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Abstract

The R package gdistance provides classes and functions to calculate various distance
measures and routes in heterogeneous geographic spaces represented as grids. Least-cost
distances as well as more complex distances based on (constrained) random walks can
be calculated. Also the corresponding routes or probabilities of passing each cell can be
calculated. The package implements classes to store the data about the probability or cost
of transitioning from one cell to another on a grid in a memory-efficient sparse format.
These classes make it possible to manipulate the values of cell-to-cell movement directly,
which offers flexibility and the possibility to use asymmetric values. The novel distances
implemented in the package are used in geographical genetics (applying circuit theory),
but may also have applications in other fields of geospatial analysis.
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1. Introduction: the crow, the wolf, and the drunkard

This article describes gdistance, a package written for use in the R environment (R Develop-
ment Core Team 2014). It provides functionality to calculate various distance measures and
routes in heterogeneous geographic spaces represented as grids. Distance is fundamental to
geospatial analysis (Tobler 1970). It is closely related to the concept of route. For example,
take great-circle distance, the most commonly used geographic distance measure. This dis-
tance represents the shortest line between two points, taking into account the curvature of
the earth. Implicit in this distance measure is a route. The great-distance distance could be
conceived of as the distance measured along a route of a very efficient traveller who knows
where to go and has no obstacles to deal with. In common language, this is referred to as a
distance ‘as the crow flies’.

Other distance measures also imply a route across geographic space. The least-cost distance
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is implemented in most GIS software and mimics route finding ‘as the wolf runs’1, taking into
account obstacles and the local ‘friction’ of the landscape. Since least-cost distance is affected
by the environment, grid-based calculations are necessary. Other grid-based distances have
been developed based on the random walk or drunkard’s walk, in which route-finding is a
stochastic process.

Package gdistance was designed to determine such grid-based distances and routes and to
make it possible to use these measures in combination with other functionality available
within R. It has functionality that is comparable to other software such as ArcGIS Spatial
Analyst (McCoy and Johnston 2002), GRASS GIS (GRASS Development Team 2012), and
CircuitScape (McRae et al. 2008). The gdistance package also contains specific functionality
for geographical genetic analyses, not found in other software yet. The package implements
measures to model dispersal histories first presented by van Etten and Hijmans (2010) (see
Section 7 and Example 2 below).

2. Theory

In gdistance calculations are done in various steps. At first, this tends to be somewhat
confusing for those who are used to distance and route calculations in GIS software, which
are usually done in a single step. However, an important goal of gdistance is to make the
calculations of distances and routes more flexible, which also makes the package somewhat
more complicated to use. Users, therefore, need to have a basic understanding of the theory
behind distance and route calculations.

Calculations of distances and routes start with raster data. In geospatial analysis, rasters
are rectangular, regular grids that represent continuous data over geographical space. Cells
arranged in rows and columns and each holds a value. A raster is accompanied by metadata
that indicate the resolution, extent and other properties.

Distance and route calculations on rasters rely on graph theory. So as a first step, rasters are
converted into graphs by connecting cell centres to each other, which become the nodes in
the graph. This can be done in various ways (Figure 1).

� Cells can be connected orthogonally to their four immediate neighbours, the von Neu-
mann neighbourhood.

� Cells can be connected with their eight orthogonal and diagonal nearest neighbours, the
Moore neighbourhood. The resulting graph is called the king’s graph, because it reflects
all the legal movements of the king in chess. This is the most common and often only
way to connect grids in GIS software.

� Connecting in 16 directions combines king’s and knight’s moves. The function r.cost in
the software GRASS (GRASS Development Team 2012) has this as an option, which
inspired its implementation in gdistance. The section on distance transforms in de Smith
et al. (2009) also discusses 16-cell neighbourhoods. Connecting in 16 directions may
increase the accuracy of the calculations.

When the raster is converted into a graph, weights are given to each edge (connections between
nodes). These weights correspond to different concepts. In most GIS software, distance

1There are some variations on this expression, involving mostly other animals, or telecom cables.
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Figure 1: Rasters can be converted into graphs in different ways.

analyses are done with calculations using cost, friction or resistance values. In graph theory,
weights can also correspond to conductance (1/resistance), which is equivalent to permeability
(a term used in landscape ecology). The weights can also represent probabilities of transition.

Graphs are mathematically represented as matrices to do calculations. These can include
transition probability matrices, adjacency matrices, resistance/conductance matrices, Lapla-
cian matrices, among others. In gdistance, we refer collectively to these matrices to represent
graphs as ‘transition matrices’. These transition matrices are the central object in the package;
all distance calculations need one or more transition matrices as an input.

In gdistance, conductance rather than resistance values are expected in the transition matrix.
An important advantage of using conductance is that it makes it possible to store values in
computer memory very efficiently, using so-called sparse matrices. Sparse matrices only store
non-zero values and indices that locate these values in the rows and columns of the matrix.
Zero values are not being stored in memory. Conductance matrices usually contain mainly
zeros, because cells are connected only with adjacent cells, and the conductance for direct
connections between remote cells is zero. This would not be the case if resistance matrices
were used, as resistance is infinite (∞) between unconnected cells and these values would fill
up the matrix.

The calculation of the edge weights or conductance values is usually based on the values of the
pair of grid cells to be connected. These cell values represent a property of the landscape. For
instance, from a grid with altitude values, a value for the ease of walking can be calculated
for each transition between cells. In gdistance, users define a function f(i, j) to calculate
the transition value for each pair of adjacent cells i and j. With this approach, it is possible
to create asymmetric matrices, in which the conductance from cell i to adjacent cell j is
not always the same as the conductance from j back to i. This is relevant, among other
things, for modelling travel in hilly terrain, as shown in Example 1 below. On the same
slope, a downslope traveler experiences less friction than an upslope traveler. In this case,
the function to calculate conductance values is non-commutative: f(i, j) 6= f(j, i).

A problem that arises in grid-based modelling is the choice of weights that should be given
to diagonal edges in proportion to orthogonal ones. For least-cost path distance and routes,
this is fairly straightforward: weights are given in proportion to the distances between the
cell centres. In a grid in which the orthogonal edges have a length of 1, the diagonal edges
are
√

2 long. McRae (2006) applies this same idea to random walks. However, as Birch
(2006) explains, for random walks this is generally not the best discrete approximation of the
dispersal process in continuous space. Different orthogonal and diagonal weights could be
considered based on his analytical results.
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For random walks on longitude-latitude grids, there is an additional consideration to be made.
Considering the eight neighbouring cells in a Moore’s neighbourhood, the three cells that are
located nearer to the equator are larger in area than the three cells that are closer to the
nearest pole, as the meridians converge when moving from the equator to either pole. So
the cells closer to the poles should have a slightly lower probability of being reached during
a random walk from the central cell. More theoretical work is needed to investigate possible
solutions to this problem. For projected grids and small areas, we can safely ignore this
distortion problem.

When the transition matrix has been constructed, different algorithms to calculate distances
and routes are applied.

� The least-cost distance mimics route finding ‘as the wolf runs’, taking into account
obstacles and the local ‘friction’ of the landscape. The least-cost path between two
cells on the grid and the associated distance can be obtained with Dijkstra’s algorithm
(Dijkstra 1959) or more sophisticated ones.

� A second type of route-finding is the random walk, which has no predetermined desti-
nation (a ‘drunkard’s walk’). Commute distance represents the random walk commute
time, e.g., the average number of edges traversed during a random walk from an starting
point on the graph to a destination point and back again to the starting point (Chan-
dra et al. 1996). Resistance distance reflects the average travel cost during this walk
(McRae 2006). When taken on the same graph these two measures differ only in their
scaling (Kivimäki et al. 2012). Commute and resistance distances are calculated using
the analogy with an electrical circuit (see Doyle and Snell 1984, for an introduction).
The algorithm that gdistance uses to calculate commute distances was developed by
Fouss et al. (2007).

� A third type of route-finding is by randomised shortest paths, which are an intermediate
form between shortest paths and Brownian random walks, introduced by Saerens et al.
(2009). By setting a parameter, θ (theta), in the randomised shortest paths calcula-
tion, distances and routes can be made more randomised. A lower value of θ means
that walkers explore more around the shortest path. When θ approaches zero, the ran-
domised shortest paths approach a random walk. van Etten and Hijmans (2010) applied
randomised shortest paths in geospatial analysis (and see Example 2 below).

3. Raster basics

Analyses in gdistance start with one or more rasters. For this, it relies on another R package,
raster (Hijmans and van Etten 2012). The raster package provides comprehensive geograph-
ical grid functionality. Here, we briefly discuss this package, referring the reader to the
documentation of raster itself for more information.

The following code shows how to create a raster object.

R> library("gdistance")

R> r <- raster(ncol=3,nrow=3)

R> r[] <- 1:ncell(r)

R> r
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class : RasterLayer

dimensions : 3, 3, 9 (nrow, ncol, ncell)

resolution : 120, 60 (x, y)

extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)

coord. ref. : +proj=longlat +datum=WGS84

data source : in memory

names : layer

values : 1, 9 (min, max)

The first line loads the package gdistance, which automatically loads the package raster as
well. The second line creates a simple raster with 3 columns and 3 rows. The third line
assigns the values 1 to 9 as the values of the cells. The resulting object is inspected in the
fourth line. As can be seen in the output, the object does not only hold the cell values, but
also holds metadata about the geographical properties of the raster.

It can also be seen that this is an object of the class RasterLayer. This class is for objects
that hold only one layer of grid data. There are other classes which allow more than one
layer of data: RasterStack and RasterBrick. Collectively, these classes are referred to as
Raster*.

A class is a static entity designed to represent objects of a certain type using ‘slots’, which
each hold different information about the object. Both raster and gdistance use so-called S4
classes, a formal object-oriented system in R. An advantage of using classes is that data and
metadata stay together and remain coherent. Consistent use of classes makes it more difficult
to have contradictions in the information about an object. For example, changing the number
of rows of a grid also has an effect on the total number of cells. Information about these two
types of information of the same object could become contradictory if we were allowed to
change one without adjusting the other. Classes make operations more rigid to avoid such
contradictions. Operations that are geographically incorrect can also be detected in this way.
For example, when the user tries to add the values of two rasters of different projections, the
raster package will detect the difference in the slots that hold the projection information of
the two objects and throw an error.

Classes also make it easier for the users to work with complex data and functions. Since so
much information can be stored in a consistent way in objects and passed to functions, these
functions need fewer options. Functions can deduce from the class of the object that is given
to it, what it needs to do. The use of classes, if well done, tends to produce cleaner, better
readable, and more consistent scripts.

One important thing to know about raster is how grid data are stored internally in Raster*

objects. Consecutive cell numbers in rasters go from left to right and from top to bottom.
The 3 x 3 raster we just created with its cell numbers is shown in Figure 2.

Figure 2 was made with the following lines of code.

R> plot(r, main="r")

R> text(r)
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Figure 2: Cell numbers of a 3 x 3 raster.

4. Transition* classes

As explained in Section 2 on the theory behind gdistance, transition matrices are the backbone
of the package. The central classes in gdistance are TransitionLayer and TransitionStack.
Most functions in the package have an object of one of these classes as input or output.

Transition* objects can be constructed from an object of class Raster*. A Transition*

object takes the necessary geographic references (projection, resolution, extent) from the
original Raster* object. It also contains a matrix which represents a transition from one cell
to another in the grid. Each row and column in the matrix represents a cell in the original
Raster* object. Row 1 and column 1 in the transition matrix correspond to cell 1 in the
original raster, row 2 and column 2 to cell 2, and so on. For example, the raster we just
created would produce a 9 x 9 transition matrix with rows and columns numbered from 1 to
9 (see Figure 3 below).

The matrix is stored in a sparse format, as discussed in Section 2. The package gdistance
makes use of sparse matrix classes and methods from the package Matrix, which gives access
to fast procedures implemented in the C language (Bates and Maechler 2012).

The construction of a Transition* object from a Raster* object is straightforward. We can
define an arbitrary function to calculate the conductance values from the values of each pair
of cells to be connected.

In the following chunk of code, we use the RasterLayer that was created above. First, we
set all its values to unit. The next line makes a TransitionLayer, setting the transition
value between each pair of cells to the mean of the two cell values that are being connected.
The directions argument is set to 8, which connects all cells to their 8 neighbours (Moore
neighbourhood).

R> r[] <- 1
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R> tr1 <- transition(r, transitionFunction=mean, directions=8)

If we inspect the object we created, we see that the resulting TransitionLayer object retains
much information from the original RasterLayer object.

R> tr1

class : TransitionLayer

dimensions : 3, 3, 9 (nrow, ncol, ncell)

resolution : 120, 60 (x, y)

extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)

coord. ref. : +proj=longlat +datum=WGS84

values : conductance

matrix class: dsCMatrix

To illustrate how to create a asymmetric matrix, we first create a non-commutative distance
function, ncdf. We then use this function as an argument in the function transition. To
make sure that the resulting transition matrix is indeed asymmetric, we set the symm argument
in transition to FALSE.

R> r[] <- runif(9)

R> ncf <- function(x) max(x) - x[1] + x[2]

R> tr2 <- transition(r, ncf, 4, symm=FALSE)

R> tr2

class : TransitionLayer

dimensions : 3, 3, 9 (nrow, ncol, ncell)

resolution : 120, 60 (x, y)

extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)

coord. ref. : +proj=longlat +datum=WGS84

values : conductance

matrix class: dgCMatrix

From the ‘matrix class’ we can deduce if the matrix is symmetric or not. These classes are
defined in the package Matrix (Bates and Maechler 2012). The class dsCMatrix is for matrices
that are symmetric. The class dgCMatrix holds an asymmetric matrix.

Different mathematical operations can be done with Transition* objects. This makes it
possible to flexibly model different components of landscape friction.

R> tr3 <- tr1*tr2

R> tr3 <- tr1+tr2

R> tr3 <- tr1*3

R> tr3 <- sqrt(tr1)

Operations with more than one object require that the different objects have the same resolu-
tion and extent. Also, it is possible to extract and replace values in the matrix using indices,
in a similar way to the use of indices with simple matrices.
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R> tr3[cbind(1:9, 1:9)] <- tr2[cbind(1:9, 1:9)]

R> tr3[1:9, 1:9] <- tr2[1:9, 1:9]

R> tr3[1:5, 1:5]

5 x 5 sparse Matrix of class "dgCMatrix"

[1,] . 0.48578 0.9483606 0.7770356 .

[2,] 1.4589714 . 1.4109412 . 1.0629870

[3,] 0.9963908 0.48578 . . .

[4,] 1.1677158 . . . 0.7743835

[5,] . 0.48578 . 0.7796877 .

The functions adjacent (from raster) and adjacencyFromTransition (from gdistance) can
be used to create indices. Example 1 below gives an example.

Some functions require that Transition* objects do not contain any isolated ‘clumps’, islands
that are not connected to the rest of the raster cells. This can be avoided when creating
Transition* objects, for instance by giving conductance values between all adjacent cells a
small minimum value. It can be checked visually if there are any clumps. There are several
ways to visualize a Transition* object. For the first method, you can extract the transition
matrix with function transitionMatrix. This gives a sparse matrix which can be vizualized
with function image. This shows the rows and columns of the transition matrix and indicates
which has a non-zero value, which represents a connection between cells (Figure 3).

R> image(transitionMatrix(tr1))

Dimensions: 9 x 9
Column

R
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Figure 3: Visualizing a TransitionLayer with function image.
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Figure 3 shows which cells are connected to each other. A close observer of Figure 3 may
wonder why cell 1 is connected to 5 different cells, as this cell is located in the upper left corner
of the original grid. This is explained by the extent of this particular grid. Since it covers
the whole world, the outer meridians (180 and -180 degrees) touch each other. The software
takes this into account and as a result the cells in the extreme left column are connected to
the extreme right column.

Figure 3 shows which cells contain non-zero values, but gives no further information about
levels of conductance. The levels can be visualized by transforming the transition matrix
back into a raster. To summarize the information in the transition matrix, we can take means
or sums across rows or columns. Users can do this with function raster. For the different
options see method?raster("TransitionLayer"). The default, shown in Figure 4, takes the
column-wise means of the non-zero values.

R> plot(raster(tr3), main="raster(tr3)")
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Figure 4: Visualizing a TransitionLayer using the function raster.

5. Correcting transition matrix values

The function transition calculates transition values based on the values of adjacent cells
in the input raster. However, diagonal neighbours are more remote from each other than
orthogonal neighbours. Secondly, on equirectangular (longitude-latitude) grids, West-East
connections are longer at the equator and become shorter towards the poles, as the meridians
approach each other. Therefore, the values in the matrix need to be corrected for these two
types of distortion. Both types of distortion can be corrected by dividing each conductance
matrix value by the distance between cell centres. This is what function geoCorrection does.

R> tr1C <- geoCorrection(tr1, type="c", multpl=FALSE)
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R> tr2C <- geoCorrection(tr2, type="c", multpl=FALSE)

For least-cost type distances and routes, this works fine. However, as explained in Section 2
above, this does not work equally well for commute distances (random walks). The function
geoCorrection corrects this distortion by multiplying the North-South transition values with
the cosine of the average latitude of the cell centres. This type of correction is done by setting
the argument type to "r".

R> r3 <- raster(ncol=18, nrow=9)

R> r3 <- setValues(r3, runif(18*9)+5)

R> tr3 <- transition(r3, mean, 4)

R> tr3C <- geoCorrection(tr3, type="c", multpl=FALSE, scl=TRUE)

R> tr3R <- geoCorrection(tr3, type="r", multpl=FALSE, scl=TRUE)

As mentioned in Section 2, the effect of these distortions and corrections needs more research.

The argument scl is set to TRUE to scale the transition values to a reasonable range. If the
transition values are too large, commute distance and randomized shortest path functions will
not work well. No scaling should be done if the user wants to obtain absolute distance values
as output.

When Transition* objects with equal resolution and extent need to be corrected repetitively,
computational effort may be reduced by preparing an object that only needs to be multiplied
with the Transition* object to produce a corrected version of it. The following chunk of
code is equivalent to the previous one.

R> CorrMatrix <- geoCorrection(tr3, type="r", multpl=TRUE, scl=TRUE)

R> tr3R <- tr3 * CorrMatrix

Object CorrMatrix is only calculated once. It can be multiplied with Transition* objects,
as long as they have the same extent, resolution, and directions of cell connections. We need
to take special care that the geo-correction multiplication matrix (CorrMatrix) contains all
non-zero values that are present in the Transition* object with which it will be multiplied
(tr3 in this case).

6. Calculating distances

After obtaining the geographically corrected Transition* object, as we can calculate dis-
tances between points. It is important to note that all distance functions require a Transition*
object with conductance values, even though distances will be expressed in 1/conductance
(friction or resistance) units (see Section 3).

To calculate distances, we need to have the coordinates of point locations. This is done by
creating a two-column matrix of coordinates. Functions will also accept a SpatialPoints

object or, if there is only one point, a vector of length two.

R> sP <- cbind(c(-100, 100, -100), c(-50, 50, 50))

Calculating a distance matrix is straightforward now.
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R> costDistance(tr3C, sP)

1 2

2 1.4861844

3 0.8999115 0.9954423

R> commuteDistance(tr3R, sP)

1 2

2 1062.9317

3 996.9430 969.6615

R> rSPDistance(tr3R, sP, sP, theta=1e-12, totalNet="total")

[,1] [,2] [,3]

[1,] 0.00000 60.55778 57.42448

[2,] 61.83905 0.00000 56.49438

[3,] 57.37373 55.16236 0.00000

The costDistance function relies on the package igraph (Csardi and Nepusz 2006) for the
underlying calculation. It gives a symmetric or asymmetric distance matrix, depending on
the TransitionLayer that is used as input.

Commute distance represents the random walk commute time, e.g., the number of cells tra-
versed on the trip (Chandra et al. 1996).

rSPDistance gives the cost incurred during the same walk (θ approaches zero, so this is the
cost incurred during a random walk, see Section 2). To obtain the commute costs we sum the
corresponding off-diagonal elements: dij + dji. This is the distance of a commute from i to j
and back from j to i. 2

7. Dispersal paths

To determine dispersal paths of a (constrained) random walk, we use the function passage.
This function can be used for both random walks and randomised shortest paths. The function
calculates the number of passages through cells before arriving in the destination cell. Either
the total or net number of passages can be calculated. The net number of passages is the
number of passages that are not reciprocated by a passage in the opposite direction.

Figure 5 shows the probability of passage through each cell, assuming randomised shortest
paths with the parameter θ set to 3.

R> origin <- SpatialPoints(cbind(0, 0))

R> rSPraster <- passage(tr3C, origin, sP[3,], theta=3)

2In this case, the commute costs (resistance) are close to the commute distances (number of steps). This
is because the TransitionLayer object has been scaled, so that transition costs are close to unit for each step
and the total number of steps and the total distance are of the same order of magnitude.
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Figure 5: Probability of passage.

8. Path overlap and non-overlap

One of the specific uses for which package gdistance was created, is to look at trajectories
coming from the same source (van Etten and Hijmans 2010). The degree of coincidence of
two trajectories can be visualized by calculating the minimum of the probabilities of passage
(Figure 6). With a more complex formula, we can approximate the non-overlapping part of
the trajectory (Figure 7). This is done in the following code.

R> r1 <- passage(tr3C, origin, sP[1,], theta=1)

R> r2 <- passage(tr3C, origin, sP[3,], theta=1)

R> rJoint <- min(r1, r2)

R> rDiv <- max(max(r1, r2) * (1 - min(r1, r2)) - min(r1, r2), 0)
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Figure 6: Overlapping part of the two routes.
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Figure 7: Non-overlapping part of the two routes.

With the function pathInc we can calculate measures of path overlap and non-overlap for a
large number of points. These measures can be used to predict patterns of diversity if these
are due to dispersal from a single common source. If the argument type contains two or more
elements, the result is a list of distances matrices. The default for type is to calculate joint
and divergent length of the dispersal paths.

R> pathInc(tr3C, origin, sP)

$function1layer1

1 2
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2 2.103375

3 2.367109 2.339243

$function2layer1

1 2

2 2.768411

3 2.258411 2.404916

9. Example 1: hiking around Maunga Whau

The previous examples were somewhat theoretical, based on randomly generated values. More
realistic examples serve to illustrate the various uses that can be given to this package.

Determining the fastest route between two points in complex terrain is useful for hikers.
Tobler’s Hiking Function provides a rough estimate of the maximum hiking speed (s) given
the slope of the terrain (m) (Tobler 1993). The maximum speed of off-path hiking (in m/s)
is:

s = 6e−3.5|m+0.05|

Note that the function is not symmetric around 0 (see Figure 8).
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Figure 8: Tobler’s Hiking Function.

We use the Hiking Function to determine the shortest path to hike around the volcano Maunga
Whau (Auckland, New Zealand). First, we read in the altitude data for the volcano. This is
a geo-referenced version of a R base dataset (see ?volcano).

R> r <- raster(system.file("external/maungawhau.grd",

+ package="gdistance"))
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The Hiking Function requires the slope as input, which can be calculated from the altitude
(z) and distance between cell centres (d).

mij = (zj − zi)/dij
The units of altitude and distance should be identical. Here, we use meters for both. First, we
calculate the altitudinal differences between cells. Then we use the geoCorrection function
to divide by the distance between cells.

R> altDiff <- function(x){x[2] - x[1]}

R> hd <- transition(r,altDiff,8,symm=FALSE)

R> slope <- geoCorrection(hd, scl=FALSE)

Subsequently, we calculate the speed. We need to exercise special care, because the matrix
values between non-adjacent cells is 0, but the slope between these cells is not 0! Therefore,
we need to restrict the calculation to adjacent cells. We do this by creating an index for
adjacent cells (adj) with the function adjacent. Using this index, we extract and replace
adjacent cells, without touching the other values.

R> adj <- adjacent(r, cells=1:ncell(r), pairs=TRUE, directions=8)

R> speed <- slope

R> speed[adj] <- 6 * exp(-3.5 * abs(slope[adj] + 0.05))

Now we have calculated the speed of movement between adjacent cells. We are close to having
the final conductance values. Attainable speed is a measure of the ease of crossing from one
cell to another on the grid. However, we also need to take into account the distance between
cell centres. Travelling with the same speed, a diagonal connection between cells takes longer
to cross than a straight connection. Therefore, we use the function geoCorrection again!

R> x <- geoCorrection(speed, scl=FALSE)

This gives our final ‘conductance’ values. What do these values mean? The function geoCorrection

divides the values in the matrix between the distance between cell centres. So, with our last
command we calculated conductance (C) as follows:

C = s/d

This looks a lot like a measure that we are more familiar with, travel time (t):

t = d/s

In fact, the conductance values we have calculated are the reciprocal of travel time (1/t).

1/t = s/d = C

Maximizing the reciprocal of travel time is exactly equivalent to minimizing travel time.
Distances calculated with this conductance matrix represent travel time according to the
Hiking Function.

In the next step, we define two coordinates, A and B, and determine the paths between them.
We test if the quickest path from A to B is the same as the quickest path from B back to A.
The following code creates the shortest paths.

R> A <- c(2667670, 6479000)

R> B <- c(2667800, 6479400)
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R> AtoB <- shortestPath(x, A, B, output="SpatialLines")

R> BtoA <- shortestPath(x, B, A, output="SpatialLines")

And this code was used to make Figure 9.

R> plot(r, main="")

R> lines(AtoB, col="red", lwd=2)

R> lines(BtoA, col="blue")

R> text(A[1] - 10, A[2] - 10, "A")

R> text(B[1] + 10, B[2] + 10, "B")

A small part of the A-B (red) and B-A (blue) lines in Figure 9 do not overlap. This is a
consequence of the asymmetry of the Hiking Function.
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Figure 9: Quickest hiking routes on Maunga Whau (A to B is red, B to A is blue).
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10. Example 2: Geographical genetics

A correlation between genetic differentiation and geographic distance of individuals and pop-
ulations is expected due to a mechanism known as isolation by distance (Wright 1943). This
correlation is expected when random, symmetric dispersal occurs in homogeneous geographic
spaces. For random dispersal in heterogeneous landscapes, recent work has shown that genetic
differentiation correlates with the resistance distance between their locations (McRae 2006).
Let’s look at human genetic diversity in Europe, using the data presented by Balaresque et al.
(2010).

First, we read in the data: a map of Europe, the coordinates of the populations (see Figure 10)
and mutual genetic distances (see ?genDist for more information on these data).

R> Europe <- raster(system.file("external/Europe.grd",

+ package="gdistance"))

R> Europe[is.na(Europe)] <- 0

R> data(genDist)

R> data(popCoord)

R> pC <- as.matrix(popCoord[c("x","y")])

Then we create three geographical distance matrices. The first corresponds to the great-circle
distance between populations. The second is the least-cost distance between locations. Travel
is restricted to the land mass. The third is the commute distance (using the same conductance
matrix), which is related to effective resistance between points if we conceive of the grid as
an electrical circuit (Chandra et al. 1996; McRae 2006).

R> geoDist <- pointDistance(pC, longlat=TRUE)

R> geoDist <- as.dist(geoDist)

R> Europe <- aggregate(Europe,3)

R> tr <- transition(Europe, mean, directions=8)

R> trC <- geoCorrection(tr, "c", scl=TRUE)

R> trR <- geoCorrection(tr, "r", scl=TRUE)

R> cosDist <- costDistance(trC,pC)

R> resDist <- commuteDistance(trR, pC)

R> cor(genDist,geoDist)

[1] 0.5962655

R> cor(genDist,cosDist)

[1] 0.5889319

R> cor(genDist,resDist)

[1] 0.1921118
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Figure 10: Map of genotyped populations.

Among the distance measures evaluated until now, the great-circle distance between points
turns out to be the best predictor of genetic distance. The other distance measures incorporate
more information about the geographic space in which geneflow takes place, but do not
improve the prediction. Presumably, the assumptions about geneflow incorporated in these
distances are wrong. Prehistoric people in Europe did not move like wolfs or drunkards...

Another assumption behind these distance measures is that dispersal is symmetric. This is
often not the case. For example, diffusion from a single origin (Africa) explains much of the
current geographical patterns of human genetic diversity (Ramachandran et al. 2005). As a
result, the mutual genetic distance between a pair of humans from different parts from the
globe depends on the extent they share their prehistoric migration history. Within Europe,
genetic diversity is often thought to be a result of the migration of early Neolithic farmers
from Anatolia (Turkey) to the west.

How well does a geographic wave of expansion from Anatolia explain the spatial pattern? The
function pathInc calculates the overlap (and non-overlap) of dispersal paths from a common
origin on the grid as a distance measure between points.

R> origin <- unlist(popCoord[22,c("x","y")])
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R> pI <- pathInc(trC, origin=origin, from=pC,

+ functions=list(overlap))

R> cor(genDist,pI[[1]])

[1] -0.7178576

At least at first sight, the overlap of dispersal routes explains the spatial pattern better
than any of the previous measures. The negative sign of the last correlation coefficient was
expected, as more overlap in routes is associated with lower genetic distance. Additional work
would be needed to improve predictions and compare the different models more rigorously.

11. Future work

Improvements of gdistance and methodological refinements are expected in various areas.

� All measures based on random walks depend critically on solving sparse linear systems.
This is the most time-consuming part of the calculations. Faster libraries could improve
the gdistance package if they become available in R in the future.

� Research on distances in graph theory is a very dynamic field in the computational
sciences. New measures and algorithms could be added to gdistance when they become
available.

� More research on the consequences of connecting grids in different ways is necessary, as
indicated in Section 2. This should bring more precision to random walk calculations
in geospatial analysis. Comparing the results of grid-based calculations to continuous
space simulations or analytical solutions would be the way forward (Birch 2006).

12. Final remarks

Questions about the use of gdistance can be posted on the r-sig-geo email list. Bug reports
and requests for additional functionality can be mailed to jacobvanetten@yahoo.com.
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