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Abstract

The markovchain package aims to fill a gap within the R framework providing S4 classes
and methods for easily handling discrete time Markov chains, homogeneous and simple
inhomogeneous ones. The S4 classes for handling and analysing discrete time Markov
chains are presented, as well as functions and method for performing probabilistic and
statistical analysis. Finally, some examples in which the package’s functions are applied
to Economics, Finance and Natural Sciences topics are shown.
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1. Introduction

Markov chains represent a class of stochastic processes of great interest for the wide spectrum
of practical applications. In particular, discrete time Markov chains (DTMC) permit to model
the transition probabilities between discrete states by the aid of matrices. Various R packages
deal with models that are based on Markov chains:

� msm (Jackson 2011) handles Multi-State Models for panel data;

� mcmcR (Geyer and Johnson 2013) implements Monte Carlo Markov Chain approach;

� hmm (Himmelmann and www.linhi.com 2010) fits hidden Markov models with covari-
ates;

� mstate fits Multi-State Models based on Markov chains for survival analysis (de Wreede,
Fiocco, and Putter 2011).

Nevertheless, the R statistical environment (R Core Team 2013) seems to lack a simple package
that coherently defines S4 classes for discrete Markov chains and allows to perform probabilis-
tic analysis, statistical inference and applications. For the sake of completeness, markovchain
is the second package specifically dedicated to DTMC analysis, being DTMCPack (Nicholson
2013) the first one. Notwithstanding, markovchain package (Spedicato 2013) aims to offer
more flexibility in handling DTMC than other existing solutions, providing S4 classes for both
homogeneous and non-homogeneous Markov chains as well as methods suited to perform sta-
tistical and probabilistic analysis.
The markovchain package depends on the following R packages: expm (Goulet, Dutang,
Maechler, Firth, Shapira, Stadelmann, and expm-developers@lists.R-forge.R-project.org 2013)
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to perform efficient matrices powers; igraph (Csardi and Nepusz 2006) to perform pretty plot-
ting of markovchain objects and matlab (Roebuck 2011), that contains functions for matrix
management and calculations that emulate those within MATLAB environment. Moreover,
other scientific softwares provide functions specifically designed to analyze DTMC, as Math-
ematica 9 (Wolfram Research 2013b).
The paper is structured as follows: Section 2 briefly reviews mathematics and definitions re-
garding DTMC, Section 3 discusses how to handle and manage Markov chain objects within
the package, Section 4 and Section 5 show how to perform probabilistic and statistical mod-
elling, while Section 6 presents some applied examples from various fields analyzed by means
of the markovchain package.

2. Review of core mathematical concepts

2.1. General Definitions

A DTMC is a sequence of random variables X1, X2 , . . . , Xn, . . . characterized by the Markov
property (also known as memoryless property, see Equation 1). The Markov property states
that the distribution of the forthcoming state Xn+1 depends only on the current state Xn

and doesn’t depend on the previous ones Xn−1, Xn−2, . . . , X1.

Pr (Xn+1 = xn+1 |X1 = x1, X2 = x2,..., Xn = xn ) = Pr (Xn+1 = xn+1 |Xn = xn ) . (1)

The set of possible states S = {s1, s2, ..., sr} of Xn can be finite or countable and it is named
the state space of the chain.

The chain moves from one state to another (this change is named either ’transition’ or ’step’)
and the probability pij to move from state si to state sj in one step is named transition
probability:

pij = Pr (X1 = sj |X0 = si ) . (2)

The probability of moving from state i to j in n steps is denoted by p
(n)
ij = Pr (Xn = sj |X0 = si ).

A DTMC is called time-homogeneous if the property shown in Equation 3 holds. Time
homogeneity implies no change in the underlying transition probabilities as time goes on.

Pr (Xn+1 = sj |Xn = si ) = Pr (Xn = sj |Xn−1 = si ) . (3)

If the Markov chain is time-homogeneous, then pij = Pr (Xk+1 = sj |Xk = si ) and

p
(n)
ij = Pr (Xn+k = sj |Xk = si ), where k > 0.

The probability distribution of transitions from one state to another can be represented into
a transition matrix P = (pij)i,j , where each element of position (i, j) represents the transition
probability pij . E.g., if r = 3 the transition matrix P is shown in Equation 4

P =

 p11 p12 p13
p21 p22 p23
p31 p32 p33

 . (4)
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The distribution over the states can be written in the form of a stochastic row vector x (the
term stochastic means that

∑
i xi = 1, xi ≥ 0): e.g., if the current state of x is s2, x = (0 1 0).

As a consequence, the relation between x(1) and x(0) is x(1) = x(0)P and, recursively, we get
x(2) = x(0)P 2 and x(n) = x(0)Pn, n > 0.

DTMC are explained in most theory books on stochastic processes, see Brémaud (1999) and
Ching and Ng (2006) for example. Valuable references online available are: ?, Snell (1999)
and Bard (2000).

2.2. Properties and classification of states

A state sj is said accessible from state si (written si → sj) if a system started in state si has
a positive probability to reach the state sj at a certain point, i.e., ∃n > 0 : pnij > 0. If both
si → sj and sj → si, then si and sj are said to communicate.

A communicating class is defined to be a set of states that communicate. A DTMC can be
composed by one or more communicating classes. If the DTMC is composed by only one
communicating class (i.e., if all states in the chain communicate), then it is said irreducible.
A communicating class is said to be closed if no states outside of the class can be reached
from any state inside it.

If pii = 1, si is defined as absorbing state: an absorbing state corresponds to a closed com-
municating class composed by one state only.

The canonic form of a DTMC transition matrix is a matrix having a block form, where the
closed communicating classes are shown at the beginning of the diagonal matrix.

A state si has period ki if any return to state si must occur in multiplies of ki steps, that is
ki = gcd {n : Pr (Xn = si |X0 = si ) > 0}, where gcd is the greatest common divisor. If ki = 1
the state si is said to be aperiodic, else if ki > 1 the state si is periodic with period ki. Loosely
speaking, si is periodic if it can only return to itself after a fixed number of transitions ki > 1
(or multiple of ki), else it is aperiodic.

If states si and sj belong to the same communicating class, then they have the same period
ki. As a consequence, each of the states of an irreducible DTMC share the same periodicity.
This periodicity is also considered the DTMC periodicity.

It is possible to analyze the timing to reach a certain state. The first passage time from state
si to state sj is the number Tij of steps taken by the chain until it arrives for the first time
to state sj , given that X0 = si. The probability distribution of Tij is defined by Equation 5

hij
(n) = Pr (Tij = n) = Pr (Xn = sj , Xn−1 6= sj , . . . , X1 6= sj |X0 = si) (5)

and can be found recursively using Equation 6, given that hij
(n) = pij .

hij
(n) =

∑
k∈S−{sj}

pikhkj
(n−1). (6)

If in the definition of the first passage time we let si = sj , we obtain the first return time
Ti = inf{n ≥ 1 : Xn = si|X0 = si}. A state si is said to be recurrent if it is visited infinitely
often, i.e., Pr(Ti < +∞|X0 = si) = 1. On the opposite, si is called transient if there is a
positive probability that the chain will never return to si, i.e., Pr(Ti = +∞|X0 = si) > 0.
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Given a time homogeneous Markov chain with transition matrix P, a stationary distribution
z is a stochastic row vector such that z = z · P , where 0 ≤ zj ≤ 1 ∀j and

∑
j zj = 1.

If a DTMC {Xn} is irreducible and aperiodic, then it has a limit distribution and this distri-
bution is stationary. As a consequence, if P is the k × k transition matrix of the chain and
z = (z1, ..., zk) is the eigenvector of P such that

∑k
i=1 zi = 1, then we get

lim
n→∞

Pn = Z, (7)

where Z is the matrix having all rows equal to z. The stationary distribution of {Xn} is
represented by z.

2.3. A short example

Consider the following numerical example. Suppose we have a DTMC with a set of 3 possible
states S = {s1, s2, s3}. Let the transition matrix be

P =

 0.5 0.2 0.3
0.15 0.45 0.4
0.25 0.35 0.4

 . (8)

In P , p11 = 0.5 is the probability that X1 = s1 given that we observed X0 = s1 is 0.5, and so
on. It is easy to see that the chain is irreducible since all the states communicate (it is made
by one communicating class only).

Suppose that the current state of the chain is X0 = s2, i.e., x(0) = (010), then the probability
distribution of states after 1 and 2 steps can be computed as shown in Equations 9 and 10.

x(1) = (0 1 0)

 0.5 0.2 0.3
0.15 0.45 0.4
0.25 0.35 0.4

 = (0.15 0.45 0.4) . (9)

x(n) = x(n−1)P → (0.15 0.45 0.4)

 0.5 0.2 0.3
0.15 0.45 0.4
0.25 0.35 0.4

 = (0.2425 0.3725 0.385) . (10)

If, f.e., we are interested in the probability of reaching the state s3 in two steps, then
Pr (X2 = s3 |X0 = s2 ) = 0.385.
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3. The structure of the package

3.1. Creating markovchain objects

The package is loaded within the R command line as follows:

R> library("markovchain")

The markovchain and markovchainList S4 classes (Chambers 2008) are defined within the
markovchain package as displayed:

Class "markovchain" [in ".GlobalEnv"]

Slots:

Name: states byrow transitionMatrix

Class: character logical matrix

Name: name

Class: character

Class "markovchainList" [in ".GlobalEnv"]

Slots:

Name: markovchains name

Class: list character

The first class has been designed to handle homogeneous Markov chain processes, while
the latter (which is itself a list of markovchain objects) has been designed to handle non-
homogeneous Markov chains processes.

Any element of markovchain class is comprised by following slots:

1. states: a character vector, listing the states for which transition probabilities are
defined.

2. byrow: a logical element, indicating whether transition probabilities are shown by row
or by column.

3. transitionMatrix: the probabilities of the transition matrix.

4. name: optional character element to name the DTMC.

The markovchainList objects are defined by following slots:

1. markovchains: a list of markovchain objects.

2. name: optional character element to name the DTMC.
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The markovchain objects can be created either in a long way, as the following code shows

R> weatherStates <- c("sunny", "cloudy", "rain")

R> byRow <- TRUE

R> weatherMatrix <- matrix(data = c(0.70, 0.2, 0.1,

+ 0.3, 0.4, 0.3,

+ 0.2, 0.45, 0.35), byrow = byRow, nrow = 3,

+ dimnames = list(weatherStates, weatherStates))

R> mcWeather <- new("markovchain", states = weatherStates, byrow = byRow,

+ transitionMatrix = weatherMatrix, name = "Weather")

or in a shorter way, displayed below

R> mcWeather <- new("markovchain", states = c("sunny", "cloudy", "rain"),

+ transitionMatrix = matrix(data = c(0.70, 0.2, 0.1,

+ 0.3, 0.4, 0.3,

+ 0.2, 0.45, 0.35), byrow = byRow, nrow = 3),

+ name = "Weather")

When new("markovchain") is called alone, a default Markov chain is created.

R> defaultMc <- new("markovchain")

The quicker way to create markovchain objects is made possible thanks to the implemented
initialize S4 method that checks that:

� the transitionMatrix to be a transition matrix, i.e., all entries to be probabilities and
either all rows or all columns to sum up to one.

� the columns and rows names of transitionMatrix to be defined and to coincide with
states vector slot.

The markovchain objects can be collected in a list within markovchainList S4 objects as
following example shows.

R> mcList <- new("markovchainList", markovchains = list(mcWeather, defaultMc),

+ name = "A list of Markov chains")

3.2. Handling markovchain objects

Table 1 lists which methods handle and manipulate markovchain objects.

The examples that follow shows how operations on markovchain objects can be easily per-
formed. For example, using the previously defined matrix we can find what is the probability
distribution of expected weather states in two and seven days, given the actual state to be
cloudy.
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Method Purpose

* Direct multiplication for transition matrices.
[ Direct access to the elements of the transition matrix.
== Equality operator between two transition matrices.
as Operator to convert markovchain objects into data.frame and

table object.
dim Dimension of the transition matrix.
plot plot method for markovchain objects.
print print method for markovchain objects.
show show method for markovchain objects.
states Name of the transition states.
t Transposition operator (which switches byrow slot value and modifies

the transition matrix coherently).

Table 1: markovchain methods for handling markovchain objects.

R> initialState <- c(0, 1, 0)

R> after2Days <- initialState * (mcWeather * mcWeather)

R> after7Days <- initialState * (mcWeather ^ 7)

R> after2Days

sunny cloudy rain

[1,] 0.39 0.355 0.255

R> round(after7Days, 3)

sunny cloudy rain

[1,] 0.462 0.319 0.219

A similar answer could have been obtained defining the vector of probabilities as a column
vector. A column - defined probability matrix could be set up either creating a new matrix
or transposing an existing markovchain object thanks to the t method.

R> initialState <- c(0, 1, 0)

R> after2Days <- (t(mcWeather) * t(mcWeather)) * initialState

R> after7Days <- (t(mcWeather) ^ 7) * initialState

R> after2Days

[,1]

sunny 0.390

cloudy 0.355

rain 0.255

R> round(after7Days, 3)
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[,1]

sunny 0.462

cloudy 0.319

rain 0.219

Basic methods have been defined for markovchain objects to quickly get states and transition
matrix dimension.

R> states(mcWeather)

[1] "sunny" "cloudy" "rain"

R> dim(mcWeather)

[1] 3

A direct access to transition probabilities is provided both by transitionProbability method
and ”[” method.

R> transitionProbability(mcWeather, "cloudy", "rain")

[1] 0.3

R> mcWeather[2,3]

[1] 0.3

The transition matrix of a markovchain object can be displayed using print or show methods
(the latter being less laconic). Similarly, the underlying transition probability diagram can
be plotted by the use of plot method (as shown in Figure 1) which is based on igraph
package (Csardi and Nepusz 2006). plot method for markovchain objects is a wrapper of
plot.igraph for igraph S4 objects defined within the igraph package. Additional parameters
can be passed to plot function to control the network graph layout.

R> print(mcWeather)

sunny cloudy rain

sunny 0.7 0.20 0.10

cloudy 0.3 0.40 0.30

rain 0.2 0.45 0.35

R> show(mcWeather)
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Weather transition matrix
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sunny

cloudy
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Figure 1: Weather example. Markov chain plot.
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Weather

A 3 - dimensional discrete Markov Chain with following states

sunny cloudy rain

The transition matrix (by rows) is defined as follows

sunny cloudy rain

sunny 0.7 0.20 0.10

cloudy 0.3 0.40 0.30

rain 0.2 0.45 0.35

Import and export from some specific classes is possible, as shown in Figure 2 and in the
following code.

R> mcDf <- as(mcWeather, "data.frame")

R> mcNew <- as(mcDf, "markovchain")

R> mcDf

t0 t1 prob

1 sunny sunny 0.70

2 sunny cloudy 0.20

3 sunny rain 0.10

4 cloudy sunny 0.30

5 cloudy cloudy 0.40

6 cloudy rain 0.30

7 rain sunny 0.20

8 rain cloudy 0.45

9 rain rain 0.35

R> mcIgraph <- as(mcWeather, "igraph")

Coerce from matrix method, as the code below shows, represents another approach to create
a markovchain method starting from a given squared probability matrix.

R> myMatr<-matrix(c(.1,.8,.1,.2,.6,.2,.3,.4,.3), byrow=TRUE, ncol=3)

R> myMc<-as(myMatr, "markovchain")

R> myMc

Unnamed Markov chain

A 3 - dimensional discrete Markov Chain with following states

s1 s2 s3

The transition matrix (by rows) is defined as follows

s1 s2 s3

s1 0.1 0.8 0.1

s2 0.2 0.6 0.2

s3 0.3 0.4 0.3
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Import − Export from and to markovchain objects

●
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dataframe

markovchain

igraph

matrix

table

Figure 2: The markovchain methods for import and export.
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Non-homogeneous Markov chains can be created with the aid of markovchainList object.
The example that follows arises from health insurance, where the costs associated to pa-
tients in a Continuous Care Health Community (CCHC) are modelled by a non-homogeneous
Markov Chain, since the transition probabilities change by year. Methods explicitly written
for markovchainList objects are: print, show, dim and [.

Continuous Care Health Community list of Markov chain(s)

Markovchain 1

state t0

A 3 - dimensional discrete Markov Chain with following states

H I D

The transition matrix (by rows) is defined as follows

H I D

H 0.7 0.2 0.1

I 0.1 0.6 0.3

D 0.0 0.0 1.0

Markovchain 2

state t1

A 3 - dimensional discrete Markov Chain with following states

H I D

The transition matrix (by rows) is defined as follows

H I D

H 0.5 0.3 0.2

I 0.0 0.4 0.6

D 0.0 0.0 1.0

Markovchain 3

state t2

A 3 - dimensional discrete Markov Chain with following states

H I D

The transition matrix (by rows) is defined as follows

H I D

H 0.3 0.2 0.5

I 0.0 0.2 0.8

D 0.0 0.0 1.0

Markovchain 4

state t3

A 3 - dimensional discrete Markov Chain with following states

H I D

The transition matrix (by rows) is defined as follows

H I D

H 0 0 1

I 0 0 1

D 0 0 1
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It is possible to perform direct access to markovchainList elements, as well as to determine
the number of markovchain objects by which a markovchainList object is composed.

R> mcCCRC[[1]]

state t0

A 3 - dimensional discrete Markov Chain with following states

H I D

The transition matrix (by rows) is defined as follows

H I D

H 0.7 0.2 0.1

I 0.1 0.6 0.3

D 0.0 0.0 1.0

R> dim(mcCCRC)

[1] 4

The markovchain package contains some data found in the literature related to DTMC models
(see Section 6). Table 2 lists datasets and tables included within the current release of the
package.

Dataset Description

blanden Mobility across income quartiles, Jo Blanden and Machin (2005).
craigsendi CD4 cells, B. A. Craig and A. A. Sendi (2002).
preproglucacon Preproglucacon DNA basis, P. J. Avery and D. A. Henderson (1999).
rain Alofi Island rains, P. J. Avery and D. A. Henderson (1999).
holson Individual states trajectiories.

Table 2: The markovchain data.frame and table.

Finally, Table 3 lists the demos included in the demo directory of the package.

Dataset Description

bard.R Structural analysis of Markov chains from Bard PPT.
examples.R Notable Markov chains, e.g., The Gambler Ruin chain.
quickStart.R Generic examples.

Table 3: The markovchain demos.
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4. Probability with markovchain objects

The markovchain package contains functions to analyse DTMC from a probabilistic perspec-
tive. For example, the package provides methods to find stationary distributions and identify-
ing absorbing and transient states. Many of these methods come from MATLAB listings that
have been ported into R. For a full description of the underlying theory and algorithm the
interested reader can overview the original MATLAB listings, Feres (2007) and Montgomery
(2009).

Table 4 shows methods that can be applied on markovchain objects to perform probabilistic
analysis.

Method Returns

absorbingStates the absorbing states of the transition matrix, if any.
conditionalDistribution the conditional distribution of the subsequent state

sj , given actual state si.
canonicForm the transition matrix into canonic form.
is.accessible verification if a state j is reachable from state i.
is.irreducible verification whether a DTMC is irreducible.
period the period of an irreducible DTMC.
steadyStates the vector(s) of steady state(s) in matrix form.
summary DTMC summary.
transientStates the transient states of the transition matrix, if any.

Table 4: markovchain methods: statistical operations.

The conditional distribution of weather states, given that current day’s weather is sunny, is
given by following code.

R> conditionalDistribution(mcWeather, "sunny")

sunny cloudy rain

0.7 0.2 0.1

The steady state(s), also known as stationary distribution(s), of the Markov chains are iden-
tified by the such described algorithm:

1. decompose the transition matrix in eigenvalues and eigenvectors;

2. consider only eigenvectors corresponding to eigenvalues equal to one;

3. normalize such eigenvalues so that the sum of their components is one.

The result is returned in matrix form.

R> steadyStates(mcWeather)

sunny cloudy rain

[1,] 0.4636364 0.3181818 0.2181818



Giorgio Alfredo Spedicato, Mirko Signorelli 15

It is possible for a Markov chain to have more than one stationary distribution, as the gambler
ruin example shows.

R> gamblerRuinMarkovChain <- function(moneyMax, prob = 0.5) {

+ require(matlab)

+ matr <- zeros(moneyMax + 1)

+ states <- as.character(seq(from = 0, to = moneyMax, by = 1))

+ rownames(matr) = states; colnames(matr) = states

+ matr[1,1] = 1; matr[moneyMax + 1,moneyMax + 1] = 1

+ for(i in 2:moneyMax)

+ { matr[i,i-1] = 1 - prob; matr[i, i + 1] = prob }

+ out <- new("markovchain",

+ transitionMatrix = matr,

+ name = paste("Gambler ruin", moneyMax, "dim", sep = " ")

+ )

+ return(out)

+ }

R> mcGR4 <- gamblerRuinMarkovChain(moneyMax = 4, prob = 0.5)

R> steadyStates(mcGR4)

0 1 2 3 4

[1,] 1 0 0 0 0

[2,] 0 0 0 0 1

Absorbing states are determined by means of absorbingStates method.

R> absorbingStates(mcGR4)

[1] "0" "4"

R> absorbingStates(mcWeather)

character(0)

The key function used within Feres (2007) (and markovchain’s derived functions) is
.commclassKernel, that is called below.

R> .commclassesKernel <- function(P){

+ m <- ncol(P)

+ stateNames <- rownames(P)

+ T <- zeros(m)

+ i <- 1

+ while (i <= m) {

+ a <- i

+ b <- zeros(1,m)

+ b[1,i] <- 1
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+ old <- 1

+ new <- 0

+ while (old != new) {

+ old <- sum(find(b > 0))

+ n <- size(a)[2]

+ matr <- matrix(as.numeric(P[a,]), ncol = m,

+ nrow = n)

+ c <- colSums(matr)

+ d <- find(c)

+ n <- size(d)[2]

+ b[1,d] <- ones(1,n)

+ new <- sum(find(b>0))

+ a <- d

+ }

+ T[i,] <- b

+ i <- i+1 }

+ F <- t(T)

+ C <- (T > 0)&(F > 0)

+ v <- (apply(t(C) == t(T), 2, sum) == m)

+ colnames(C) <- stateNames

+ rownames(C) <- stateNames

+ names(v) <- stateNames

+ out <- list(C = C, v = v)

+ return(out)

+ }

The .commclassKernel function gets a transition matrix of dimension n and return a list of
two items:

1. C, an adjacency matrix showing for each state sj (in the row) which states lie in the
same communicating class of sj (flagged with 1).

2. v, a binary vector indicating whether the state sj is transient (0) or not (1).

These functions are used by two other internal functions on which the summary method for
markovchain objects works.

The example matrix used in Feres (2007) well exemplifies the purpose of the function.

R> P <- matlab::zeros(10)

R> P[1, c(1, 3)] <- 1/2;

R> P[2, 2] <- 1/3; P[2,7] <- 2/3;

R> P[3, 1] <- 1;

R> P[4, 5] <- 1;

R> P[5, c(4, 5, 9)] <- 1/3;

R> P[6, 6] <- 1;

R> P[7, 7] <- 1/4; P[7,9] <- 3/4;

R> P[8, c(3, 4, 8, 10)] <- 1/4;
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R> P[9, 2] <- 1;

R> P[10, c(2, 5, 10)] <- 1/3;

R> rownames(P) <- letters[1:10]

R> colnames(P) <- letters[1:10]

R> probMc <- new("markovchain", transitionMatrix = P,

+ name = "Probability MC")

R> .commclassesKernel(P)

$C

a b c d e f g h i j

a TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

b FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE

c TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

d FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE

e FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE

f FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE

g FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE

h FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

i FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE

j FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

$v

a b c d e f g h i j

TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE TRUE FALSE

R> summary(probMc)

Probability MC Markov chain that is composed by:

Closed classes:

a c

b g i

f

Transient classes:

d e

h

j

The Markov chain is not irreducible

The absorbing states are: f

All states that pertain to a transient class are named ”transient” and a specific method has
been written to elicit them.

R> transientStates(probMc)

[1] "d" "e" "h" "j"

Listings from Feres (2007) have been adapted into canonicForm method that turns a Markov
chain into canonic form.
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R> probMcCanonic <- canonicForm(probMc)

R> probMc

Probability MC

A 10 - dimensional discrete Markov Chain with following states

a b c d e f g h i j

The transition matrix (by rows) is defined as follows

a b c d e f g h i

a 0.5 0.0000000 0.50 0.0000000 0.0000000 0 0.0000000 0.00 0.0000000

b 0.0 0.3333333 0.00 0.0000000 0.0000000 0 0.6666667 0.00 0.0000000

c 1.0 0.0000000 0.00 0.0000000 0.0000000 0 0.0000000 0.00 0.0000000

d 0.0 0.0000000 0.00 0.0000000 1.0000000 0 0.0000000 0.00 0.0000000

e 0.0 0.0000000 0.00 0.3333333 0.3333333 0 0.0000000 0.00 0.3333333

f 0.0 0.0000000 0.00 0.0000000 0.0000000 1 0.0000000 0.00 0.0000000

g 0.0 0.0000000 0.00 0.0000000 0.0000000 0 0.2500000 0.00 0.7500000

h 0.0 0.0000000 0.25 0.2500000 0.0000000 0 0.0000000 0.25 0.0000000

i 0.0 1.0000000 0.00 0.0000000 0.0000000 0 0.0000000 0.00 0.0000000

j 0.0 0.3333333 0.00 0.0000000 0.3333333 0 0.0000000 0.00 0.0000000

j

a 0.0000000

b 0.0000000

c 0.0000000

d 0.0000000

e 0.0000000

f 0.0000000

g 0.0000000

h 0.2500000

i 0.0000000

j 0.3333333

R> probMcCanonic

Probability MC

A 10 - dimensional discrete Markov Chain with following states

a c b g i f d e h j

The transition matrix (by rows) is defined as follows

a c b g i f d e h

a 0.5 0.50 0.0000000 0.0000000 0.0000000 0 0.0000000 0.0000000 0.00

c 1.0 0.00 0.0000000 0.0000000 0.0000000 0 0.0000000 0.0000000 0.00

b 0.0 0.00 0.3333333 0.6666667 0.0000000 0 0.0000000 0.0000000 0.00

g 0.0 0.00 0.0000000 0.2500000 0.7500000 0 0.0000000 0.0000000 0.00

i 0.0 0.00 1.0000000 0.0000000 0.0000000 0 0.0000000 0.0000000 0.00

f 0.0 0.00 0.0000000 0.0000000 0.0000000 1 0.0000000 0.0000000 0.00

d 0.0 0.00 0.0000000 0.0000000 0.0000000 0 0.0000000 1.0000000 0.00

e 0.0 0.00 0.0000000 0.0000000 0.3333333 0 0.3333333 0.3333333 0.00

h 0.0 0.25 0.0000000 0.0000000 0.0000000 0 0.2500000 0.0000000 0.25

j 0.0 0.00 0.3333333 0.0000000 0.0000000 0 0.0000000 0.3333333 0.00
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j

a 0.0000000

c 0.0000000

b 0.0000000

g 0.0000000

i 0.0000000

f 0.0000000

d 0.0000000

e 0.0000000

h 0.2500000

j 0.3333333

The function is.accessible permits to investigate whether a state sj is accessible from state
si, that is whether the probability to eventually reach sj starting from si is greater than zero.

R> is.accessible(object = probMc, from = "a", to = "c")

[1] TRUE

R> is.accessible(object = probMc, from = "g", to = "c")

[1] FALSE

In Section 2.2 we observed that, if a DTMC is irreducible, all its states share the same
periodicity. Then, the period function returns the periodicity of the DTMC, provided that
it is irreducible. The example that follows shows how to find if a DTMC is reducible or
irreducible by means of the function is.irreducible and, in the latter case, the method
period is used to compute the periodicity of the chain.

R> E <- matrix(0, nrow = 4, ncol = 4)

R> E[1, 2] <- 1

R> E[2, 1] <- 1/3; E[2, 3] <- 2/3

R> E[3,2] <- 1/4; E[3, 4] <- 3/4

R> E[4, 3] <- 1

R> mcE <- new("markovchain", states = c("a", "b", "c", "d"),

+ transitionMatrix = E,

+ name = "E")

R> is.irreducible(mcE)

[1] TRUE

R> period(mcE)

[1] 2

The example Markov chain found in Mathematica web site (Wolfram Research 2013a) has
been used, and is plotted in Figure 3.
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Figure 3: Mathematica 9 example. Markov chain plot.

R> require(matlab)

R> mathematicaMatr <- zeros(5)

R> mathematicaMatr[1,] <- c(0, 1/3, 0, 2/3, 0)

R> mathematicaMatr[2,] <- c(1/2, 0, 0, 0, 1/2)

R> mathematicaMatr[3,] <- c(0, 0, 1/2, 1/2, 0)

R> mathematicaMatr[4,] <- c(0, 0, 1/2, 1/2, 0)

R> mathematicaMatr[5,] <- c(0, 0, 0, 0, 1)

R> statesNames <- letters[1:5]

R> mathematicaMc <- new("markovchain", transitionMatrix = mathematicaMatr,

+ name = "Mathematica MC", states = statesNames)

Mathematica MC Markov chain that is composed by:

Closed classes:

c d

e

Transient classes:
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a b

The Markov chain is not irreducible

The absorbing states are: e

Feres (2007) provides code to compute first passage time (within 1, 2, . . . , n steps) given the
initial state to be i. The MATLAB listings translated into R on which the firstPassage

function is based are

R> .firstpassageKernel <- function(P, i, n){

+ G <- P

+ H <- P[i,]

+ E <- 1 - diag(size(P)[2])

+ for (m in 2:n) {

+ G <- P %*% (G * E)

+ H <- rbind(H, G[i,])

+ }

+ return(H)

+ }

We conclude that the probability for the first rainy day to be the third one, given that the
current state is sunny, is given by

R> firstPassagePdF <- firstPassage(object = mcWeather, state = "sunny",

+ n = 10)

R> firstPassagePdF[3, 3]

[1] 0.121

5. Statistical analysis

Table 5 lists the functions and methods implemented within the package which help to fit,
simulate and predict DTMC.

Function Purpose

markovchainFit Function to return fitted Markov chain for a given sequence.
predict Method to calculate predictions from markovchain or

markovchainList objects.
rmarkovchain Function to sample from markovchain or markovchainList objects.

Table 5: The markovchain statistical functions.

5.1. Simulation

Simulating a random sequence from an underlying DTMC is quite easy thanks to the function
rmarkovchain. The following code generates a year of weather states according to mcWeather

underlying stochastic process.
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R> weathersOfDays <- rmarkovchain(n = 365, object = mcWeather, t0 = "sunny")

R> weathersOfDays[1:30]

[1] "sunny" "sunny" "cloudy" "sunny" "sunny" "cloudy" "rain"

[8] "cloudy" "sunny" "rain" "sunny" "sunny" "cloudy" "rain"

[15] "cloudy" "sunny" "sunny" "sunny" "sunny" "sunny" "sunny"

[22] "rain" "cloudy" "rain" "cloudy" "cloudy" "rain" "cloudy"

[29] "rain" "cloudy"

Similarly, it is possible to simulate one or more sequences from a non-homogeneous Markov
chain, as the following code (applied on CCHC example) exemplifies.

R> patientStates <- rmarkovchain(n = 5, object = mcCCRC, t0 = "H",

+ include.t0 = TRUE)

R> patientStates[1:10,]

iteration values

1 1 H

2 1 H

3 1 D

4 1 D

5 1 D

6 2 H

7 2 H

8 2 H

9 2 D

10 2 D

5.2. Estimation

A time homogeneous Markov chain can be fit from given data. Three methods have been
implemented within current version of markovchain package: maximum likelihood, maximum
likelihood with Laplace smoothing, Bootstrap approach.

Equation 11 shows the maximum likelihood estimator (MLE) of the pij entry, where the nij
element consists in the number sequences (Xt = si, Xt+1 = sj) found in the sample, that is

p̂MLE
ij =

nij
k∑

u=1
niu

. (11)

R> weatherFittedMLE <- markovchainFit(data = weathersOfDays, method = "mle",

+ name = "Weather MLE")

R> weatherFittedMLE$estimate

Weather MLE

A 3 - dimensional discrete Markov Chain with following states
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cloudy rain sunny

The transition matrix (by rows) is defined as follows

cloudy rain sunny

cloudy 0.3596491 0.3508772 0.2894737

rain 0.5517241 0.2988506 0.1494253

sunny 0.1595092 0.1288344 0.7116564

The Laplace smoothing approach is a variation of the MLE, where the nij is substituted by
nij + α (see Equation 12), being α an arbitrary positive stabilizing parameter.

p̂LSij =
nij + α

k∑
u=1

(niu + α)

(12)

R> weatherFittedLAPLACE <- markovchainFit(data = weathersOfDays,

+ method = "laplace", laplacian = 0.01,

+ name = "Weather LAPLACE")

R> weatherFittedLAPLACE$estimate

Weather LAPLACE

A 3 - dimensional discrete Markov Chain with following states

cloudy rain sunny

The transition matrix (by rows) is defined as follows

cloudy rain sunny

cloudy 0.3596422 0.3508726 0.2894852

rain 0.5516489 0.2988625 0.1494887

sunny 0.1595412 0.1288720 0.7115868

Both MLE and Laplace approach are based on the createSequenceMatrix functions that
converts a data (character) sequence into a contingency table, showing the (Xt = i,Xt+1 = j)
distribution within the sample, as code below shows.

R> createSequenceMatrix(stringchar = weathersOfDays)

cloudy rain sunny

cloudy 41 40 33

rain 48 26 13

sunny 26 21 116

An issue occurs when the sample contains only one realization of a state (say Xβ) which is
located at the end of the data sequence, since it yields to a row of zero (no sample to estimate
the conditional distribution of the transition). In this case the estimated transition matrix is
corrected assuming pβ,j = 1/k, being k the possible states.

A bootstrap estimation approach has been developed within the package in order to provide
an indication of the variability of p̂ij estimates. The bootstrap approach implemented within
the markovchain package follows these steps:
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1. bootstrap the data sequences following the conditional distributions of states estimated
from the original one. The default bootstrap samples is 10, as specified in nboot pa-
rameter of markovchainFit function.

2. apply MLE estimation on bootstrapped data sequences that are saved in
bootStrapSamples slot of the returned list.

3. the pBOOTSTRAP ij is the average of all pMLE
ij across the bootStrapSamples list, nor-

malized by row. A standardError of ˆpMLE
ij estimate is provided as well.

R> weatherFittedBOOT <- markovchainFit(data = weathersOfDays,

+ method = "bootstrap", nboot = 100)

R> weatherFittedBOOT$estimate

BootStrap Estimate

A 3 - dimensional discrete Markov Chain with following states

1 2 3

The transition matrix (by rows) is defined as follows

1 2 3

1 0.3594521 0.3558173 0.2847306

2 0.5448940 0.2996671 0.1554389

3 0.1560194 0.1303991 0.7135816

R> weatherFittedBOOT$standardError

[,1] [,2] [,3]

[1,] 0.03997509 0.04603912 0.03820270

[2,] 0.05738020 0.05023755 0.04179465

[3,] 0.02750265 0.02772230 0.03708128

Is is also possible to fit a DTMC or a markovchainList object from matrix or data.frame

objects as shown in following code.

R> data(holson)

R> singleMc<-markovchainFit(data=holson[,2:12],name="holson")

R> mcListFist<-markovchainListFit(data=holson[,2:12],name="holson")

5.3. Prediction

The n-step forward predictions can be obtained using the predict methods explicitly written
for markovchain and markovchainList objects. The prediction is the mode of the conditional
distribution of Xt+1 given Xt = sj , being sj the last realization of the DTMC (homogeneous
or non-homogeneous).

Predicting from a markovchain object

The 3-days forward predictions from markovchain object can be generated as follows, assum-
ing that the last two days were respectively ”cloudy” and ”sunny”.
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R> predict(object = weatherFittedMLE$estimate, newdata = c("cloudy", "sunny"),

+ n.ahead = 3)

[1] "sunny" "sunny" "sunny"

Predicting from a markovchainList object

Given an initial two year Healty status, the 5-year ahead prediction of any CCRC guest is

R> predict(mcCCRC, newdata = c("H", "H"), n.ahead = 5)

[1] "H" "D" "D"

The prediction has stopped at time sequence since the underlying non-homogeneous Markov
chain has a length of four. In order to continue five years ahead, the continue=TRUE parameter
setting makes the predict method keeping to use the last markovchain in the sequence list.

R> predict(mcCCRC, newdata = c("H", "H"), n.ahead = 5, continue = TRUE)

[1] "H" "D" "D" "D" "D"

6. Applications

This section shows applications of DTMC in various fields.

6.1. Weather forecasting

Markov chains provide a simple model to predict the next day’s weather given the current
meteorological condition. The first application herewith shown is the ”Land of Oz example”
from J. G. Kemeny, J. L.Snell, and G. L. Thompson (1974), the second is the ”Alofi Island
Rainfall” from P. J. Avery and D. A. Henderson (1999).

Land of Oz

The Land of Oz is acknowledged not to have ideal weather conditions at all: the weather is
snowy or rainy very often and, once more, there are never two nice days in a row. Consider
three weather states: rainy, nice and snowy. Let the transition matrix be as in the following:

R> mcWP <- new("markovchain", states = c("rainy", "nice", "snowy"),

+ transitionMatrix = matrix(c(0.5, 0.25, 0.25,

+ 0.5, 0, 0.5,

+ 0.25,0.25,0.5), byrow = T, nrow = 3))

Given that today it is a nice day, the corresponding stochastic row vector is w0 = (0 , 1 , 0)
and the forecast after 1, 2 and 3 days are given by
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R> W0 <- t(as.matrix(c(0, 1, 0)))

R> W1 <- W0 * mcWP; W1

rainy nice snowy

[1,] 0.5 0 0.5

R> W2 <- W0 * (mcWP ^ 2); W2

rainy nice snowy

[1,] 0.375 0.25 0.375

R> W3 <- W0 * (mcWP ^ 3); W3

rainy nice snowy

[1,] 0.40625 0.1875 0.40625

As can be seen from w1, if in the Land of Oz today is a nice day, tomorrow it will rain or
snow with probability 1. One week later, the prediction can be computed as

R> W7 <- W0 * (mcWP ^ 7)

R> W7

rainy nice snowy

[1,] 0.4000244 0.1999512 0.4000244

The steady state of the chain can be computed by means of the steadyStates method.

R> q <- steadyStates(mcWP)

R> q

rainy nice snowy

[1,] 0.4 0.2 0.4

Note that, from the seventh day on, the predicted probabilities are substantially equal to the
steady state of the chain and they don’t depend from the starting point, as the following code
shows.

R> R0 <- t(as.matrix(c(1, 0, 0)))

R> R7 <- R0 * (mcWP ^ 7); R7

rainy nice snowy

[1,] 0.4000244 0.2000122 0.3999634

R> S0 <- t(as.matrix(c(0, 0, 1)))

R> S7 <- S0 * (mcWP ^ 7); S7
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rainy nice snowy

[1,] 0.3999634 0.2000122 0.4000244

Alofi Island Rainfall

Alofi Island daily rainfall data were recorded from January 1st, 1987 until December 31st,
1989 and classified into three states: ”0” (no rain), ”1-5” (from non zero until 5 mm) and ”6+”
(more than 5mm). The corresponding dataset is provided within the markovchain package.

R> data("rain", package = "markovchain")

R> table(rain$rain)

0 1-5 6+

548 295 253

The underlying transition matrix is estimated as follows.

R> mcAlofi <- markovchainFit(data = rain$rain, name = "Alofi MC")$estimate

R> mcAlofi

Alofi MC

A 3 - dimensional discrete Markov Chain with following states

0 1-5 6+

The transition matrix (by rows) is defined as follows

0 1-5 6+

0 0.6605839 0.2299270 0.1094891

1-5 0.4625850 0.3061224 0.2312925

6+ 0.1976285 0.3122530 0.4901186

The long term daily rainfall distribution is obtained by means of the steadyStates method.

R> steadyStates(mcAlofi)

0 1-5 6+

[1,] 0.5008871 0.2693656 0.2297473

6.2. Finance and Economics

Other relevant applications of DTMC can be found in Finance and Economics.

Finance

Credit ratings transitions have been successfully modelled with discrete time Markov chains.
Some rating agencies publish transition matrices that show the empirical transition proba-
bilities across credit ratings. The example that follows comes from CreditMetrics R package
(Wittmann 2007), carrying Standard & Poor’s published data.
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R> rc <- c("AAA", "AA", "A", "BBB", "BB", "B", "CCC", "D")

R> creditMatrix <- matrix(c(90.81, 8.33, 0.68, 0.06, 0.08, 0.02, 0.01, 0.01,

+ 0.70, 90.65, 7.79, 0.64, 0.06, 0.13, 0.02, 0.01,

+ 0.09, 2.27, 91.05, 5.52, 0.74, 0.26, 0.01, 0.06,

+ 0.02, 0.33, 5.95, 85.93, 5.30, 1.17, 1.12, 0.18,

+ 0.03, 0.14, 0.67, 7.73, 80.53, 8.84, 1.00, 1.06,

+ 0.01, 0.11, 0.24, 0.43, 6.48, 83.46, 4.07, 5.20,

+ 0.21, 0, 0.22, 1.30, 2.38, 11.24, 64.86, 19.79,

+ 0, 0, 0, 0, 0, 0, 0, 100

+ )/100, 8, 8, dimnames = list(rc, rc), byrow = TRUE)

It is easy to convert such matrices into markovchain objects and to perform some analyses

R> creditMc <- new("markovchain", transitionMatrix = creditMatrix,

+ name = "S&P Matrix")

R> absorbingStates(creditMc)

[1] "D"

Economics

For a recent application of markovchain in Economic, see Jacob (2014).

A dynamic system generates two kinds of economic effects (Bard 2000):

1. those incurred when the system is in a specified state, and

2. those incurred when the system makes a transition from one state to another.

Let the monetary amount of being in a particular state be represented as a m-dimensional
column vector cS, while let the monetary amount of a transition be embodied in a CR matrix
in which each component specifies the monetary amount of going from state i to state j in a
single step. Henceforth, Equation 13 represents the monetary of being in state i.

ci = cSi +
m∑
j=1

CR
ijpij . (13)

Let c̄ = [ci] and let ei be the vector valued 1 in the initial state and 0 in all other, then, if fn is
the random variable representing the economic return associated with the stochastic process
at time n, Equation 14 holds:

E [fn (Xn) |X0 = i] = eiP
nc̄. (14)

The following example assumes that a telephone company models the transition probabilities
between customer/non-customer status by matrix P and the cost associated to states by
matrix M .
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R> statesNames <- c("customer", "non customer")

R> P <- zeros(2); P[1, 1] <- .9; P[1, 2] <- .1; P[2, 2] <- .95; P[2, 1] <- .05;

R> rownames(P) <- statesNames; colnames(P) <- statesNames

R> mcP <- new("markovchain", transitionMatrix = P, name = "Telephone company")

R> M <- zeros(2); M[1, 1] <- -20; M[1, 2] <- -30; M[2, 1] <- -40; M[2, 2] <- 0

If the average revenue for existing customer is +100, the cost per state is computed as follows.

R> c1 <- 100 + conditionalDistribution(mcP, state = "customer") %*% M[1,]

R> c2 <- 0 + conditionalDistribution(mcP, state = "non customer") %*% M[2,]

For an existing customer, the expected gain (loss) at the fifth year is given by the following
code.

R> as.numeric((c(1, 0)* mcP ^ 5) %*% (as.vector(c(c1, c2))))

[1] 48.96009

6.3. Actuarial science

Markov chains are widely applied in the field of actuarial science. Two classical applications
are policyholders’ distribution across Bonus Malus classes in Motor Third Party Liability
(MTPL) insurance (Section 6.3.1) and health insurance pricing and reserving (Section 6.3.2).

MPTL Bonus Malus

Bonus Malus (BM) contracts grant the policyholder a discount (enworsen) as a function of
the number of claims in the experience period. The discount (enworsen) is applied on a pre-
mium that already allows for known (a priori) policyholder characteristics (Denuit, Maréchal,
Pitrebois, and Walhin 2007) and it usually depends on vehicle, territory, the demographic
profile of the policyholder, and policy coverages deep (deductible and policy limits).
Since the proposed BM level depends on the claim on the previous period, it can be modelled
by a discrete Markov chain. A very simplified example follows. Assume a BM scale from 1
to 5, where 4 is the starting level. The evolution rules are shown in Equation 15:

bmt+1 = max (1, bmt − 1) ∗
(
Ñ = 0

)
+ min

(
5, bmt + 2 ∗ Ñ

)
∗
(
Ñ ≥ 1

)
. (15)

Tthe number of claim Ñ is a random variable that is assumed to be Poisson distributed.

R> getBonusMalusMarkovChain <- function(lambda)

+ {

+ bmMatr <- zeros(5)

+ bmMatr[1, 1] <- dpois(x = 0, lambda)

+ bmMatr[1, 3] <- dpois(x = 1, lambda)

+ bmMatr[1, 5] <- 1 - ppois(q = 1, lambda)

+
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+ bmMatr[2, 1] <- dpois(x = 0, lambda)

+ bmMatr[2, 4] <- dpois(x = 1, lambda)

+ bmMatr[2, 5] <- 1 - ppois(q = 1, lambda)

+

+ bmMatr[3, 2] <- dpois(x = 0, lambda)

+ bmMatr[3, 5] <- 1 - dpois(x=0, lambda)

+

+ bmMatr[4, 3] <- dpois(x = 0, lambda)

+ bmMatr[4, 5] <- 1 - dpois(x = 0, lambda)

+

+ bmMatr[5, 4] <- dpois(x = 0, lambda)

+ bmMatr[5, 5] <- 1 - dpois(x = 0, lambda)

+ stateNames <- as.character(1:5)

+ out <- new("markovchain", transitionMatrix = bmMatr,

+ states = stateNames, name = "BM Matrix")

+ return(out)

+ }

R>

Assuming that the a-priori claim frequency per car-year is 0.05 in the class (being the class
the group of policyholders that share the same common characteristics), the underlying BM
transition matrix and its underlying steady state are as follows.

R> bmMc <- getBonusMalusMarkovChain(0.05)

R> as.numeric(steadyStates(bmMc))

[1] 0.895836079 0.045930498 0.048285405 0.005969247 0.003978772

If the underlying BM coefficients of the class are 0.5, 0.7, 0.9, 1.0, 1.25, this means that the
average BM coefficient applied on the long run to the class is given by

R> sum(as.numeric(steadyStates(bmMc)) * c(0.5, 0.7, 0.9, 1, 1.25))

[1] 0.534469

This means that the average premium paid by policyholders in the portfolio almost halves in
the long run.

Health insurance example

Actuaries quantify the risk inherent in insurance contracts evaluating the premium of insur-
ance contract to be sold (therefore covering future risk) and evaluating the actuarial reserves
of existing portfolios (the liabilities in terms of benefits or claims payments due to policy-
holder arising from previously sold contracts). Key quantities of actuarial interest are: the
expected present value of future benefits, PV FB, the (periodic) benefit premium, P , and
the present value of future premium PV FP . A level benefit premium could be set equating
at the beginning of the contract PV FB = PV FP . After the beginning of the contract the
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benefit reserve is the difference between PV FB and PV FP . The example comes from Desh-
mukh (2012). The interest rate is 5%, benefits are payable upon death (1000) and disability
(500). Premiums are payable at the beginning of period only if the policyholder is active.
The contract term is three years.

R> mcHI <- new("markovchain", states = c("active", "disable", "withdrawn",

+ "death"),

+ transitionMatrix = matrix(c(0.5, .25, .15, .1,

+ 0.4, 0.4, 0.0, 0.2,

+ 0, 0, 1, 0,

+ 0, 0, 0, 1), byrow = TRUE, nrow = 4))

R> benefitVector <- as.matrix(c(0, 0, 500, 1000))

The policyholders is active at T0. Therefore the expected states at T1, . . . T3 are calculated in
the following.

R> T0 <- t(as.matrix(c(1, 0, 0, 0)))

R> T1 <- T0 * mcHI

R> T2 <- T1 * mcHI

R> T3 <- T2 * mcHI

The present value of future benefit at T0 is given by

R> PVFB <- T0 %*% benefitVector * 1.05 ^ -0 +

+ T1 %*% benefitVector * 1.05 ^ -1+

+ T2 %*% benefitVector * 1.05 ^ -2 + T3 %*% benefitVector * 1.05 ^ -3

The yearly premium payable whether the insured is alive is as follows.

R> P <- PVFB / (T0[1] * 1.05 ^- 0 + T1[1] * 1.05 ^ -1 + T2[1] * 1.05 ^ -2)

The reserve at the beginning of the second year, in the case of the insured being alive, is as
follows.

R> PVFB <- T2 %*% benefitVector * 1.05 ^ -1 + T3 %*% benefitVector * 1.05 ^ -2

R> PVFP <- P*(T1[1] * 1.05 ^ -0 + T2[1] * 1.05 ^ -1)

R> V <- PVFB - PVFP

R> V

[,1]

[1,] 300.2528

6.4. Sociology

Markov chains have been actively used to model progressions and regressions between social
classes. The first study was performed by Glass and Hall (1954), while a more recent ap-
plication can be found in Jo Blanden and Machin (2005). The table that follows shows the
income quartile of the father when the son was 16 (in 1984) and the income quartile of the
son when aged 30 (in 2000) for the 1970 cohort.
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1970 mobility

0.29

0.26

0.21

0.42

0.28

0.26
0.17

0.22

0.280.25

0.380.25

0.16

0.11
0.22

0.24

●
●

●
●

2nd
3rd

Bottom
Top

Figure 4: 1970 UK cohort mobility data.

R> data("blanden")

R> mobilityMc <- as(blanden, "markovchain")

R> mobilityMc

Unnamed Markov chain

A 4 - dimensional discrete Markov Chain with following states

Bottom 2nd 3rd Top

The transition matrix (by rows) is defined as follows

2nd 3rd Bottom Top

Bottom 0.2900000 0.2200000 0.3800000 0.1100000

2nd 0.2772277 0.2574257 0.2475248 0.2178218

3rd 0.2626263 0.2828283 0.2121212 0.2424242

Top 0.1700000 0.2500000 0.1600000 0.4200000

The underlying transition graph is plotted in Figure 4.

The steady state distribution is computed as follows. Since transition across quartiles are
shown, the probability function is evenly 0.25.
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R> round(steadyStates(mobilityMc), 2)

Bottom 2nd 3rd Top

[1,] 0.25 0.25 0.25 0.25

6.5. Genetics and Medicine

This section contains two examples: the first shows the use of Markov chain models in genetics,
the second shows an application of Markov chains in modelling diseases’ dynamics.

Genetics

P. J. Avery and D. A. Henderson (1999) discusses the use of Markov chains in model Preprogu-
cacon gene protein bases sequence. The preproglucacon dataset in markovchain contains
the dataset shown in the package.

R> data("preproglucacon", package = "markovchain")

It is possible to model the transition probabilities between bases as shown in the following
code.

R> mcProtein <- markovchainFit(preproglucacon$preproglucacon,

+ name = "Preproglucacon MC")$estimate

R> mcProtein

Preproglucacon MC

A 4 - dimensional discrete Markov Chain with following states

A C G T

The transition matrix (by rows) is defined as follows

A C G T

A 0.3585271 0.1434109 0.16666667 0.3313953

C 0.3840304 0.1558935 0.02281369 0.4372624

G 0.3053097 0.1991150 0.15044248 0.3451327

T 0.2844523 0.1819788 0.17667845 0.3568905

Medicine

Discrete-time Markov chains are also employed to study the progression of chronic diseases.
The following example is taken from B. A. Craig and A. A. Sendi (2002). Starting from six
month follow-up data, the maximum likelihood estimation of the monthly transition matrix is
obtained. This transition matrix aims to describe the monthly progression of CD4-cell counts
of HIV infected subjects.

R> craigSendiMatr <- matrix(c(682, 33, 25,

+ 154, 64, 47,

+ 19, 19, 43), byrow = T, nrow = 3)
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R> hivStates <- c("0-49", "50-74", "75-UP")

R> rownames(craigSendiMatr) <- hivStates

R> colnames(craigSendiMatr) <- hivStates

R> craigSendiTable <- as.table(craigSendiMatr)

R> mcM6 <- as(craigSendiTable, "markovchain")

R> mcM6@name <- "Zero-Six month CD4 cells transition"

R> mcM6

Zero-Six month CD4 cells transition

A 3 - dimensional discrete Markov Chain with following states

0-49 50-74 75-UP

The transition matrix (by rows) is defined as follows

0-49 50-74 75-UP

0-49 0.9216216 0.04459459 0.03378378

50-74 0.5811321 0.24150943 0.17735849

75-UP 0.2345679 0.23456790 0.53086420

As shown in the paper, the second passage consists in the decomposition of M6 = V ·D ·V −1
in order to obtain M1 as M1 = V ·D1/6 · V −1 .

R> eig <- eigen(mcM6@transitionMatrix)

R> D <- diag(eig$values)

R> V <- eig$vectors

R> V %*% D %*% solve(V)

[,1] [,2] [,3]

[1,] 0.9216216 0.04459459 0.03378378

[2,] 0.5811321 0.24150943 0.17735849

[3,] 0.2345679 0.23456790 0.53086420

R> d <- D ^ (1/6)

R> M <- V %*% d %*% solve(V)

R> mcM1 <- new("markovchain", transitionMatrix = M, states = hivStates)

7. Discussion, issues and future plans

The markovchain package has been designed in order to provide easily handling of DTMC
and communication with alternative packages.

Some numerical issues have been found when working with matrix algebra using R internal
linear algebra kernel (the same calculations performed with MATLAB gave a more accurate
result). Some temporary workarounds have been implemented. For example, the condition
for row/column sums to be equal to one is valid up to fifth decimal. Similarly, when extracting
the eigenvectors only the real part is taken.
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Such limitations are expected to be overcome in future releases. Similarly, future versions of
the package are expected to improve the code in terms of numerical accuracy and rapidity.
More deep internal function profiling and integration of C++ code by means of Rcpp package
(Eddelbuettel 2013) will be explored.
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