
Some interesting graphics

Zuguang Gu <z.gu@dkfz.de>

March 20, 2015

The first example is a clock. The key function here is circos.axis (figure 1). The whole circle only
contains one sector in which major tick at 0 is overlapping with major tick at 12. The two arrows are
plotted in the canvas coordinate. An example of a real-time clock is in Examples section in the help
page of circos.axis.

library(circlize)

factors = "a" # any name is OK

circos.par(gap.degree = 0, cell.padding = c(0, 0, 0, 0), start.degree = 90)

circos.initialize(factors = factors, xlim = c(0, 12))

circos.trackPlotRegion(factors = factors, ylim = c(0, 1), bg.border = NA)

circos.axis(sector.index = "a", major.at = 0:12, labels = "",

direction = "inside", major.tick.percentage = 0.3)

circos.text(1:12, rep(0.5, 12), 1:12, facing = "downward")

arrows(0, 0, 0, 0.7)

arrows(0, 0, 0.4, 0)

circos.clear()

The second example is a dartboard. In the figure, tracks are assigned with different heights and
each cell is initialized with different colors (figure 2). The most inside green ring and red circle are
plotted by draw.sector.

factors = 1:20 # just indicate there are 20 sectors

circos.par(gap.degree = 0, cell.padding = c(0, 0, 0, 0),

start.degree = 360/20/2, track.margin = c(0, 0), clock.wise = FALSE)

circos.initialize(factors = factors, xlim = c(0, 1))

circos.trackPlotRegion(ylim = c(0, 1), factors = factors, bg.col = "black",

track.height = 0.15)

circos.trackText(rep(0.5, 20), rep(0.5, 20),

labels = c(13, 4, 18, 1, 20, 5, 12, 9, 14, 11, 8, 16, 7, 19, 3, 17, 2, 15, 10, 6),

factors = factors, col = "#EEEEEE", font = 2, facing = "downward")

circos.trackPlotRegion(ylim = c(0, 1), factors = factors,

bg.col = rep(c("#E41A1C", "#4DAF4A"), 10), bg.border = "#EEEEEE", track.height = 0.05)

circos.trackPlotRegion(ylim = c(0, 1), factors = factors,

bg.col = rep(c("black", "white"), 10), bg.border = "#EEEEEE", track.height = 0.275)

circos.trackPlotRegion(ylim = c(0, 1), factors = factors,

bg.col = rep(c("#E41A1C", "#4DAF4A"), 10), bg.border = "#EEEEEE", track.height = 0.05)

circos.trackPlotRegion(ylim = c(0, 1), factors = factors,

bg.col = rep(c("black", "white"), 10), bg.border = "#EEEEEE", track.height = 0.375)

draw.sector(center = c(0, 0), start.degree = 0, end.degree = 360,

rou1 = 0.1, col = "#4DAF4A", border = "#EEEEEE")

draw.sector(center = c(0, 0), start.degree = 0, end.degree = 360,

rou1 = 0.05, col = "#E41A1C", border = "#EEEEEE")

1

1

2

3

4

5

6

7

8

9

10

11

12

Figure 1: A clock.

13

4

18

1
20

5

12

9

14

11

8

16

7

19
3

17

2

15

10

6

Figure 2: A dartboard.

2

circos.clear()

The third example is Bagua (https://en.wikipedia.org/wiki/Bagua). The key functions are
circos.rect and draw.sector (figure 3).

Bagua is originated several thousands years ago in China. It is the source of almost all ancient
Chinese philosophy. It abstracts the rule of universe into base signs and combination of the two basic
signs generates the whole system of the universe.

Inside Bagua, these is the Taiji (http://en.wikipedia.org/wiki/Taiji_(philosophy)). Taiji refers
to the most original state at the creation of the universe. In ancient Chinese philosophy system, at the
very beginning, the whole world is a huge mass of air (chaos). Then the lighter air floated up and
created sky while heavier sinked down and created ground. The upper world is called Yang and the
bottom world is called Ying. And that is Taiji.

So look at Taiji, you can see there are two states interacting with each other. The white one and the
black one gradually transformed into each other at the end. And in the center of white and black, the
opposite color is generated. In real world, Taiji can represent all phenomenon that is of dualism. Such
as male and female, correct and wrong. However things would change, good thing would become bad
thing as time goes by, and bad thing also would turn good according how you look at the world. So
when you are upset, don’t worry, Taiji would tell you that things are going to be fine.

factors = 1:8

circos.par(start.degree = 22.5, gap.degree = 6)

circos.initialize(factors = factors, xlim = c(0, 1))

yang yao is -

add_yang_yao = function() {

circos.rect(0,0,1,1, col = "black")

}

yin yao is --

add_yin_yao = function() {

circos.rect(0,0,0.45,1, col = "black")

circos.rect(0.55,0,1,1, col = "black")

}

circos.trackPlotRegion(ylim = c(0, 1), factors = factors, bg.border = NA,

panel.fun = function(x, y) {

i = get.cell.meta.data("sector.numeric.index")

if(i %in% c(2, 5, 7, 8)) add_yang_yao() else add_yin_yao()

}, track.height = 0.1)

circos.trackPlotRegion(ylim = c(0, 1), factors = factors, bg.border = NA,

panel.fun = function(x, y) {

i = get.cell.meta.data("sector.numeric.index")

if(i %in% c(1, 6, 7, 8)) add_yang_yao() else add_yin_yao()

}, track.height = 0.1)

circos.trackPlotRegion(ylim = c(0, 1), factors = factors, bg.border = NA,

panel.fun = function(x, y) {

i = get.cell.meta.data("sector.numeric.index")

if(i %in% c(4, 5, 6, 7)) add_yang_yao() else add_yin_yao()

}, track.height = 0.1)

the bottom of the most recent track

r = get.cell.meta.data("cell.bottom.radius") - 0.1

draw taiji, note default order is clock wise for `draw.sector`

draw.sector(center = c(0, 0), start.degree = 90, end.degree = -90,

rou1 = r, col = "black", border = "black")

draw.sector(center = c(0, 0), start.degree = 270, end.degree = 90,

rou1 = r, col = "white", border = "black")

3

https://en.wikipedia.org/wiki/Bagua
http://en.wikipedia.org/wiki/Taiji_(philosophy)

Figure 3: Bagua and Taiji.

draw.sector(center = c(0, r/2), start.degree = 0, end.degree = 360,

rou1 = r/2, col = "white", border = "white")

draw.sector(center = c(0, -r/2), start.degree = 0, end.degree = 360,

rou1 = r/2, col = "black", border = "black")

draw.sector(center = c(0, r/2), start.degree = 0, end.degree = 360,

rou1 = r/8, col = "black", border = "black")

draw.sector(center = c(0, -r/2), start.degree = 0, end.degree = 360,

rou1 = r/8, col = "white", border = "white")

circos.clear()

Figure 4 is a circular style of Keith Haring’s doodle. The circular transformation is as follows: 1.
use jpeg package to read RGB information for each pixel in the original figure; 2. use circos.rect

to draw every pixel into the circle. Source code for generating the figure can be found at http:

//jokergoo.github.io/circlize/example/doodle.html.

4

http://jokergoo.github.io/circlize/example/doodle.html
http://jokergoo.github.io/circlize/example/doodle.html

Figure 4: Keith Haring’s Doodle.

5

