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1 Getting Started

This vignette is based on the ergm tutorial presented at INSNA Sunbelt - St. Pete Beach, Florida,
Feb 2011.

Open an R session, and set your working directory to the location where you would like to save
this work. You can do this with the pull-down menus (File>Change Dir) or with the command:

> setwd('full.path.for.the.folder')

To install all of the packages in the statnet suite:

> install.packages('statnet')
> library(statnet)

Or, to only install the specific statnet packages needed for this tutorial:

> install.packages('network')
> install.packages('ergm')
> install.packages('sna')
> library(network)

> library(ergm)

> library(sna)

After the first time, to update the packages one can either repeat the commands above, or use:

> update.packages('name.of.package')

For this tutorial, we will need one additional package (coda), which is recommended (but not
required) by ergm:

> install.packages('coda')
> library(coda)

2 Statistical network modeling; the ergm command and ergm
object

Make sure the statnet package is attached:

> library(statnet)

or

> library(ergm)

> library(sna)

> set.seed(1)

The ergm package contains several network data sets that you can use for practice examples.
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> data(package='ergm') # tells us the datasets in our packages

> data(florentine) # loads flomarriage and flobusiness data

> flomarriage # Let's look at the flomarriage data

Network attributes:

vertices = 16

directed = FALSE

hyper = FALSE

loops = FALSE

multiple = FALSE

bipartite = FALSE

total edges= 20

missing edges= 0

non-missing edges= 20

Vertex attribute names:

priorates totalties vertex.names wealth

No edge attributes

> plot(flomarriage) # Let's view the flomarriage network

Remember the general ergm representation of the probability of the observed network, and the
conditional log-odds of a tie:

Pr(Y = y) = exp[θ′g(y)]/k(θ)
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Y is a network; g(y) is a vector of network stats; θ is the vector of coefficients; k(θ) is a normalizing
constant.

logit (Pr(Yij = 1|Y c)) = θ′∆ (g(y))ij

Yij is an actor pair in Y ; Y c is the rest of the network; ∆ (g(y))ij is the change in g(y) when the
value of Yij is toggled on.

We begin with the simplest possible model, the Bernoulli or Erd?s-R?nyi model, which contains
only an edge term.

> flomodel.01 <- ergm(flomarriage~edges) # fit model

> flomodel.01

MLE Coefficients:

edges

-1.609

> summary(flomodel.01) # look in more depth

==========================

Summary of model fit

==========================

Formula: flomarriage ~ edges

Iterations: 5 out of 20

Monte Carlo MLE Results:

Estimate Std. Error MCMC % p-value

edges -1.6094 0.2449 0 <1e-04 ***

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Null Deviance: 166.4 on 120 degrees of freedom

Residual Deviance: 166.4 on 119 degrees of freedom

AIC: 168.4 BIC: 171.1 (Smaller is better.)

How to interpret this model? The log-odds of any tie occurring is:

−1.609× change in the number of ties

= −1.609× 1

for all ties, since the addition of any tie to the network changes the number of ties by 1!

Corresponding probability is:

exp(−1.609)/(1 + exp(−1.609))

= 0.1667

which is what you would expect, since there are 20/120 ties.

Let’s add a term often thought to be a measure of “clustering”: the number of completed triangles.
Note we’re in stochastic simulation now – your output will differ

4



> flomodel.02 <- ergm(flomarriage~edges+triangle)

Iteration 1 of at most 20:

The log-likelihood improved by 0.008994

Step length converged once. Increasing MCMC sample size.

Iteration 2 of at most 20:

The log-likelihood improved by 0.0007056

Step length converged twice. Stopping.

This model was fit using MCMC. To examine model diagnostics and check for degeneracy, use the mcmc.diagnostics() function.

> summary(flomodel.02)

==========================

Summary of model fit

==========================

Formula: flomarriage ~ edges + triangle

Iterations: 2 out of 20

Monte Carlo MLE Results:

Estimate Std. Error MCMC % p-value

edges -1.6822 0.3468 0 <1e-04 ***

triangle 0.1656 0.5859 0 0.778

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Null Deviance: 166.4 on 120 degrees of freedom

Residual Deviance: 108.1 on 118 degrees of freedom

AIC: 112.1 BIC: 117.6 (Smaller is better.)

> coef1 = flomodel.02$coef[1]

> coef2 = flomodel.02$coef[2]

> logodds = coef1 + c(0,1,2) * coef2

> expit = function(x) 1/(1+exp(-x))

> ps = expit(logodds)

> coef1 = round(coef1, 3)

> coef2 = round(coef2, 3)

> logodds = round(logodds, 3)

> ps = round(ps, 3)

Again, how to interpret coefficients?

Conditional log-odds of two actors forming a tie is:

−1.682× change in the number of ties + 0.166× change in number of triangles

• if the tie will not add any triangles to the network, its log-odds is: −1.682.

• if it will add one triangle to the network, its log-odds is: −1.682 + 0.166 = −1.517

• if it will add two triangles to the network, its log-odds is: −1.682 + 0.166× 2 = −1.351
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• the corresponding probabilities are 0.157, 0.18, and 0.206.

Let’s take a closer look at the ergm object itself:

> class(flomodel.02) # this has the class ergm

[1] "ergm"

> names(flomodel.02) # let's look straight at the ERGM obj.

[1] "coef" "sample" "sample.obs" "iterations"

[5] "MCMCtheta" "loglikelihood" "gradient" "hessian"

[9] "covar" "failure" "network" "newnetwork"

[13] "coef.init" "est.cov" "coef.hist" "stats.hist"

[17] "steplen.hist" "control" "etamap" "formula"

[21] "target.stats" "target.esteq" "constrained" "constraints"

[25] "reference" "estimate" "offset" "drop"

[29] "estimable" "null.lik" "mle.lik"

> flomodel.02$coef

edges triangle

-1.6822180 0.1656283

> flomodel.02$formula

flomarriage ~ edges + triangle

> flomodel.02$mle.lik

'log Lik.' -54.03683 (df=2)

> wealth <- flomarriage %v% 'wealth' # the %v% extracts vertex

> wealth # attributes from a network

[1] 10 36 55 44 20 32 8 42 103 48 49 3 27 10 146 48

> plot(flomarriage, vertex.cex=wealth/25) # network plot with vertex size

> # proportional to wealth
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We can test whether edge probabilities are a function of wealth:

> flomodel.03 <- ergm(flomarriage~edges+nodecov('wealth'))
> summary(flomodel.03)

==========================

Summary of model fit

==========================

Formula: flomarriage ~ edges + nodecov("wealth")

Iterations: 4 out of 20

Monte Carlo MLE Results:

Estimate Std. Error MCMC % p-value

edges -2.594929 0.536056 0 <1e-04 ***

nodecov.wealth 0.010546 0.004674 0 0.0259 *

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Null Deviance: 166.4 on 120 degrees of freedom

Residual Deviance: 161.3 on 118 degrees of freedom

AIC: 165.3 BIC: 170.9 (Smaller is better.)

Yes, there is a significant positive wealth effect on the probability of a tie.
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Let’s try a model or two on:

Is there a statistically significant tendency for ties to be reciprocated (’mutuality’)?

> data(samplk)

> ls() # directed data: Sampson's Monks

> samplk3

> plot(samplk3)

> sampmodel.01 <- ergm(samplk3~edges+mutual)

> summary(sampmodel.01)

Let’s try a larger network

> data(faux.mesa.high)

> mesa <- faux.mesa.high

> plot(mesa)

> mesa

> plot(mesa, vertex.col='Grade')
> legend('bottomleft',fill=7:12,legend=paste('Grade',7:12),cex=0.75)
> fauxmodel.01 <- ergm(mesa ~edges + nodematch('Grade',diff=T) + nodematch('Race',diff=T))
> summary(fauxmodel.01)

Note that two of the coefficients are estimated as -Inf (the nodematch coefficients for race Black
and Other). Why is this?

> table(mesa %v% 'Race') # Frequencies of race

Black Hisp NatAm Other White

6 109 68 4 18

> mixingmatrix(mesa, "Race")

Note: Marginal totals can be misleading

for undirected mixing matrices.

Black Hisp NatAm Other White

Black 0 8 13 0 5

Hisp 8 53 41 1 22

NatAm 13 41 46 0 10

Other 0 1 0 0 0

White 5 22 10 0 4

So the problem is that there are very few students in the Black and Other race categories, and
these students form no homophilous (within-group) ties. The empty cells are what produce the -Inf
estimates.

Time to consider some missing data:

> missnet <- network.initialize(10,directed=F)

> missnet[1,2] <- missnet[2,7] <- missnet[3,6] <- 1

> missnet[4,6] <- missnet[4,9] <- NA

> missnet

> plot(missnet)

> ergm(missnet~edges)
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The coefficient equals -2.590. This is the log-odds of the probability .0698. Our network has 3 ties,
out of the 43 nodal pairs (10 choose 2 minus 2) whose dyad status we have observed. 3/43 = 0.0698.

> ergm(missnet~edges+degree(2))

> missnet[4,6] <- missnet[4,9] <- 0

> ergm(missnet~edges+degree(2))

The two estimates for the degree 2 coefficient differ considerably. In the first case, there is one node
we know for sure has degree 2, two that may or may not, and seven that we know for sure do not. In
the latter, there is one node that has degree 2, and nine that do not.

3 Model terms available for ergm estimation and simulation

Model terms are the expressions (e.g. “triangle”) used to represent predictors on the right-hand size of
equations used in:

• calls to ergm (to estimate an ergm model)

• calls to simulate (to simulate networks from an ergm model fit)

• calls to summary (to obtain measurements of network statistics on a dataset)

3.1 Terms provided with ergm

For a list of available terms that can be used to specify an ERGM, see Appendix B, or type:

help('ergm-terms')

For a more complete discussion of these terms see the ’Specifications’ paper in J Stat Software v.
24. (link is available online at www.statnet.org)

3.2 Coding new terms

We have recently released a new package (ergm.userterms) and tutorial aimed at making it much
easier than before to write one’s own terms. The package is available on CRAN, and installing it will
also download the tutorial (ergmuserterms.pdf). We teach a workshop at the Sunbelt meetings, and
are also hoping for the tutorial to appear soon in the Journal of Statistical Software. Note that writing
up new ergm terms requires some knowledge of C and the ability to build R from source (although the
latter is covered in the tutorial).

4 Network simulation: the simulate command and network.list
objects

Once we have estimated the coefficients of an ERGM, the model is completely specified. It defines a
probability distribution across all networks of this size. If the model is a good fit to the observed data,
then networks drawn from this distribution will be more likely to ”resemble” the observed data. To see
examples of networks drawn from this distribution we use the simulate command:

> flomodel.03.sim <- simulate(flomodel.03,nsim=10)

> class(flomodel.03.sim)
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[1] "network.list"

> summary(flomodel.03.sim)

Number of Networks: 10

Model: flomarriage ~ edges + nodecov("wealth")

Reference: ~Bernoulli

Constraints: ~.

Parameters:

edges nodecov.wealth

-2.59492903 0.01054591

Stored network statistics:

edges nodecov.wealth

[1,] 20 1928

[2,] 20 2325

[3,] 20 2466

[4,] 17 1852

[5,] 16 1372

[6,] 19 1883

[7,] 22 2341

[8,] 17 1557

[9,] 20 1998

[10,] 23 2375

> length(flomodel.03.sim)

[1] 10

> flomodel.03.sim[[1]]

Network attributes:

vertices = 16

directed = FALSE

hyper = FALSE

loops = FALSE

multiple = FALSE

bipartite = FALSE

total edges= 20

missing edges= 0

non-missing edges= 20

Vertex attribute names:

priorates totalties vertex.names wealth

No edge attributes

> plot(flomodel.03.sim[[1]], label= flomodel.03.sim[[1]] %v% "vertex.names")
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Acciaiuoli

Albizzi

Barbadori

Bischeri

Castellani

Ginori

Guadagni

Lamberteschi

Medici

PazziPeruzzi

Pucci

Ridolfi

Salviati

Strozzi
Tornabuoni

Voila. Of course, yours will look somewhat different.

5 Examining the quality of model fit – GOF

ERGMs are generative models – that is, they represent the process that governs tie formation at a local
level. These local processes in turn aggregate up to produce characteristic global network properties,
even though these global properties are not explicit terms in the model. One test of whether a model
”fits the data” is therefore how well it reproduces these global properties. We do this by choosing a
network statistic that is not in the model, and comparing the value of this statistic observed in the
original network to the distribution of values we get in simulated networks from our model.

> flomodel.03.gof <- gof(flomodel.03~degree)

> flomodel.03.gof

Goodness-of-fit for degree

obs min mean max MC p-value

0 1 0 1.38 5 1.00

1 4 0 3.46 7 1.00

2 2 0 4.06 9 0.30

3 6 0 3.41 8 0.12

4 2 0 1.83 5 1.00

5 0 0 1.12 4 0.64

6 1 0 0.48 5 0.78

7 0 0 0.17 2 1.00
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8 0 0 0.06 1 1.00

9 0 0 0.02 1 1.00

10 0 0 0.01 1 1.00

> plot(flomodel.03.gof)
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> mesamodel.02 <- ergm(mesa~edges)

> mesamodel.02.gof <- gof(mesamodel.02~distance,nsim=10)

> plot(mesamodel.02.gof)

>
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For a good example of model exploration and fitting for the Add Health Friendship networks, see
Goodreau, Kitts & Morris, Demography 2009.

6 Diagnostics: troubleshooting and checking for model degen-
eracy

The computational algorithms in ergm use MCMC to estimate the likelihood function. Part of this
process involves simulating a set of networks to approximate unknown components of the likelihood.

When a model is not a good representation of the observed network the estimation process may
be affected. In the worst case scenario, the simulated networks will be so different from the observed
network that the algorithm fails altogether. This can occur for two general reasons. First, the sim-
ulation algorithm may fail to converge, and the sampled networks are thus not from the specified
distribution. Second, the model parameters used to simulate the networks are too different from the
MLE, so even though the simulation algorithm is producing a representative sample of networks, this
is not the sample that would be produced under the MLE.

For more detailed discussions of model degeneracy in the ERGM context, see the papers in J Stat
Software v. 24. (link is available online at www.statnet.org)

We can use diagnostics to see what is happening with the simulation algorithm, and these can lead
us to ways to improve it.

We will first consider a simulation where the algorithm works. To understand the algorithm,
consider

> fit <- ergm(flobusiness~edges+degree(1),

+ control=control.ergm(MCMC.interval=1, MCMC.burnin=1000, seed=1))

13
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This runs a version with every network returned. Let us look at the diagnostics produced:

> mcmc.diagnostics(fit, center=F)

Let’s look more carefully at a default model fit:

> fit <- ergm(flobusiness~edges+degree(1))

> mcmc.diagnostics(fit, center=F)

Now let us look at a more interesting case, using a larger network:

> data('faux.magnolia.high')
> magnolia <- faux.magnolia.high

> plot(magnolia, vertex.cex=.5)

> fit <- ergm(magnolia~edges+triangle, control=control.ergm(seed=1))

> mcmc.diagnostics(fit, center=F)

Iteration 1 of at most 20:

The log-likelihood improved by 4.474

Iteration 2 of at most 20:

The log-likelihood improved by 3.951

Iteration 3 of at most 20:

Error in ergm.MCMLE(init, nw, model, initialfit = (initialfit <- NULL), :

Number of edges in a simulated network exceeds that in the observed by a factor of more than 20. This is a strong indicator of model degeneracy or a very poor starting parameter configuration. If you are reasonably certain that neither of these is the case, increase the MCMLE.density.guard control.ergm() parameter.

Very interesting. This model produced degenerate networks. You could have gotten some more
feedback about this during the fitting, by using:

> fit <- ergm(magnolia~edges+triangle, control=control.ergm(seed=1), verbose=T)

You might try to increase the MCMC sample size:

> fit <- ergm(magnolia~edges+triangle,seed=1,

+ control = control.ergm(seed=1, MCMC.samplesize=20000),

+ verbose=T)

> mcmc.diagnostics(fit, center=F)

How about trying the more robust version of modeling triangles: GWESP? (For a technical intro-
duction to GWESP see Hunter and Handcock; for a more intuitive description and empirical application
see Goodreau Kitts and Morris 2009)

> fit <- ergm(magnolia~edges+gwesp(0.5,fixed=T),

+ control = control.ergm(seed=1))

> mcmc.diagnostics(fit)

Still degenerate, but maybe getting closer?
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> fit <- ergm(magnolia~edges+gwesp(0.5,fixed=T)+nodematch('Grade')+nodematch('Race')+
+ nodematch('Sex'),
+ control = control.ergm(seed=1),

+ verbose=T)

> pdf('diagnostics1.pdf') #Use the recording function if possible, otherwise send to pdf

> mcmc.diagnostics(fit)

> dev.off() #If you saved to pdf, look at the file

> fit <- ergm(magnolia~edges+gwesp(0.25,fixed=T)+nodematch('Grade')+nodematch('Race')+
+ nodematch('Sex'),
+ control = control.ergm(seed=1))

> mcmc.diagnostics(fit)

>

One more try...

> fit <- ergm(magnolia~edges+gwesp(0.25,fixed=T)+nodematch('Grade')+nodematch('Race')+
+ nodematch('Sex'),
+ control = control.ergm(seed=1,MCMC.samplesize=4096,MCMC.interval=8192),

+ verbose=T)

> png( 'fig1-%d.png', width=900, height=900, units='px')
> mcmc.diagnostics(fit)

Sample statistics summary:

Iterations = 131072:134340608

Thinning interval = 8192

Number of chains = 1

Sample size per chain = 16384

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

edges 9.199 47.02 0.3674 3.918

gwesp.fixed.0.25 9.110 42.89 0.3351 4.234

nodematch.Grade 9.039 45.01 0.3516 3.960

nodematch.Race 9.400 43.51 0.3399 3.764

nodematch.Sex 5.798 38.01 0.2969 3.323

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

edges -82.00 -23.00 9.000 40.00 102.00

gwesp.fixed.0.25 -74.79 -19.21 7.529 37.14 94.24

nodematch.Grade -78.00 -21.00 8.000 39.00 98.00

nodematch.Race -74.00 -20.00 9.000 38.00 95.00

nodematch.Sex -68.00 -20.00 5.000 31.00 81.00

Sample statistics cross-correlations:

edges gwesp.fixed.0.25 nodematch.Grade nodematch.Race
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edges 1.0000000 0.8504081 0.9617624 0.9460886

gwesp.fixed.0.25 0.8504081 1.0000000 0.8708974 0.8456405

nodematch.Grade 0.9617624 0.8708974 1.0000000 0.9190431

nodematch.Race 0.9460886 0.8456405 0.9190431 1.0000000

nodematch.Sex 0.9087466 0.7958158 0.8776228 0.8651748

nodematch.Sex

edges 0.9087466

gwesp.fixed.0.25 0.7958158

nodematch.Grade 0.8776228

nodematch.Race 0.8651748

nodematch.Sex 1.0000000

Sample statistics auto-correlation:

Chain 1

edges gwesp.fixed.0.25 nodematch.Grade nodematch.Race

Lag 0 1.0000000 1.0000000 1.0000000 1.0000000

Lag 8192 0.7825580 0.9822446 0.8334281 0.8172692

Lag 16384 0.7330636 0.9661613 0.7839994 0.7697803

Lag 24576 0.7136354 0.9515961 0.7642834 0.7468077

Lag 32768 0.6966655 0.9379747 0.7486931 0.7293417

Lag 40960 0.6810637 0.9254403 0.7336380 0.7157556

nodematch.Sex

Lag 0 1.0000000

Lag 8192 0.7888136

Lag 16384 0.7342549

Lag 24576 0.7093206

Lag 32768 0.6955802

Lag 40960 0.6815502

Sample statistics burn-in diagnostic (Geweke):

Chain 1

Fraction in 1st window = 0.1

Fraction in 2nd window = 0.5

edges gwesp.fixed.0.25 nodematch.Grade nodematch.Race

-2.536 -2.312 -2.272 -2.424

nodematch.Sex

-2.587

Individual P-values (lower = worse):

edges gwesp.fixed.0.25 nodematch.Grade nodematch.Race

0.011218853 0.020797962 0.023098744 0.015351211

nodematch.Sex

0.009676879

Joint P-value (lower = worse): 0.2678126 .

Recent changes in the ergm estimation algorithm mean that these plots can no longer be used to ensure that the mean statistics from the model match the observed network statistics. For that functionality, please use the GOF command: gof(ergmFitObject, GOF=~model).

> invisible(dev.off())
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Success! Of course, in real life one might have a lot more trial and error.

Changes in version 3.2 of the ergm estimation algorithm mean that the MCMC diagnostic plots
can no longer be used to ensure that the mean statistics from the model match the observed network
statistics. For that functionality, please use the GOF command: gof(fit, GOF=~model). The plots
can still be used to assess MCMC mixing and convergence.
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7 Working with egocentrically sampled network data

In many empirical contexts, it is not feasible to collect a network census or even an adaptive (link-
traced) sample. Even when one of these may be possible in practice, egocentrically sampled data are
typically cheaper and easier to collect.

Long regarded as the poor country cousin in the network data family, egocentric data contain
a remarkable amount of information. With the right statistical methods, such data can be used to
explore the properties of the complete networks in which they are embedded. The basic idea here is to
combine what is observed, with assumptions, to define a class of models that describe the distribution
of networks that are centered on the observed properties. The variation in these networks quantifies
some of the uncertainty introduced by the assumptions.

Let’s start with a simple fictional example: You have a sample of persons who were asked about
the friends they had seen face-to-face more than once in the last week. The respondent was asked
their own sex, and the sex of each friend (for up to three friends). Summary statistics from these data
thus include the sex distribution, the degree distribution (it could be broken down by sex, but we will
just examine the marginal distribution here), and the joint distribution of the respondent and friend’s
sex (the sex mixing matrix). Let’s assume there are equal numbers of men and women in the sampled
respondents. The other distributions are shown below:

Degree distribution
Degree Frequency Fraction Ties

0 180 0.36 0
1 245 0.49 245
2 60 0.12 120
3 15 0.03 45

Total 500 1.00 410

Sex mixing matrix
(410 total) Friend

Respondent
M F

M 164 44
F 26 176

So, total N respondents = 500, total N friends reported = 410.

We can use an ERGM to fit the parameters associated with these observed statistics, then use the
fitted model to simulate complete networks that are drawn from the distribution of networks that is
centered around these statistics. As a theoretical exercise, this provides a method for investigating
the complete network implications of these observed summary statistics. As an empirical exercise,
the primary assumption needed for inference is that the data we have is sampled from a population
in equilibrium (and, as in all statistical inference, that our model is correct). The theory for this is
developed in Krivitsky, 2009.

We need to make assumptions about size, directedness and bipartite-ness when we model and
simulate the complete network.

• Size: any size can be simulated, but if the model is fit using the observed frequencies, it should
be used to simulate a population of that size, unless a size adjustment is made in the simulation
(see Krivitsky, Handcock and Morris 2011). We are going to work with a population size 500
here, equal to the number of respondents.

• Directedness: Ego data are in one sense inherently directed (respondents nominate alters, alters
are not observed), but the relationship may be either. In this case (“seen more than once”) it is
undirected, so we will fit and simulate an undirected network.

• Bipartite: Ego data can be bipartite (if no alters are also respondents, or data are collected
on 2-mode networks) or not (if respondents are also alters). But again, the relationship may be
either. “Seen” is undirected, and we will fit and simulated and undirected network.

In sum, we will simulate a one-mode, undirected network of size 500, assuming the ego statistics we
observed contain the information we need to calculate the statistics that would have been observed in
a self-contained population of that size, noting that other assumptions are possible.
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To ensure consistency between the degree distribution (which is a tabulation of nodes) and the
mixing matrix (which is a cross-tabulation of ties) in our simulated “complete network,” it is important
to recognize that in a complete network, the degree distribution should imply twice the number of
ties observed in the mixing matrix, because every tie is being reported by both nodes in the degree
distribution. If we are fixing the population size at 500 in this simulation, then our observed mixing
matrix data needs to be divided by 2.

Start by initializing an empty network of the desired size and assign the “sex” attribute to the
nodes:

> ego.net <- network.initialize(500, directed=F)

> ego.net %v% 'sex' <- c(rep(0,250),rep(1,250))

Set up the observed statistics (adjusted for this “complete” network) as we will use them to assess
the accuracy of the simulation later:

> ego.deg <- c(180, 245, 60, 15) # node distn

> ego.mixmat <- matrix(c(164,44,26,176)/2, nrow=2, byrow=T) # adjusted tie distn

Then, pick the observed statistics you want to target – we will start with a simple model here:
the total number of ties (edges), and the number of sex-matched ties (homophily). These are both
functions of the observed statistics:

> ego.edges <- sum(ego.mixmat)

> ego.sexmatch <- ego.mixmat[1,1]+ego.mixmat[2,2]

And combine these into a vector

> ego.target.stats <- c(ego.edges, ego.sexmatch)

> ego.target.stats

[1] 205 170

Now, fit an ERGM to this “network”, with terms for the statistics you want to match, and the
“target.stats” argument for ergm that specifies the target values for those statistics:

> ego.fit <- ergm(ego.net ~ edges + nodematch('sex'),
+ target.stats = ego.target.stats)

Take a look at the fitted model:

> summary(ego.fit)

==========================

Summary of model fit

==========================

Formula: nw ~ edges + nodematch("sex")

<environment: 0x6276300>

Iterations: 8 out of 20

Monte Carlo MLE Results:
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Estimate Std. Error MCMC % p-value

edges -7.4870 0.1690 0 <1e-04 ***

nodematch.sex 1.5866 0.1857 0 <1e-04 ***

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Null Deviance: 172940 on 124750 degrees of freedom

Residual Deviance: 172843 on 124748 degrees of freedom

AIC: 172847 BIC: 172866 (Smaller is better.)

Now that you have a fitted model, you can simulate a complete network from it, and look at the
results:

> ego.sim1 <- simulate(ego.fit)

> plot(ego.sim1, vertex.cex=.65, vertex.col="sex")

Does it reproduce the observed degree and mixing frequencies? We only targeted the total number
of edges, not the full degree distribution.

> rbind(summary(ego.sim1 ~ degree(c(0:3))), ego.deg)

degree0 degree1 degree2 degree3

203 176 89 22

ego.deg 180 245 60 15

> mixingmatrix(ego.sim1, "sex")
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Note: Marginal totals can be misleading

for undirected mixing matrices.

0 1

0 99 37

1 37 95

> ego.mixmat

[,1] [,2]

[1,] 82 22

[2,] 13 88

We only targeted the number of same-sex ties, not the full mixing matrix.

The simulation stats seem quite different than the observed stats, and there are two possible reasons:
either we mis-specified the original model (bias), or this one random draw may be unrepresentative of
the distribution described by the model (variance). The latter is easily examined by simulating 100
networks, to see where the observed data fall in the distribution of networks produced by the model:

> ego.sim100 <- simulate(ego.fit, nsim=100)

> ego.sim100

Number of Networks: 100

Model: nw ~ edges + nodematch("sex")

Reference: ~Bernoulli

Constraints: ~.

Parameters:

edges nodematch.sex

-7.487013 1.586633

More information can be obtained with

> summary(ego.sim100)

First, we’ll look at how well the simulations reproduced the target statistics that were included in
the model (note, not the observed full distributions):

> sim.stats <- attr(ego.sim100,"stats")

> rbind(colMeans(sim.stats), ego.target.stats)

edges nodematch.sex

204.77 169.6

ego.target.stats 205.00 170.0

These look pretty good – the means of the simulated target stats are within 1% of the observed.
We can plot the 100 replicates to see check the variation for any problematic patterns:

> matplot(1:nrow(sim.stats), sim.stats,

+ pch=c("e","m","0","+"), cex=.65,

+ main="100 simulations from ego.fit model", sub="(default settings)",

+ xlab="Replicate", ylab="frequency")

> abline(h=ego.target.stats, col=c(1:4))
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The lines mark the target statistic frequencies in the observed data. The points represent the
frequencies in the simulated networks.

The simulated network statistics vary stochastically around the target values, not trending over
time.

But, there is clear autocorrelation across the replicates, which suggests we might want to increase
the MCMC interval to draw more independent realizations.

> ego.sim100 <- simulate(ego.fit, nsim=100,

+ control=control.simulate.ergm(MCMC.interval=10000))

> sim.stats <- attr(ego.sim100,"stats")

> matplot(1:nrow(sim.stats), sim.stats,

+ pch=c("e","m"), cex=.65,

+ main="100 simulations from ego.fit model", sub="(MCMC.interval=10000)",

+ xlab="Replicate", ylab="frequency")

> abline(h=ego.target.stats, col=c(1:2))
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With the larger interval, the autocorrelation is no longer detectable, and all of the statistics from
the simulated networks vary in a symmetric band around their targets.

The variation (about +/- 10%) represents the range of target statistics that are consistent with the
fitted coefficients.

If you wanted instead to constrain these statistics to equal a specified value, then you can use the
“constraints=” argument during the ergm fit instead.

This is good for verifying that the simulation reproduces the target values we specified. So now let’s
see whether the simulated complete networks also match statistics that were not set by the targets.
We targeted edges and homophily. How well does this model reproduce the full degree distribution?

> sim.fulldeg <- summary(ego.sim100 ~ degree(c(0:10)))

> colnames(sim.fulldeg) <- paste("deg",0:10, sep='')
> sim.fulldeg[1:5,]

deg0 deg1 deg2 deg3 deg4 deg5 deg6 deg7 deg8 deg9 deg10

[1,] 197 196 77 24 5 0 1 0 0 0 0

[2,] 258 174 56 7 4 1 0 0 0 0 0

[3,] 227 190 65 14 4 0 0 0 0 0 0

[4,] 213 172 84 24 5 2 0 0 0 0 0

[5,] 227 170 75 22 4 2 0 0 0 0 0

Recall that the degree range in our data was [0,3] by design, but we did not constrain the simulations
to this range. If our model correctly captured the processes that led to the aggregate statistics we
observe in our data, the simulated networks would show us what we missed. Here the simulated
networks suggest that the fully observed network would have a wider range of degrees, which we might
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have observed, had we not truncated the data collection at 3 friends per respondent. About 1% of
nodes have degree 4 or 5, and the max observed is 6.

But did our model did correctly capture the underlying processes? How well does the simulated
degree distribution from this model match the frequencies we did observe? Aggregating the degrees of
3 or more in the simulations, we find:

> sim.deg <- cbind(sim.fulldeg[,1:3], apply(sim.fulldeg[,4:11],1,sum))

> colnames(sim.deg) <- c(colnames(sim.fulldeg)[1:3],"degree3+")

> rbind(colMeans(sim.deg),ego.deg)

deg0 deg1 deg2 degree3+

220.71 180.76 73.02 25.51

ego.deg 180.00 245.00 60.00 15.00

As with the single simulation above, the discrepancies between the simulation averages and the
observed statistics are quite large. We can see this more clearly by plotting the degree frequencies for
the 100 replicate networks we simulated:

> matplot(1:nrow(sim.deg), sim.deg, pch=as.character(0:3), cex=.5,

+ main="Comparing ego.sims to non-targeted degree frequencies",

+ sub = "(only total edges targeted)",

+ xlab = "Replicate", ylab = "Frequencies")

> abline(h=c(180, 245, 60, 15), col=c(1:4))
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The simulations are producing systematically more isolates than expected (the “0” points vs. the
black line), and systematically more degree 1 nodes. In fact, the two degree frequencies are essentially
reversed in the simulation.
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The fraction of nodes with 2 or 3+ partners is systematically off but by a much smaller amount.

So our observed network has fewer isolates than expected in a network of this density, more degree
1 nodes than expected, and fewer degree 2 and 3+ nodes.

This suggests the model is mis-specified. Since the degree 0 vs. degree 1 is the worst fitting aspect,
we will try using the number of isolates as a target statistic in the model.

> ego.isolates <- ego.deg[1]

> ego.target.stats <- c(ego.edges, ego.sexmatch, ego.isolates)

> ego.fit <- ergm(ego.net ~ edges + nodematch('sex') + degree(0),

+ target.stats = ego.target.stats)

Iteration 1 of at most 20:

The log-likelihood improved by 0.005682

Step length converged once. Increasing MCMC sample size.

Iteration 2 of at most 20:

The log-likelihood improved by 0.0008757

Step length converged twice. Stopping.

This model was fit using MCMC. To examine model diagnostics and check for degeneracy, use the mcmc.diagnostics() function.

> summary(ego.fit)

==========================

Summary of model fit

==========================

Formula: nw ~ edges + nodematch("sex") + degree(0)

<environment: 0xf2bf298>

Iterations: 2 out of 20

Monte Carlo MLE Results:

Estimate Std. Error MCMC % p-value

edges -8.3974 0.2430 0 <1e-04 ***

nodematch.sex 1.5850 0.1868 0 <1e-04 ***

degree0 -0.9552 0.1586 0 <1e-04 ***

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Null Deviance: 172940 on 124750 degrees of freedom

Residual Deviance: 2904 on 124747 degrees of freedom

AIC: 2910 BIC: 2939 (Smaller is better.)

Simulating from this model, the target statistics are again well matched:

> ego.sim100 <- simulate(ego.fit, nsim=100,

+ control=control.simulate.ergm(MCMC.interval=10000))

> sim.stats <- attr(ego.sim100,"stats")

> rbind(colMeans(sim.stats), ego.target.stats)

edges nodematch.sex degree0

207.23 172.35 178.09

ego.target.stats 205.00 170.00 180.00
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And the full degree frequencies look much better:

> sim.fulldeg <- summary(ego.sim100 ~ degree(c(0:10)))

> sim.deg <- cbind(sim.fulldeg[,1:3], apply(sim.fulldeg[,4:11],1,sum))

> colnames(sim.deg) <- c(colnames(sim.fulldeg)[1:3],"degree3+")

> rbind(colMeans(sim.deg),ego.deg)

degree0 degree1 degree2 degree3+

178.09 244.16 64.79 12.96

ego.deg 180.00 245.00 60.00 15.00

and finally, plotting the full degree frequencies

> matplot(1:nrow(sim.deg), sim.deg, pch=as.character(0:3), cex=.5,

+ main="Comparing ego.sims to non-targeted degree frequencies",

+ sub = "(only 0, 2+ and total edges targeted)",

+ xlab = "Replicate", ylab = "Frequencies")

> abline(h=c(180, 245, 60, 15), col=c(1:4))
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The degree frequencies in these simulated networks are now well centered on the observed frequen-
cies. So adding the one additional parameter to capture the lower than expected number of isolates did
a good job of capturing how our observed network deviates from a random network with this density.

The fraction of nodes with 3+ partners produced by our new model might still be a bit low.

Moral: We can use ERGMs to estimate network models using target statistics from egocentrically
sampled data. The fact that the target statistics are reproduced by this model does not guarantee
that additional features of the network would also be reproduced. But starting with simple models
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can help to identify whether and how the aggregate statistics we observe from an egocentric sample
deviate from those we would expect from the model. If we fit all of the observed statistics without a
saturated model, we cannot reject the hypothesis that this model produced the network we sampled
from.

We can also use this approach to explore network statistics that are not visible at all from the
egocentric data, e.g., the geodesic distribution, betweenness, etc., but it must always be remembered
that the distributions we will produce are based on our model. They faithfully reproduce the model,
but that does not mean that the model faithfully represents the population.

In the STERGM workshop, we show how complete dynamic networks also can be simulated over
time on the basis of egocentric data like these, with the minimal addition of a single estimate of
partnership duration. For a movie of an example dynamic simulation used to explore the impact of
network structure on HIV transmission, see statnet.org/movies.

8 Additional functionality in the statnet family of packages

8.1 Additional functionality

The statnet suite of packages currently contains many additional features not covered in this tutorial:

• tools for fitting dynamic network models (stergm, in the ergm base package)

• tools for fitting relational event models (relevent package)

• curved exponential family estimation and simulation (ergm base package)

• latent space and latent cluster analysis (latentnet package)

• network permutation models (netperm package)

• MLE estimation for degree distributions (negative binomial, Poisson, scale-free, etc.) (degreenet
package)

• analysis of bipartite networks (network package)

• simulation of bipartite networks with given degree distributions (networksis package)

• hierarchical ERGMs (hergm package)

Any of these not in the ergm base package are in stand-alone packages that can be downloaded either
from CRAN, or from the statnet website. For more detailed information, please visit the statnet

webpage (http://statnet.org).

8.2 Additional functionality in development:

• ERGMs for valued ties – expected later 2012

• Temporal ERGMs (TERGMs) for longitudinal network panel data, and other temporal extensions
– expected later 2012

• Temporally extended (vertex and edge) attributes for TERGMS – expected later 2012

• Network movie maker: ndTV – functionality previewed in STERGM workshop this year, CRAN
release expected later 2012
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8.3 Statnet Commons: The development group

Mark S. Handcock <handcock@stat.ucla.edu> David R. Hunter <dhunter@stat.psu.edu> Carter T.
Butts <buttsc@uci.edu> Steven M. Goodreau <goodreau@u.washington.edu> Skye Bender-deMoll
<skyebend@skyeome.net> Martina Morris <morrism@u.washington.edu> Pavel N. Krivitsky <kriv-
itsky@stat.psu.edu>

Appendix A: Clarifying the terms – ergm and network

You will see the terms ergm and network used in multiple contexts throughout the documentation.
This is common in R, but often confusing to newcomers. To clarify: ergm

• ERGM: the acronym for an Exponential Random Graph Model; a statistical model for relational
data that takes a generalized exponential family form.

• ergm package: one of the packages within the statnet suite

• ergm function: a function within the ergm package; fits an ERGM to a network object, creating
an ergm object in the process.

• ergm object: a class of objects produced by a call to the ergm function, representing the results
of an ERGM fit to a network.

network

• network: a set of actors and the relations among them. Used interchangeably with the term
graph.

• network package: one of the packages within the statnet suite; used to create, store, modify
and plot the information found in network objects.

• network object: a class of object in R used to represent a network.

References

Goodreau, S., J. Kitts and M. Morris (2009). Birds of a Feather, or Friend of a Friend? Using Statistical
Network Analysis to Investigate Adolescent Social Networks. Demography 46(1): 103-125.

Handcock, M. S., D. R. Hunter, C. T. Butts, S. M. Goodreau and M. Morris (2008). statnet: Software
Tools for the Representation, Visualization, Analysis and Simulation of Network Data. Journal of
Statistical Software 42(01).

Krivitsky, P.N.(2009). PhD thesis. University of Washington, Seattle, WA

Krivitsky, P. N., M. S. Handcock and M. Morris (2011). Network Size and Composition Effects in
Exponential-Family Random Graph Models. Statistical Methodology, forthcoming

Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008b). ergm: A Package to Fit,
Simulate and Diagnose Exponential-Family Models for Networks. Journal of Statistical Software,
24(3). http://www.jstatsoft.org/v24/i03/.

28

mailto:handcock@stat.ucla.edu
mailto:dhunter@stat.psu.edu
mailto:buttsc@uci.edu
mailto:goodreau@u.washington.edu
mailto:skyebend@skyeome.net
mailto:morrism@u.washington.edu
mailto:krivitsky@stat.psu.edu
mailto:krivitsky@stat.psu.edu
http://www.jstatsoft.org/v24/i03/

	Getting Started
	Statistical network modeling; the ergm command and ergm object
	Model terms available for ergm estimation and simulation 
	Terms provided with ergm
	Coding new terms

	Network simulation: the simulate command and network.list objects
	Examining the quality of model fit – GOF 
	Diagnostics: troubleshooting and checking for model degeneracy
	Working with egocentrically sampled network data
	Additional functionality in the statnet family of packages
	Additional functionality
	Additional functionality in development:
	Statnet Commons: The development group


