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1 Introduction

This document presents mathematical details about the Dendrochronology Pro-
gram Library in R (dplR) [3, 4] which is an add-on package for R [10]. Section 2
deals with the spline smoothing function ffcsaps whereas section 3 covers the
computation of Gini coefficients in gini.coef.

The original implementations of the functions covered here were not written
by the author of this document. Therefore the functions were analyzed with a
reverse engineering approach. At the time of writing, dplR was at version 1.6.0.
Although any changes affecting the mathematical details of the functions are
unlikely, the reader is advised to check that the document file originated from
a current version of dplR.

2 Spline Smoothing Parameters in ffcsaps

The ffcsaps function fits a cubic smoothing spline to a given data vector. In
the manual (Rd file) of the function [2], it is stated that the frequency response
of the spline is f at a wavelength (period) of nyrs years1, where these two are
parameters of the function. We aim to clarify how they relate to the single
smoothing parameter of the spline and what that parameter stands for. The
smoothing parameter is denoted by p in the source code of the function.

The manual of the ffcsaps function cites [5]. On page 111, they give the
following frequency (amplitude) response function for the spline:

u(f) = 1−
1

1 + p(cos(2πf)+2)
6(cos(2πf)−1)2

, (1)

where f is frequency and p is stated to be the Lagrange multiplier of the spline,
the single parameter that determines the frequency response. However, the
exact definition of the optimization problem is absent. Neither is it given in [6],
the reference used by [5]. I did not find a copy of [9] when trying to follow the
chain of references further.

Note that the relationship between frequency and period using mixed no-
tation of ffcsaps and (1) is f = 1/nyrs. Setting parameters f and nyrs in
ffcsaps is equivalent to the following directive: set the smoothing parameter

1assuming that the sampling rate is once per year
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to a value that fulfills u(1/nyrs) = f. By making the variable substitutions and
rearranging (1) we get the following equation for p:

p =
6f(cos(2π/nyrs)− 1)2

(1− f)(cos(2π/nyrs) + 2)
(2)

or for the inverse of p:

1

p
=

(1− f)(cos(2π/nyrs) + 2)

6f(cos(2π/nyrs)− 1)2
. (3)

The source code of ffcsaps contains code lines that correspond to the equa-
tion

p.inv =
1

p
=

(1− f)(cos(2π/nyrs) + 2)

12f(cos(2π/nyrs)− 1)2
+ 1 , (4)

where p and its inverse p.inv are variables used in the code. We find that (3)
and (4) are connected by

1

p
= 2

(

1

p
− 1

)

(5)

or equivalently
p

1− p
= 2p . (6)

Figure 1 shows the results of a test where the frequency response of ffcsaps
(blue circles) is compared to the theoretical result (green line) obtained using
(1) and (2). We see that theory meets practice very well, particularly for low
frequencies. It must be noted that the theoretical result does not take into
account the effect of having a series of finite length. The orange crosses show
what happens if one pretends that p and p are the same quantity, forgetting (5)
and (6).

matlab (version 8.3.0.532 (R2014a)) contains a function called csaps in
the “Curve Fitting Toolbox”. The name bears a resemblance to ffcsaps. The
smoothing parameter of csaps is called p which makes it a namesake of the
internal variable of ffcsaps derived from the parameters nyrs and f. To com-
pare the results of the two functions, I modified ffcsaps slightly so that it can
take p as an argument and omit nyrs and f. I created a segment of a noisy
sine wave and smoothed it with both functions using all values of p in the set
{0, 0.01, 0.02, . . . , 1}, covering the whole range of useful values [8]2. Using the
R function all.equal to compare each pair of smoothed series, I found that
the results of csaps and ffcsaps always matched. The result was reproduced
when this document was compiled. Figure 2 shows the input series and four
smoothed series of the experiment.

According to the documentation of csaps [8], it fits the spline by minimizing
the following sum, presented here in a simplified form:

p× Error + (1− p)× Roughness . (7)

2The Mathworks web site openly provides access to the documentation of the latest Matlab

version. Older documents are available after a login to the website or by running doc csaps

in the command prompt of a particular Matlab version. The author has checked that the

documentation of csaps agrees between versions 2012b, 2013a, 2013b, 2014a and 2014b.

2



0.0 0.1 0.2 0.3 0.4 0.5

0.
2

0.
4

0.
6

0.
8

1.
0

nyrs = 4, f = 0.5

Frequency (1 / year)

A
m

p
li
tu

d
e

re
sp

on
se

50% response

4
y
r

p
er

io
d

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

nyrs = 16, f = 0.5

Frequency (1 / year)

A
m

p
li
tu

d
e

re
sp

on
se

50% response

16
y
r

p
er

io
d

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

nyrs = 64, f = 0.5

Frequency (1 / year)

A
m

p
li
tu

d
e

re
sp

on
se

50% response

64
y
r

p
er

io
d Simulation (p from ffcsaps())

Simulation (p from Cook and Peters)

Theoretical (Cook and Peters))

Figure 1: Theoretical frequency response of spline filter vs response with i.i.d.
normal series of 1536 samples (mean of 500 repeats) using ffcsaps. The legend
on the bottom panel applies to all panels. The blue circles were obtained by
using (4) for computing (inverse) p in ffcsaps. The orange crosses show the
results when (3) is used instead.
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Figure 2: Spline with different values of smoothing parameter p fitted to a noisy
sine wave
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Having demonstrated that the results of csaps and ffcsaps match when using
any chosen value of p, we can safely say that (7) is also the function minimized
by ffcsaps, with the same definitions of Error and Roughness, details of which
are omitted here. A more direct analysis would require one to completely reverse
engineer the scarcely documented source code of ffcsaps. Following from (6)
and (7), the splines described in [5] seem to be the result of minimizing

2p× Error + Roughness . (8)

3 Formulation of Gini Coefficient in gini.coef

The gini.coef function computes the Gini coefficient (Gini index) of a given
data vector. The manual (Rd file) of the function has a reference to [1] which
uses the following formula for the Gini coefficient (G):

G =
1

2n
∑n

i=1 xi

n
∑

i=1

n
∑

j=1

|xi − xj | . (9)

In (9), the Gini coefficient is defined in terms of pairwise differences between
all pairs of observations (xi, i ∈ 1, . . . , n). More specifically, the Gini coefficient
is one half of the relative mean difference, which is defined as the mean of the
absolute pairwise distances divided by the mean of the observations.

The C source code of the gini.coef function uses the following formula for
the Gini index:

G =

(

Xn(n− 1)− 2

n−1
∑

i=1

Xi

)

/(Xnn) , (10)

where n is the number of observations and Xi is the i:th cumulative sum

Xi =

i
∑

j=1

xj (11)

of sorted observations xj :

∀i : i < j ⇒ xi ≤ xj . (12)

(10) can be reformulated as

G = 1−
1

n
−

2

Xnn

n−1
∑

i=1

Xi (13)

or as

G =

(

1

2
−

(

1

2n
+

1

Xnn

n−1
∑

i=1

Xi

))

/
1

2
. (14)

When we assign

A+B =
1

2
(15)
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Figure 3: Graphical representation of the Gini coefficient based on areas defined
by the Lorenz curve (n = 6). See equations (15), (16), (17) and (18).

and

B = B1 +B2 =
1

2n
+

1

Xnn

n−1
∑

i=1

Xi , (16)

(14) becomes
G = A/(A+B) (17)

or equivalently
G = 1− 2B . (18)

Figure 3 is a graphical representation of the Gini coefficient using an example
data set of the following six observed values: {0.2, 0.4, 0.75, 0.95, 1.2, 2.5}. It
shows the definition of the Gini coefficient as the ratio of the area above the
Lorenz curve [7] to the total area of the triangle [11]. The Lorenz curve is defined
by the cumulative distribution function of the empirical probability distribution
of the observations. The sides of the triangle corresponding to the axes are
normalized to length 1.

Comparing Figure 3 to (16), B2 =
∑n−1

i=1 Xi/(Xnn) is obviously the sum of
the areas of the cyan bars. Summing the areas of the teal triangles, we get

n
∑

i=1

(

1

2

1

n

xi

Xn

)

=
1

2nXn

n
∑

i=1

xi =
1

2n
= B1 . (19)

Note that B1 only depends on the number of observations, not on their values.
From (16) and (18) we find that the value of the Gini coefficient at maximum
inequality (winner takes all) is Gmax(n) = 1 − 1/n. When all observed values
are equal, the Lorenz curve matches the line of equality (Figure 3), and the Gini
coefficient is Gmin = 0. We have assumed that all values xi are non-negative.
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The equivalence of different definitions of the Gini coefficient is reviewed
in [11]. One of the results shown in the paper is that the geometric definition (17)
used by the gini.coef function is equivalent to the definition based on the
relative mean difference (9). This can be experimentally verified by comparing
the results of the following R function to those of gini.coef.

## Gini index is one half of relative mean difference.

## x should not have NA values.

gini.rmd <- function(x) {

mean(abs(outer(x, x, "-"))) / mean(x) * 0.5

}

References

[1] F. Biondi and F. Qeadan. Inequality in paleorecords. Ecology, 89(4):1056–
1067, 2008.

[2] A. Bunn, M. Korpela, F. Biondi, F. Campelo, P. Mérian, M. Mudelsee,
F. Qeadan, M. Schulz, and C. Zang. dplR: Dendrochronology Program

Library in R, 2014. R package version 1.6.0.

[3] A. G. Bunn. A dendrochronology program library in R (dplR). Den-

drochronologia, 26(2):115–124, 2008.

[4] A. G. Bunn. Statistical and visual crossdating in R using the dplR library.
Dendrochronologia, 28(4):251–258, 2010.

[5] E. R. Cook and L. A. Kairiukstis. Methods of dendrochronology: applica-

tions in the environmental sciences. Springer, 1990.

[6] E. R. Cook and K. Peters. The smoothing spline: a new approach to stan-
dardizing forest interior tree-ring width series for dendroclimatic studies.
Tree-ring bulletin, 41:45–53, 1981.

[7] M. O. Lorenz. Methods of measuring the concentration of wealth. Publi-

cations of the American Statistical Association, 9(70):209–219, 1905.

[8] MathWorks. csaps: Cubic smoothing spline. http://www.mathworks.com/
help/curvefit/csaps.html. Accessed: 2014-11-10. Documentation of the
latest version at that time (Matlab R2014b).

[9] K. Peters and E. R. Cook. The cubic smoothing spline as a digital fil-
ter. Technical report, Lamont-Doherty Geological Observatory of Columbia
University, Tree-Ring Laboratory, 1981.

[10] R Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2014.

[11] K. Xu. How has the literature on Gini’s index evolved in the past 80 years.
China Economic Quarterly, 2:757–778, 2003.

7

http://www.mathworks.com/help/curvefit/csaps.html
http://www.mathworks.com/help/curvefit/csaps.html

	Introduction
	Spline Smoothing Parameters in ffcsaps
	Formulation of Gini Coefficient in gini.coef

