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The mbbefd Package: A Package for handling

MBBEFD exposure curves in R

Giorgio Alfredo Spedicato, Ph.D C.Stat ACAS

Abstract

The package models MBBEFD distribution providing density, quantile, distribution
and random generation functions. In addition it provides exposure curves for the MBBEFD
distribution family.
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1. Introduction

The mbbefd package provides function to use Maxwell-Bolzano, Bose-Einstein, Fermi-Dirac
probability distributions, introduced by (BERNEGGER 1997), within R statistical software
(R Core Team 2014).
Such kind of distributions are widely used in the pricing of non-life reinsurance contracts and
yet they are not present in any R package.

The paper is structured as follows: Section 2 discusses review the theory (mathematics and
actuarial application) of MBBEFD distributions, Section 3 shows the package’s features, ap-
plied examples are shown in Section 4 while the issue of fitting MBBEFD curves to empirical
data is discussed in Section 5.

2. Exposure curve review

Within actuarial jargon, an exposure curve is a distribution that shows the ratio between the
expected limited loss at various limits and the expected unlimited loss. They are usually to
rate large commercial risks’ exposures and non-proportional reinsurance treaties. In mathe-
matical notation, if IV is the insured value and d the ratio of loss x to IV the exposure curve
G (d) is defined as Equation 1 displays.

G (d) =
E [min (d ∗ IV, x)]

E [x]
=

∫ d∗IV
0 (1− F (x)) dx∫∞

0 x ∗ f (x) dx
=

∫ d∗IV
0 S (x) dx∫∞
0 S (x) dx

(1)

Whilst losses normally lie in the interval 0, . . . ,∞ for the rest of the paper it will be assumes
x to represent a normalized loss in the interval 0, . . . , PML, being PML the so - called maxi-
mum probable loss (in other words, the maximum loss it is thought to can happen). Therefore
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x would represent a percentage loss with respect to a maximum, i.e., a destruction rate.

BERNEGGER (1997) and Mahler (2014) provide a discussion on the actuarial theory regard-
ing such curve. In particular, the curves discussed by BERNEGGER (1997) are of the form
expressed by Equation 2. {

G (x) = ln(a+bx)−ln(a+1)
ln(a+b)−ln(a+1)

x ∈ [0, 1]
(2)

It can be shown that G (0) = 0, G (1) = 1, dG (d) ≥ 0 and ddG (d) ≤ 0. Using some calculus
on Equation 2 it can be shown that the expected value is equal to the reciprocal of exposure
curve derivative at 0, Equation 3.

µ =
1

dG (0)
(3)

The probability of a total loss, p, is expressed by Equation 4.

p = 1− F
(
1−
)

=
1

g
=
dG (1)

dG (0)
=

(a+ 1) ∗ b
a+ b

(4)

It is similarly possible to write expression for the Survival Function, S (x), Equation 5 and
the density, Equation ??.

S (x) =
G′ (x)

G′ (0)
=

(a+ 1) bx

a+ bx
(5)

3. The MBBEFD class and its related package

R> library(mbbefd)

The mbbefdExposure function evaluates the exposure curve for a given destruction rate x,
given either a and b, or b and g. Figure 3 displays the destruction rate by level of x, for an
exposure cuve of parameters a = 0.2 and b = 0.04

4. Applied examples

The curve can be use to price property coverage and associate reinsurance treaties. Suppose
a property expected loss to be 40K, MPL to be 2MLN. An XL coverage is available with
a retention of 1Mln. The exposure curve that characterize the property is the usual one.
Therefore the percentage of loss net and ceded is determined as it follows

R> net<-mbbefdExposure(x=1/2, a=0.2,b=0.04)*40000

R> ceded<-40000-net
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Figure 1: Exposure curve example
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Figure 2: Underlying survival curve

and the expected loss as a percentage of total insured value is

R> expectedLoss<-1/dG(x=0,a=0.2,b=0.04)*40000

R> expectedLoss

[1] 24000

Similarly, it is possible to draw the underluying suvival curve S (x) = G′(x)
G′(0) using Figure 2.

The probability of a maximum loss for such exposure curve is obtained evaluating the survival
function at 1

R> pTotalLoss<-1-pmbbefd(q=1,a=0.2,b=0.04)

R> pTotalLoss

[1] 0.2
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Similarly, it is possible to assess the mean of the distribution underlying the exposure curve

Quantile functions, distribution functions and density functions are defined as well. For
example, the 60th percentile of the distribution above defined (i.e., how bad can be in 60%
of cases in terms of destruction rate) is

R> qmbbefd(p=0.6,a=0.2,b=0.04)

[1] 0.7153383

whilst a loss worse than 80% of IV could happen in

R> 100*(1-pmbbefd(q=0.8,a=0.2,b=0.04))

[1] 33.0895

cases out of 100.

It would be possible to simulate variates from the MBBEFD distribution using the random
generation command rmbbefd.

R> simulatedLosses<-rmbbefd(n=10000,a=0.2,b=0.04)

R> mean(simulatedLosses)

[1] 0.597828

R> sum(simulatedLosses==1)/length(simulatedLosses)

[1] 0.1949

Finally another way to show the probability of total loss to be greater than zero is to show
that the (numerical) integral between 0 and 1 of the density function is lower than 1, that is
1− F (1−).

R> integrate(dmbbefd,lower=0, upper=1, a=0.2, b=0.04)

0.8 with absolute error < 2.4e-13

5. Fitting MBBEFD curves

? suggests an iterative process, based on the method of moments, in order to estimate the
parameter of the distribution function, starting from known values of p = 1

g The algoritm
outilined is:

1. Try p0 = m2, being m2 the second empirical moment. Obtain g0 = 1
p0

.
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Figure 3: Exposure curve example
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2. Solve for b0 the equation E [x] = m0 = ln(g0∗b0)
b0

1−b0
1−g0∗b .

3. Get the second theoretical moment, E
[
x2
]

of x from estimated b0 and g0.

4. Compare E
[
x2
]

to the empirical moment. Repeat the process modifying p until the
theoretical second moment is close to the empirical one enough (the second moment is
an increasing function of p).

Fitting a MBBEFD distribution is not easy. The result is sensible to initial values and appears
to be instable. We have applied the first three steps of this process in order to obtain initial
estimates of a and b to feed the Maximum Likelihood estimation process using fitdistrplus
package, ?. We show two example one using both artificial data or real one (from package
copula, Jun Yan (2007)).

R> #get data

R> data1<-rmbbefd(n=1000,a = .2,b=.04)

R> data(loss, package = "copula")

R> data2<-pmin(1,pmax(0,loss$loss/loss$limit)) #capping loss data to lim

R> #functions used to initialize the parameters

R> #using one iteration of Method of Moments

R>

R> #method of moments

R>

R> giveFunction2Minimize<-function(mu,g) {

+ out = function(b) (mu - (log(g*b)*(1 - b))/( log(b)*(1 - g*b)) )^2

+ return(out)

+ }

R> giveFunction2Integrate<-function(b,g) {

+ out = function(x) x^2*dmbbefd(x,b=b,g=g)

+ return(out)

+ }

R> giveInits<-function(x) {

+ m0<-mean(x)

+ m2<-mean(x^2)

+

+ #p<=1/g

+

+ p0=m2 #m2 upper limit of p0

+ g=1/p0

+

+ #equate 1rst moment to get the mean

+ myMin<-giveFunction2Minimize(mu=m0,g=g)

+ b<-nlm(f=myMin,p=.1)$estimate

+

+ #return a

+ a=(g-1)*b/(1-g*b)

+ out<-list(a=a, b=b)
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+ return(out)

+ }

R> ###fitting process

R>

R> library(fitdistrplus)

R> #using close starting points

R> est1<-fitdist(data=data1,distr = "mbbefd",method = "mle",start=list(a=.9,b=.14))

R> est1

Fitting of the distribution ' mbbefd ' by maximum likelihood

Parameters:

estimate Std. Error

a 0.16570167 0.024238705

b 0.03284038 0.005238313

R> #using estimated starting points

R> inits2<-giveInits(x=data2)

R> est2<-fitdist(data=data2,distr = "mbbefd",method = "mle",start=inits2)

R> est1

Fitting of the distribution ' mbbefd ' by maximum likelihood

Parameters:

estimate Std. Error

a 0.16570167 0.024238705

b 0.03284038 0.005238313
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