
How to draw ideogram

Zuguang Gu <z.gu@dkfz.de>

March 20, 2015

There is a new and more comprehensive vignette in this package which is focusing on genomic
graphics. Nevertheless, this vignette is still useful for users to get a clue on how to draw genomic
graphics by very basic low-level functions.

The most widely use of the circular layout is to display genomic information. In most circum-
stances, figure contains an ideogram. Drawing ideogram by circlize package is simple.

An ideogram is, in fact, a series of rectangles with different colors, so theoretically, you can use
circos.rect to implement it. In the following example we draw the ideogram for human. The
cytoband data for human can be downloaded from http://hgdownload.soe.ucsc.edu/goldenPath/

hg19/database/cytoBand.txt.gz or from UCSC Table Browser (http://genome-euro.ucsc.edu/cgi-bin/

hgTables). Uncompress the file and read it into R. Here circlize package already contains such file.

library(circlize)

d = read.table(file = paste0(system.file(package = "circlize"), "/extdata/cytoBand.txt"),

colClasses = c("character", "numeric", "numeric", "character", "character"))

head(d)

V1 V2 V3 V4 V5

1 chr1 0 2300000 p36.33 gneg

2 chr1 2300000 5400000 p36.32 gpos25

3 chr1 5400000 7200000 p36.31 gneg

4 chr1 7200000 9200000 p36.23 gpos25

5 chr1 9200000 12700000 p36.22 gneg

6 chr1 12700000 16200000 p36.21 gpos50

In the data frame, the second column and the third column correspond to the intervals for cytoge-
netic bands.

Here, setting colClasses argument when reading the cytoband file is very important. Because
positions on chromosomes are represented as large integers (the second column and third column), by
default, read.table would store such data as integer mode. When arranging the layout, circlize will
sum up such positions to determine the range of chromosomes and summation of such large integers
would throw error of data overflow, thus you must set the data mode to floating point (numeric).

Since chromosomes are sorted by their names which are as mode of character, the default order
would look like “chr1, chr10, chr11, ..., chr2, chr20, ...”. We need to sort chromosomes by the numeric
index first.

The process is simple. Extract the number part (1, 2, ..., 22) and the letter part (X, Y) in chromosome
names. Sorted them separately and finally combine them back.

chromosome = unique(d[[1]])

chromosome.ind = gsub("chr", "", chromosome)

chromosome.num = grep("^\\d+$", chromosome.ind, value = TRUE)

chromosome.letter = chromosome.ind[!grepl("^\\d+$", chromosome.ind)]

chromosome.num = sort(as.numeric(chromosome.num))

chromosome.letter = sort(chromosome.letter)

chromosome.num = paste("chr", chromosome.num, sep = "")

chromosome.letter = paste("chr", chromosome.letter, sep = "")

1

http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/cytoBand.txt.gz
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/cytoBand.txt.gz
http://genome-euro.ucsc.edu/cgi-bin/hgTables
http://genome-euro.ucsc.edu/cgi-bin/hgTables

chromosome = c(chromosome.num, chromosome.letter)

chromosome

[1] "chr1" "chr2" "chr3" "chr4" "chr5" "chr6" "chr7" "chr8"

[9] "chr9" "chr10" "chr11" "chr12" "chr13" "chr14" "chr15" "chr16"

[17] "chr17" "chr18" "chr19" "chr20" "chr21" "chr22" "chrX" "chrY"

The cytoband data also provides the range of each chromosome. This can be used to set as xlim of
each chromosome. In the following code, we calculate the start position and the end position of each
chromosome and store them in a matrix in which order of rows of xlim correspond to the order of
elements in chromosome.

xlim = matrix(nrow = 0, ncol = 2)

for(chr in chromosome) {

d2 = d[d[[1]] == chr,]

xlim = rbind(xlim, c(min(d2[[2]]), max(d2[[3]])))

}

Note that chromosome name in UCSC has prefix of ‘chr’, so if you are using chromosomes form
1000 Genome project which have no ’chr’ prefix, remember to add it.

Before initializing the circular layout, we need to set some graphic parameters. Here we do not
need any cell paddings and we do not need lines to be too thick because genomic graphics are always
huge.

par(lwd = 0.5)

circos.par(cell.padding = c(0, 0, 0, 0))

In the initialization step, width of each sector corresponds to the length of each chromosome. Also
the order of sectors is determined in this step. Here we must explicitly set the levels of the factors
to make sure the order of chromosomes is “chr1, chr2, chr3, ...” or else the order would be the
alphabetical which is “chr1, chr11, ...”. After the initialization step, the position of each chromosome
as well as the order are stored in an internal variable. So in the later step, as long as the chromosome
is specified, graphics will be put in the right sector.

circos.initialize(factors = factor(chromosome, levels = chromosome), xlim = xlim)

After each chromosome has been allocated in the circle, we can draw the ideogram. Besides that,
we also want to draw additional information such as axes and names of chromosomes. Here we will
draw ideogram, axis and the chromosome names in one same track (It is just an option, also you can
draw ideogram, axes and names of chromosomes in different tracks as you like). in the following
code, we create the first track in which there are 24 cells and each cell corresponds to a chromosome.
The x-range of each cell is the range of the chromosome and the y-range of each cell is from 0 to 1.

circos.trackPlotRegion(ylim = c(0, 1), bg.border = NA, track.height = 0.1)

In the above codes, without specifying factors argument, circos.trackPlotRegion will automat-
ically create plotting regions for all available sectors which have already been initialized.

Now in each cell, we draw the ideogram for each chromosome. Code is simple. The steps are: for
each chromosome:

1. assign different colors for different cytogenetic bands;

2. draw rectangle for different bands;

3. add axes;

4. add chromosome names.

Here the color theme is from http://circos.ca/tutorials/course/slides/session-2.pdf, page
42.

2

http://circos.ca/tutorials/course/slides/session-2.pdf

for(chr in chromosome) {

data in current `chr`

d2 = d[d[[1]] == chr,]

n = nrow(d2)

assign colors

col = rep("#FFFFFF", n)

col[d2[[5]] == "gpos100"] = rgb(0, 0, 0, maxColorValue = 255)

col[d2[[5]] == "gpos"] = rgb(0, 0, 0, maxColorValue = 255)

col[d2[[5]] == "gpos75"] = rgb(130, 130, 130, maxColorValue = 255)

col[d2[[5]] == "gpos66"] = rgb(160, 160, 160, maxColorValue = 255)

col[d2[[5]] == "gpos50"] = rgb(200, 200, 200, maxColorValue = 255)

col[d2[[5]] == "gpos33"] = rgb(210, 210, 210, maxColorValue = 255)

col[d2[[5]] == "gpos25"] = rgb(200, 200, 200, maxColorValue = 255)

col[d2[[5]] == "gvar"] = rgb(220, 220, 220, maxColorValue = 255)

col[d2[[5]] == "gneg"] = rgb(255, 255, 255, maxColorValue = 255)

col[d2[[5]] == "acen"] = rgb(217, 47, 39, maxColorValue = 255)

col[d2[[5]] == "stalk"] = rgb(100, 127, 164, maxColorValue = 255)

rectangles for different locus

for(i in seq_len(n)) {

circos.rect(d2[i, 2], 0, d2[i, 3], 0.4, sector.index = chr,

col = col[i], border = NA)

}

rectangle that cover the whole chromosome

circos.rect(d2[1, 2], 0, d2[n, 3], 0.4, sector.index = chr, border = "black")

axis

major.at = seq(0, 10^nchar(max(xlim[, 2])), by = 50000000)

circos.axis(h = 0.5, major.at = major.at,

labels = paste(major.at/1000000, "MB", sep = ""),

labels.facing = "clockwise", labels.niceFacing = TRUE,

sector.index = chr, labels.cex = 0.2)

chr.xlim = get.cell.meta.data("xlim", sector.index = chr)

chromosome names, only the number part or the letter part

circos.text(mean(chr.xlim), 1.2, labels = gsub("chr", "", chr),

sector.index = chr, cex = 0.8)

}

In the above code, you can find the ylim for the cells in the first track is c(0, 1) and the y-value
in circos.text is 1.2 which exceeds the ylim. There may be some warnings saying some points are
out of the plotting region. But in fact it is OK to draw something outside the plotting regions. You just
need to make sure the final figure looks good.

If you do not want to draw ideogram in the most outside of the circos layout. You can draw it in
other tracks as you wish.

As we introduced in the main vignettes, code in the for loop can also be put inside panel.fun

when calling circos.trackPlotRegion.
If there is a translocation from position 111111111 in chromosome 2 to position 55555555 in chro-

mosome 16. It can represent as a link in the circular layout.

circos.link("chr2", 111111111, "chr16", 55555555)

If position 88888888 in chromosome 6 is important and we want to mark it, we can first create a
new track and add line and text in the specified cell. Note this track will overlap with the link which
we added before, but since bg.border is set to NA, nothing will be plotted for this invisible track.

3

0MB

50MB

100MB

150MB

200MB

1

0MB

50MB

100MB

150M
B

200M
B

2

0M
B

50M
B

100M
B

150M
B

3

0M
B50M

B

100M
B15

0M
B

4

0M
B50

M
B

10
0M

B

15
0M

B

5

0M
B

50
M

B

10
0M

B

15
0M

B

6

0MB

50MB

100MB

150MB

7

0MB

50MB

100MB

8

0MB

50MB

100MB

9

0MB

50MB

100MB

10

0MB

50MB

100MB

11

0MB

50M
B

100M
B

12

0M
B

50M
B

100M
B13

0M
B

50M
B

100M
B

14 0M
B

50M
B

10
0M

B

15

0M
B

50
M

B

16

0M
B

50
M

B

17

0M
B

50
M

B

18

0M
B

50
M

B

19

0M
B

50MB

20

0MB 21
0MB

50MB

22

0MB

50MB

100MB

150MB

X

0MB

50MB

Y

sit
e

Figure 1: Ideogram in circular layout.

create a new track

circos.trackPlotRegion(ylim = c(0, 1), bg.border = NA)

circos.text(88888888, 0.2, labels = "site", sector.index = "chr6", adj = c(0.5, 1))

circos.lines(c(88888888, 88888888), c(0.3, 1), sector.index = "chr6", straight = TRUE)

Finally, don’t forget to call circos.clear in the end.

circos.clear()

For other tracks of genomic graphics, the genomic coordinate (positions on chromosomes) are
x-values and measurements on genomic positions are y-values.

The final figure is figure 1.

4

