convex
polyhedron, Voronoi facets, Voronoi edges, and Voronoi vertices. The dual complex Delaunay
“triangulation” consists of Delaunay tetrahedra and their triangular faces, edges and vertices,
hence may more properly be called a “tetrahedralization”.

An important feature in the Delaunay triangulation is that the circumsphere of each tetra-
hedron includes no other point sites (empty sphere property). The centers of these empty
circumspheres are just the vertices of the Voronoi diagram, see Figure 3. Okabe, Boots, Sugi-
hara, and Chiu (2009) provide an extensive discussion on the properties of Voronoi diagrams,
Delaunay triangulations and their many applications in computational geometry. It is should
be noted that for a set of n points in R

3 the number of Delaunay tetrahedra generally is
proportional to n2.

●

●

●

●

●

●

●

●

●

●

Figure 3: The left panel shows the Voronoi diagram of a set of point in R
2: each point has an

associated closed and convex Voronoi polygon (whose boundary is outlined in green), delimited
by Voronoi edges abutting on Voronoi vertices; the corresponding Delaunay triangulation is
drawn in red. The right panel shows the Delaunay triangulation of a uniform random sample
of size n = 50 drawn from the unit cube in R

3: the Delaunay diagram comprises tetrahedra
and their triangular faces, edges and vertices; a tetrahedron’s circumsphere, drawn in gray,
contains no data points besides those at its vertices.

In R, the Delaunay triangulation in R
3 can be computed with the package geometry (Barber

et al. 2013), which makes the qhull library (www.qhull.org) available in R. The function
qhull computes convex hulls, Delaunay triangulations, Voronoi vertices, farthest-site Voronoi
vertices, and half-space intersections. Barber, Dobkin, and Huhdanpaa (1996) describe the
Quickhull algorithm and review literature on the subject exhaustively. Discussion on efficient
methods for the computation of Delaunay triangulation and Voronoi diagrams can be found
in Aurenhammer and Klein (2000) and references therein.

The function delaunayn in package geometry plays an important role in the computation
of the α-shape described in Section 3.2. Given a sample of points in R

3, it returns for each

www.qhull.org
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tetrahedron in the triangulation the indices of the sample points defining the tetrahedron.

3.2. The function ashape3d

Here we describe the function ashape3d, included in the library alphashape3d, that imple-
ments the algorithm to construct the three-dimensional α-shape in R. The function ashape3d

computes the α-shape of a given sample Xn in R
3 for given values of α > 0. As an example to

illustrate the use of the function we consider a point cloud of size n = 4000 within two linked
tori, see Figure 4.

Figure 4: Point cloud of size n = 4000 within two linked tori.

Using function rtorus, we generated a uniform random sample of size 2000 in each of two
tori with minor radius r = 0.5 and major radius R = 2. The computation of the α-shape
requires that the input points be in the so-called general position (no quadruplet of points
lies on the same plane, no quintuplet lies on the same sphere, and, for any particular α, the
smallest sphere through any two, three, or four points has radius different from α). The
function determines whether the given points are in such general position, and it gives the
user the option of slightly disturbing their coordinates to remove the degeneracy and compute
the α-shape, see Section 4.

R> n <- 4000

R> T1 <- rtorus(n/2, 0.5, 2)

R> T2 <- rtorus(n/2, 0.5, 2, ct = c(2, 0, 0), rotx = pi/3)

R> x <- rbind(T1, T2)

R> points3d(x, col = 4)

We compute the α-shape for α = 0.3 and α = 0.5.

R> alphashape3d <- ashape3d(x, alpha = c(0.3, 0.5))

R> class(alphashape3d)

[1] "ashape3d"

R> names(alphashape3d)
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[1] "tetra" "triang" "edge" "vertex" "x" "alpha"

The output of the function is an object of class ’ashape3d’. The components x and alpha store
the input information. For each simplex (tetrahedron, triangle, edge or vertex) in the three-
dimensional Delaunay triangulation there is a single interval so that the simplex is a face of
the α-shape if and only if α is contained in this interval. Moreover, see Table I in Edelsbrunner
and Mücke (1994)1, each interval can be broken into three parts that classify a simplex as
an interior, regular or singular simplex of the α-complex. As defined in Edelsbrunner and
Mücke (1994), a simplex in the α-complex is interior if it does not belong to the boundary
of the α-shape. A simplex in the α-complex is regular if it is part of the boundary of the
α-shape and bounds some higher-dimensional simplex in the α-complex. A simplex in the
α-complex is singular if it is part of the boundary of the α-shape but does not bounds any
higher-dimensional simplex in the α-complex. This classification allows us to identify the
simplices that define the boundary of the α-shape.

Throughout this paper, numerical results are listed as R would produce them by default,
irrespective of whether all the digits reported are substantively significant.

R> head(alphashape3d$tetra)

v1 v2 v3 v4 rhoT fc:0.3 fc:0.5

378 1013 1734 2382 5.4662237 0 0

965 1014 1319 1662 0.8486259 0 0

1014 1037 1319 1662 5.2838218 0 0

965 1014 1037 1319 3.2522574 0 0

1013 2382 3280 3595 27.2766989 0 0

2179 2534 2628 3452 2.2098401 0 0

For each tetrahedron of the 3D Delaunay triangulation, the matrix tetra stores the indices
of the sample points defining the tetrahedron (columns 1 to 4), a value rhoT that defines the
intervals for which the tetrahedron belongs to the α-complex (column 5) and for each α a
value (1 or 0) indicating whether the tetrahedron belongs to the α-shape (columns 6 to last).
Thus, for the sample in Figure 5 (left), the tetrahedron defined by the points with indexes
(378, 1013, 1734, 2382) belongs to the α-shape for α > 5.4662.

R> head(alphashape3d$triang)

tr1 tr2 tr3 on.ch attached rhoT muT MuT fc:0.3 fc:0.5

1 464 564 0 0 0.18190277 0.18916550 0.1900345 1 1

1 464 747 0 1 0.14365697 0.16155017 0.1900345 1 1

1 464 846 0 0 0.06263505 0.09422264 0.1113447 1 1

1 464 1343 0 0 0.06111497 0.11134474 0.1891655 1 1

1 464 1612 0 0 0.09379148 0.09422264 0.1615502 1 1

1 564 747 0 1 0.18743356 0.19003447 0.1933637 1 1

1The end-points of these sub-intervals, ρT , µ
T
and µ

T
defined in Edelsbrunner and Mücke (1994), are stored

in columns rhoT, muT and MuT, respectively
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For each triangle of the 3D Delaunay triangulation, the matrix triang stores the indices of
the sample points defining the triangle (columns 1 to 3), a value (1 or 0) indicating whether
the triangle is on the convex hull (column 4), a value (1 or 0) indicating whether the triangle
is attached or unattached2 (column 5), values rhoT, muT and MuT that define the intervals for
which the triangle belongs to the α-complex (columns 6 to 8) and for each α a value (0, 1, 2
or 3) indicating, respectively, that the triangle is not in the α-shape or it is interior, regular
or singular (columns 9 to last).

R> head(alphashape3d$edge)

ed1 ed2 on.ch attached rhoT muT MuT fc:0.3 fc:0.5

[1,] 1 464 0 0 0.03514704 0.06111497 0.1900345 1 1

[2,] 1 564 0 0 0.18189576 0.18190277 0.1933637 1 1

[3,] 1 576 0 0 0.06978451 0.09593573 0.1531225 1 1

[4,] 1 615 0 1 0.08966387 0.13539182 0.1656323 1 1

[5,] 1 742 0 0 0.10908995 0.11051192 0.1656323 1 1

[6,] 1 747 0 1 0.13291654 0.16155017 0.1933637 1 1

For each edge of the 3D Delaunay triangulation, the matrix edge stores the indices of the
sample points defining the edge (columns 1 and 2), a value (1 or 0) indicating whether the
edge is on the convex hull (column 3), a value (1 or 0) indicating whether the edge is attached
or unattached (column 4), values rhoT, muT and MuT that define the intervals for which the
edge belongs to the α-complex (columns 5 to 7) and for each α a value (0, 1, 2 or 3) indicating,
respectively, that the edge is not in the α-shape or it is interior, regular or singular (columns
8 to last).

R> head(alphashape3d$vertex)

v1 on.ch muT MuT fc:0.3 fc:0.5

[1,] 1 0 0.03514704 0.1933637 1 1

[2,] 2 0 0.03708277 0.1667157 1 1

[3,] 3 0 0.06347863 0.1919457 1 1

[4,] 4 0 0.04225066 0.2271020 1 1

[5,] 5 0 0.02164566 1.3567139 2 2

[6,] 6 0 0.03816675 0.2195957 1 1

For each sample point, the matrix vertex stores the index of the point (column 1), a value (1
or 0) indicating whether the point is on the convex hull (column 2), values muT and MuT that
define the intervals for which the point belongs to the α-complex (columns 3 and 4) and for
each α a value (1, 2 or 3) indicating, respectively, if the point is interior, regular or singular
(columns 5 to last).

3.3. Graphical representation of the α–shape in 3D

Graphical visualization is an essential part of data analysis and statistical modelling. The
function plot.ashape3d (S3 method for class ’ashape3d’) performs 3D visualization of the
α-shape.

2See nomenclature of Edelsbrunner and Mücke (1994)
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R> rgl.viewpoint(20)

R> rgl.light(120, 60)

R> bg3d("white")

R> plot(alphashape3d, col = c(4, 4, 4), indexAlpha = "all")

The input must be an object of class ’ashape3d’. The argument col is a vector of colour
numbers for the triangles, edges and vertices composing the α-shape (the default colour is
red). The argument indexAlpha can be a single value or a vector specifying the indexes
of alphashape3d$alpha to be used for representing the α-shape. If indexAlpha="all"

or indexAlpha="ALL" then the function opens a new rgl device for each value of α in
alphashape3d$alpha. Other arguments are available. The argument transparency con-
trols the transparency properties of the α-shape. Its value ranges from zero (transparent)
to one (opaque). The scene and appearance of shapes, backgrounds and bounding box ob-
jects can be controlled by functions and parameters in package rgl, see Adler and Murdoch
(2013). The package rgl adds three-dimensional, real-time visualization functionality to the
R programming environment. Figure 5 shows snapshots of the above call to plot.ashape3d.

Figure 5: Snapshots from plot.ashape3d representing the α-shape of the point cloud for
α = 0.3 (middle) and α = 0.5 (right).

3.4. Connected components of the α-shape

The library alphashape3d includes the function components_ashape3d that computes the con-
nected components of the α-shape of a given point cloud in R

3 and identifies the component
that each sample point belongs to. We find this function potentially useful for partitioning
point clouds into clusters. See Chapter 2 in Marchette (2004) for a discussion on the use-
fulness of the α-shape for clustering in the planar case. The visualization of the connected
components of the α-shape provides clues about the reality of clusters in the data set. Owing
to the characteristics of the α-shape, these clusters may have rather irregular shapes. There-
fore, the connected components defined based on the α-shape may be more meaningful and
accurate than those produced by classification algorithms that are entirely based on distance
calculations.

In our implementation the α-shape is represented as a set of tetrahedrons, triangles, edges
and vertices. This representation facilitates the computation of the adjacency matrix of the
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vertices. Using this information, we can then identify the connected components of the α-
shape using an algorithm inspired by the strongly connected components algorithm described
in Tarjan (1972). Our algorithm is a modification of depth-first search (DFS) to label all the
vertices of a component and then to jump to another component when needed.

For the example whose results are depicted in Figure 6, we compute the connected components
corresponding to the α-shapes for α = 0.3 and α = 0.5 stored in alphashape3d.

R> comp <- components_ashape3d(alphashape3d, indexAlpha = "all")

If indexAlpha is a single value then the function returns a vector v of length equal to the
sample size. For each sample point i, v[i] represents the label of the connected component
to which the point belongs (for isolated points, v[i]=-1). Otherwise, components_ashape3d
returns a list of vectors describing the connected components of the α-shape for each selected
value of α.

R> table(comp[[1]])

1 2

2000 2000

R> table(comp[[2]])

1

4000

This shows that the α-shape for α = 0.3 has two connected components with 2000 sample
points each, and that the α-shape for α = 0.5 has only one connected component. The
function plot.ashape3d, described in Subsection 3.3, displays the connected components of
the α-shape in different colours by setting the argument byComponents = TRUE. The following
code produces Figure 6.

R> rgl.viewpoint(20)

R> rgl.light(120, 60)

R> bg3d("white")

R> plot(alphashape3d, byComponents = TRUE, indexAlpha = "all")

3.5. Volume and other attributes of the α-shape

Here we describe other functions in the library alphashape3d that compute the values of
several attributes of the α-shape. The function volume_ashape3d calculates the volume of
the α-shape of a point cloud. The input must be an object of class ’ashape3d’. As described
before, the argument indexAlpha can be a single value or a vector specifying the indexes
of alphashape3d$alpha to be considered. For our example, we compute the volume of the
α-shape for α = 0.3.

R> volume_ashape3d(alphashape3d, indexAlpha = 1)
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Figure 6: Connected components of the α-shape of the point cloud for α = 0.3 (left) and
α = 0.5 (right).

[1] 14.67307

We can also compute the volume of each connected component of the α-shape separately, by
setting the argument byComponents = TRUE.

R> volume_ashape3d(alphashape3d, indexAlpha = 1, byComponents = TRUE)

[1] 7.350293 7.322780

These add up to 14.6731, which is the total volume of the α-shape in Figure 6 (left).

The function inashape3d checks whether one or several points belong to the interior of the α-
shape. For example, the point (−2.5, 2.5, 0) does not belong to any of the α-shapes computed
above.

R> inashape3d(alphashape3d, indexAlpha = "all", c(-2.5, 2.5, 0))

[[1]]

[1] FALSE

[[2]]

[1] FALSE

The following code produces Figure 7. We have considered a sequence of points in the line
y = −x (z = 0). After using the function inashape3d we represent in red the points that do
not belong to the α-shape and in green the points that belong to the α-shape for α = 0.3.

R> np <- 50

R> x <- seq(-2.5, 2.5, length = np)

R> points <- cbind(x, -x, rep(0, np))

R> in3d <- inashape3d(alphashape3d, indexAlpha = 1, points = points)



Thomas Lafarge, Beatriz Pateiro-López, Antonio Possolo, Joy P. Dunkers 13

R> rgl.viewpoint(20)

R> bg3d("white")

R> plot(alphashape3d, col = c(4, 4, 4), indexAlpha = 1, transparency = 0.2)

R> colours <- ifelse(in3d, "green", "red")

R> rgl.points(points, col = colours)

Figure 7: In blue, α-shape of the input point cloud for α = 0.3. In red, points in the line
y = −x (z = 0) that do not belong to the α-shape. In green, points in the line y = −x (z = 0)
that belong to the α-shape.

The algorithm used to determine whether a given point p is inside the α-shape is an extension
of the point-in-polygon ray-casting algorithm. The idea is to cast a ray from p in a randomly
chosen direction and compute the intersections between the ray and the regular triangles
of the α-shape. Recall that, according to the nomenclature of Edelsbrunner and Mücke
(1994), a triangle is regular if it belongs to the boundary of the α-shape and is a face of
one of its tetrahedra. If there is an odd number of intersections between the ray and the
regular triangles, then the tested point p is inside the α-shape. If there is an even number
of intersections, then p is outside the α-shape. To determine whether a half ray intersects
a triangle, we compute the intersection of four half-spaces, which is considerably faster than
testing whether p belongs to any of the tetrahedra that form the α-shape.

Finally, the function surfaceNormals calculates the normal vectors to the triangles in the
boundary of the α-shape. For the considered example, we compute the normal vectors for the
α-shape with α = 0.3.

R> normv <- surfaceNormals(alphashape3d, indexAlpha = 1)

R> class(normv)

[1] "normals"

R> names(normv)

[1] "normals" "centers"
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R> head(normv$normals)

[,1] [,2] [,3]

[1,] -0.0825306729 0.06970626 0.004379467

[2,] -0.0185391185 0.02464524 0.003238826

[3,] 0.0014527924 0.02014524 0.161914452

[4,] -0.0304822405 0.01838631 0.016993105

[5,] -0.0192238821 0.01581100 0.050255824

[6,] 0.0004724928 0.03895946 0.078011241

R> head(normv$centers)

[,1] [,2] [,3]

[1,] 0.9722597 -1.350162 0.2735183

[2,] 0.8281012 -1.503002 0.2539025

[3,] 1.0968649 -1.366967 0.3433505

[4,] 0.7699130 -1.607079 0.3342777

[5,] 0.8326912 -1.651014 0.4030211

[6,] 1.0154846 -1.563742 0.3924781

The function returns an object of class ’normals’. The component normals is a three-column
matrix with the euclidean coordinates of the normal vectors (the norm of each vector is equal
to the area of its associated triangle). The component centers is a three-column matrix
with the euclidean coordinates of the centers of the triangles that form the boundary of the
α-shape. The normal vectors can be represented by setting the argument display = TRUE in
the function surfaceNormals.

4. Computational details

About the general position assumption

For the computation of the α-shape, the input points in function ashape3d must be in general
position. Otherwise, the function ashape3d prints an error message reporting that the general
position assumption is not satisfied. By setting the argument pert = TRUE the function
ashape3d applies a slight perturbation to the input points in case they are nor in general
position. Both, the original points and the perturbed data, are stored in components x and
xpert of the output object, respectively.

Exporting as OFF files

Object File Format (.off) files are commonly used to represent the geometry of an object.
OFF files represent collections of planar polygons with possibly shared vertices. They are
specially useful to describe polyhedra and many 3D graphics programs use this format for
input or output. An object of class ’ashape3d’ can be easily exported as an OFF file. Each
OFF file begins with the keyword“OFF”. The next line includes the number of vertices, faces,
and edges of the object. Next, the coordinates of the vertices are listed and following these
are the face descriptions. The following code saves the α-shape computed in our example for
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α = 0.3 as an OFF file. OFF files can be visualized and manipulated quite easily using 3D
viewing programs.

R> offFilename <- "alphashape3d.off"

R> write("OFF", file = offFilename, append = FALSE, sep = " ")

R> aux <- alphashape3d$triang

R> tr <- aux[aux[, 9] == 2 | aux[, 9]==3, c("tr1", "tr2", "tr3")]

R> write(c(dim(alphashape3d$x)[1], dim(tr)[1], 0), file = offFilename,

+ append = TRUE, sep = " ")

R> write(t(alphashape3d$x), file = offFilename, ncolumns = 3,

+ append = TRUE, sep = " ")

R> write(t(cbind(rep(3, dim(tr)[1]), tr - 1)),

+ file = offFilename, ncolumns = 4, append = TRUE, sep = " ")

Software

The alphashape3d package is available from the Comprehensive R Archive Network at the url
http://CRAN.R-project.org/package=alphashape3d. This document was generated with
version 1.1 of the package.
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