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1 Introductions and Definitions

The attribrisk package has been created to make attributable risk (AR) inference easier
to calculate. This vignette gives only a small amount of theory, users who wish more
are directed to Khan [3].

The term attributable risk is used to refer to the amount of disease in a population
that can be attributed to a particular exposure. The terms population attributable risk
and etiologic fraction have also been used to refer to the same concept. Consider the
data from Whisnant et al [6] shown in table 1. Assume for the moment that this data
were a simple sample of size 2644 from the population at large (which it is not). Then the
rate of ischemic stroke among those without high blood pressure would be estimated as
559/943=0.41 while that in those with high blood pressure it is 0.55. The attributatable
risk is the fraction of the strokes in the second group that is presumed to be directly
due to their high blood pressure, namely (0.55− 0.41)/0.55 = 0.25.

In reality the data set above is not a population sample, but a collection of all
ischemic stroke patients in Olmsted County over a defined period along with a set of
age matched controls, and the proper calculation of AR becomes more complex in that
case.

Define the following probabilities. They may be interpeted as prevalence rates, inci-
dence rates or proportions depending on the circumstances.

Normal High Blood Pressure
Controls & 559 & 763 \\
Stroke & 384 & 938 \\ \hline
Total & 943 & 1701

Table 1: Table of data from Whisnant et al [6].
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P(D) - probability of disease
P(F ) - probability of risk factor

P(D|F ) - conditional probability of disease among those
with the factor

P(D|F ) - conditional probability of disease among those
without the factor

P(F |D) - conditional probability of the factor being present
among those who are diseased

P(F |D) - conditional probability of the factor being present
among those not diseased

P(D|F )/P(D|F ) - relative risk (RR)

The population attributable risk is defined as I∗/I where I is the total number of
diseased individuals in the population and I∗ is defined as the number attributed to
a factor. Assuming a homogeneous population, I = NP(D) = expected number of
diseased individuals in the population, I∗ = NP(D) − NP(D|F ) = excess number of
diseased individuals. Then

AR = I∗/I =
P(D)− P(D|F )

P(D)
(1)

This formula for AR requires estimates of the rate (prevalence or incidence) of disease
in the total population and the rate of disease in those with the factor. Using Bayes’
theorem the equation can be expressed as

AR =
P(F )(RR− 1)

P(F )(RR− 1) + 1
(2)

The formula for AR can also be represented by

AR =
P(F |D)(RR− 1)

(RR)
(3)

This formula is useful in case-control studies where P(F |D) in the prevalence of the
factors among the cases, and RR can be estimated using an odds ratio obtained from
a logistic regression with case/control status as the outcome. Logisic regression, either
stratified (for matched case-control studies) or unstratified, is the basis for the attribrisk
function.

2 Examples

2.1 Unmatched case-control design with dichotomous exposure
and no confounders

The data from Whisnant, et al 1996 concerning cerebral infarction (CI) and high blood
pressure (HBP) is treated as an unmatched design [6]. Data can be found in the data
frame chapter.dat in the attribrisk package.
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> require(attribrisk)
> data(chapter.dat)
>
> #Show first and last row.

> chapter.dat[c(1,2644),]

hbp dm ihd cases match.id
1 HBP-0 DM-0 IHD-0 0 1
2644 HBP-1 DM-1 IHD-1 1 1322

> #Summarize the relationship between hbp and case/control status.

> count <- table(chapter.dat$hbp, chapter.dat$cases)
> count

0 1
HBP-0 559 384
HBP-1 763 938

From this table the odds ratio and prevalence are

ÔR =
(938 ∗ 559)
(763 ∗ 384)

= 1.79

P̂(F |D) =
938

938 + 384
= 0.71

Using equation 3 we get

ÂR =
0.71 ∗ (1.79− 1)

1.79
= 0.313

The R call for this is below.

> example1 <- attribrisk(cases ~ expos(hbp), data=chapter.dat)
>
> example1

Call:
attribrisk(formula = cases ~ expos(hbp), data = chapter.dat)

Degrees of freedom: 2643
coefficient std. err lower 0.95 upper 0.95

attributable risk 0.3131 0.0347 0.3811 0.2451

Attributable risk is one of the few cases where a user may want to calculate the
estimate from summary data found in a paper, e.g., data such as in table 1. The
function allows this via the use of case weights, as shown below. The example starts by
recreating the data from the table.
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> tdata <- data.frame(case=c(0, 1, 0, 1),
+ hbp =c(0, 0, 1, 1),
+ count = c(559, 384, 763, 938))
> example1b <- attribrisk(case ~ expos(hbp), data=tdata, weight=count)
> example1b

Call:
attribrisk(formula = case ~ expos(hbp), data = tdata, weights = count)

Degrees of freedom: 3
coefficient std. err lower 0.95 upper 0.95

attributable risk 0.3131 0.0369 0.3854 0.2407

The AR estimates in the above two fits are identical, but the standard errors are not.
This is because by default the attribrisk function uses a grouped jackknife estimate
of variance based on k = 20 groups, which leaves out one group at a time. Subjects are
divided into the k groups randomly and hence different runs will have slightly different
jackknife errors. The full jackknife can be obtained by setting k ≥ n where n is the data
set size, but with a consequent increase in the compute time. Bootstrap standard errors
and confidence intervals are also available.

> example1boot <- attribrisk(cases ~ expos(hbp), data=chapter.dat,
+ varmethod = "boot")
> example1boot

Call:
attribrisk(formula = cases ~ expos(hbp), data = chapter.dat,

varmethod = "boot")

Degrees of freedom: 2643
coefficient std. err lower 0.95 upper 0.95

attributable risk 0.3131 0.03968 0.2293 0.387

2.2 Matched case-control design with dichotomous exposure and
no confounders

This example uses attribrisk to estimate AR and its standard error in a matched case-
control design. The data used in this example is the same as the previous example. The
pairs were matched on age and sex. The variable match.id is used as a matching index.
For example, row 1 and 1323 were a matched pair since both have match.id = 1.
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> chapter.dat[chapter.dat$match.id==1,]

hbp dm ihd cases match.id
1 HBP-0 DM-0 IHD-0 0 1
1323 HBP-0 DM-0 IHD-0 1 1

> example2 <- attribrisk(cases ~ strata(match.id) + expos(hbp),
+ data=chapter.dat)
>
> example2

Call:
attribrisk(formula = cases ~ strata(match.id) + expos(hbp), data = chapter.dat)

n = 2644
coefficient std. err lower 0.95 upper 0.95

attributable risk 0.3311 0.03791 0.4054 0.2568

The special function strata is used in the formula to tell the attribrisk function
which observations go together. There can be at most one matching index. The AR
estimated in the unmatched design was 0.3311 which is similar to the unmatched value
of 0.3131 from the unmatched analysis.

2.3 More complex target values

The next two examples look at the computation when one or more adjusting factors are
continuous, using a data set on cerebral infarctions (stroke). The following covariates are
considered for each patient: age at study entry (age), diastolic blood pressure (diastolic)
and smoking level (smoke). The age of the individual needs to be accounted for since
older individuals are more likely to suffer a stroke. Age is a confounder, however, rather
than an exposure variable since everyone ages; we cannot “adjust” it to a different value
via some change in lifestyle. The public health impact of changing smoking or diatolic
blood pressure levels are the questions of interest.

Consider ”smoke” and ”diastolic” factors as exposure variables. Smoking status has
5 levels — Current, Former, Never, Unknown, and Uncertain — and diastolic blood
pressure is a continuous measure. The default action of the attribrisk function is to
compute the effect of making all exposure variables equal to 0, which is not sensible for
blood pressure; a target value needs to be chosen by the user. The target values can
be chosen to represent a hypothetical intervention or the desired level of the exposure,
such as absence of the risk factor.

Consider target values where all patients Never smoked and all subjects’ diastolic
blood pressure values were lowered by 10%.

> # Build Targe

> data(stroke.dat)
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>
> stroke.target <- data.frame(smoke = "Never",
+ diastolic = .9*stroke.dat$diastolic)
>
> set.seed(21790)
> example4a <- attribrisk(
+ cases ~ age + expos(smoke) + expos(diastolic),
+ data=stroke.dat, varmethod="boot", baseline = stroke.target)
>
> example4a

Call:
attribrisk(formula = cases ~ age + expos(smoke) + expos(diastolic),

data = stroke.dat, varmethod = "boot", baseline = stroke.target)

Degrees of freedom: 2022
coefficient std. err lower 0.95 upper 0.95

attributable risk 0.4282 0.03779 0.3537 0.5081

The estimated AR is 0.428 with the standard error of about 0.038. The estimated
95% bootstrap confidence interval suggests that if the entire population had never started
smoking and had 10% lower blood pressure than they do currently, there would be
between 35 and 51 fewer strokes.

Next, consider the target values where all current smokers quit (i.e., change to former
smokers) and the percent reduction in diastolic blood pressure depends on the diastolic
blood pressure value, as in described in this table.

Current Diastolic BP Percent Reduction
>150 25%

121 to 150 15%
101 to 120 10%
86 to 100 5%
≤ 85 no reduction

> # Build baseline

> target <- cut(stroke.dat$diastolic, c(0, 85, 100, 120, 150, 500))
> reduce <- c(0, .05, .1, .15, .25)[as.numeric(target)]
> newbp <-with(stroke.dat, diastolic *(1-reduce))
> newsm <- with(stroke.dat, ifelse(smoke=="Current", "Former", smoke))
>
> stroke.target2 <- data.frame(diastolic = newbp,
+ smoke = newsm)
> example4b <- attribrisk(
+ cases ~ age + expos(smoke) + expos(diastolic),
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+ data=stroke.dat, baseline = stroke.target2)
>
> print(example4b, digits=3)

Call:
attribrisk(formula = cases ~ age + expos(smoke) + expos(diastolic),

data = stroke.dat, baseline = stroke.target2)

Degrees of freedom: 2022
coefficient std. err lower 0.95 upper 0.95

attributable risk 0.117 0.0218 0.16 0.0743

So if all current smokers quit and people with high diastolic BP reduced their BP, the
AR would be about 11.7% The different target values yielded quite different potential
reductions for the amount of stroke, where the second is more realistic and the first
perhaps only a pipe dream.

3 Conclusion

The paper describes how to use the attribrisk function in R for unmatched and matched
case-control designs. The attribrisk function enables modeling with any number of
confounders/adjustors and exposures, which can be discrete or continuous, and allows
for flexibility in defining target values.
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A Comparing Results to Benichou (1991)

Data from table I of Benichou and Gail [1], which computes attributable risks for
esophogeal cancer due to smoking and alchohol, is be found in the data frame benichou
in the attribrisk package. The following table compares all the AR results reported by
Benichou in tables III, IV, and V; and the results calculated using the attribrisk pack-
age. The standard errors shown for the attribrisk function are from the default 20-fold
grouped jackknife. When the full n-fold jackknife is used they all agree with Benichou
and Gail, but the resulting vignette takes longer to run than CRAN guidelines allow.

Benichou & Gail attribrisk
Model Formula ÂR ŜD ÂR ŜD

1 expos(alcohol80) 0.40 0.042 0.39 0.036
2 age * smoke + expos(alcohol80) 0.38 0.044 0.38 0.043
3 age * (smoke + expos(alcohol80)) 0.38 0.044 0.38 0.036
4 smoke * (age + expos(alcohol80)) 0.38 0.044 0.38 0.045
5 age * smoke * expos(alcohol80) 0.38 0.044 0.38 0.041
6 expos(alcohol40) 0.71 0.051 0.71 0.048
7 age * smoke + expos(alcohol40) 0.72 0.050 0.72 0.065
8 age * (smoke + expos(alcohol40)) 0.72 0.050 0.72 0.059
9 smoke * (age + expos(alcohol40)) 0.70 0.054 0.70 0.055

10 age * smoke * expos(alcohol40) 0.70 0.056 0.70 0.056
11 expos(alcohol) 0.71 0.051 0.71 0.052
12 age * smoke + expos(alcohol) 0.72 0.050 0.72 0.060
13 age * (smoke + expos(alcohol)) 0.73 0.050 0.73 0.059
14 smoke * (age + expos(alcohol)) 0.70 0.054 0.70 0.050
15 age * smoke * expos(alcohol) 0.70 NA 0.70 0.058
16 expos(fsmoke.alc) 0.86 0.046 0.86 0.048
17 age + expos(fsmoke.alc) 0.87 0.045 0.87 0.040
18 age * expos(fsmoke.alc) 0.87 0.044 0.87 0.047

In models 1–5, alcohol consumption was considered a binary exposure factor (0–79;
80+ g/day). Age, smoking, and their interactions were used as main effects in models
2–5. The attributable risk shows the estimated effect if all those consuming more than
80 g/day were to convert to the lowest category of 0–39.

In models 6–10, alcohol consumption was split at 40g/day. The estmated effect of
having all these subjects decrease to 0–39 is much larger, largely due to the greater
number of subjects affected by the intervention. Age, smoking, and their interactions
were used as main effects in models 7–10.

In models 11–15, alcohol consumption was considered a polychotomus exposure fac-
tor (0–39; 40–79, 80–119, 120+ g/day). The target alcohol value is still the first category
of 0–39, as in the prior set of models and the same subjects are affected. The impact
changes slightly since the underlying model has a different risk estimate for each of the
40–79, 80–119 and 120+ groups. In model 15, twenty-four parameters are used to model
the interactions of alcohol consumption with smoking and age. Model 15 was a saturated
model and the delta method cannot provide an estimate of the standard error. Note:
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Even though model 15 was saturated, the jackknife standard error estimated using the
attribrisk package is reasonable.

In models 16–18 the exposure is the single binary variable for either smoking or
drinking above the baseline level.
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