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Abstract

In this paper, we describe the R package mediation for conducting causal mediation
analysis in applied empirical research. In many scientific disciplines, the goal of researchers
is not only estimating causal effects of a treatment but also understanding the process
in which the treatment causally affects the outcome. Causal mediation analysis is fre-
quently used to assess potential causal mechanisms. The mediation package implements
a comprehensive suite of statistical tools for conducting such an analysis. The package
is organized into two distinct approaches. Using the model-based approach, researchers
can estimate causal mediation effects and conduct sensitivity analysis under the standard
research design. Furthermore, the design-based approach provides several analysis tools
that are applicable under different experimental designs. This approach requires weaker
assumptions than the model-based approach. We also implement a statistical method
for dealing with multiple (causally dependent) mediators, which are often encountered in
practice. Finally, the package also offers a methodology for assessing causal mediation in
the presence of treatment noncompliance, a common problem in randomized trials.

Keywords: causal mechanisms, mediation analysis, mediation, R.

1. Introduction

Scholars across a wide range of disciplines are increasingly interested in identifying causal
mechanisms, going beyond the estimation of causal effects. Once they ascertain that cer-
tain variables causally affect the outcome, the next natural step is to understand how these
variables exert their influence. The standard procedure for analyzing causal mechanisms in
applied research is called mediation analysis, where a set of linear regression models are fit-
ted and then the estimates of “mediation effects” are computed from the fitted models (e.g.,
Haavelmo 1943; Baron and Kenny 1986; Shadish, Cook, and Campbell 2001; MacKinnon
2008). In recent years, however, causal mechanisms have been studied within the modern
framework of causal inference with an emphasis on the assumptions required for identifi-
cation. This approach has highlighted limitations of earlier methods and pointed the way
towards a more flexible estimation strategy. In addition, new research designs have been
proposed for identifying causal mechanisms.

In this paper, we introduce a full featured R package, mediation (Tingley, Yamamoto, Hirose,
Keele, and Imai 2013), for studying causal mechanisms. The mediation package allows users
to (1) investigate the role of causal mechanisms using different types of data and statistical
models, (2) explore how results change as identification assumptions are relaxed, and (3)
calculate quantities of interest under alternative research designs. We focus on the demon-
stration of the functionalities available through the mediation package. The statistical theory
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that underlies the procedures implemented in the mediation package is presented elsewhere
along with various empirical examples (Imai, Keele, and Yamamoto 2010c; Imai, Keele, Tin-
gley, and Yamamoto 2011; Imai, Keele, and Tingley 2010a; Imai, Tingley, and Yamamoto
2013; Yamamoto 2013).

The mediation package is freely available for download via the Comprehensive R Archive Net-
work (CRAN) at http://CRAN.R-project.org/package=mediation and runs on a variety
of computing platforms (R Core Team 2014). In addition, a Stata (StataCorp. 2013) version
of the package is available but has a more limited functionality (Hicks and Tingley 2011). The
first version of the mediation package appeared at CRAN in 2009, and Imai, Keele, Tingley,
and Yamamoto (2010b) discuss an earlier version of the package. Since then, however, we
have dramatically improved the package with a significant number of new functionalities and
improvements. The current paper thus provides an up-to-date description of the analyses
that can be conducted via the mediation package. To install the mediation package, use the
following standard syntax for installing an R package,

R> install.packages("mediation")

where users may be prompted to select a CRAN mirror from which the package will be
downloaded. This step needs to be done only once (unless one wishes to update the mediation
package to the new version).

In the next section, we present an overview of the mediation package. We then describe the
functionalities of the package for the model-based causal mediation analysis (Section 3), mul-
tilevel mediation analysis (Section 4), the design-based causal mediation analysis (Section 5),
the analysis of causally dependent multiple mediators (Section 6), and causal mediation anal-
ysis with treatment noncompliance (Section 7). Finally, Section 8 concludes.

2. Overview of the mediation package

The mediation package consists of several main functions as well as various methods for
summarizing output from these functions (e.g., plot and summary). The package requires
little programming knowledge on the user’s side. Figure 1 illustrates the core structure of
the mediation package, which distinguishes between model-based and design-based inference.
Model-based inference has been standard practice in the mediation analysis to date. In the
experimental setting, the treatment variable is randomized and the mediating and outcome
variables are observed without any intervention by researchers. Imai et al. (2010a) show that
a range of parametric and semi-parametric models may then be used to estimate the average
causal mediation effect, defined below, and other quantities of interest. This modeling ap-
proach relies on the sequential ignorability assumption for point identification, which as Imai
et al. (2010a) show, provides a general purpose algorithm for estimating quantities of interest.
In contrast, design-based inference primarily employs the features of the experimental design
and does not require the sequential ignorability assumption. The formal identification prop-
erties of these designs are studied by Imai et al. (2013) and the examples from experimental
and observational studies are contained in Imai et al. (2011, 2013). We refer readers to these
papers for the details about the statistical methods implemented via the mediation package.

Before describing the functions available in mediation, we briefly define the quantities of inter-
est that our software is designed to estimate. Here, we use the potential outcomes framework

http://CRAN.R-project.org/package=mediation
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Figure 1: Core structure of the mediation package as of version 4.0.

to define these quantities. Let Mi(t) denote the potential value of a mediator of interest for
unit i under the treatment status Ti = t. Let Yi(t,m) denote the potential outcome that
would result if the treatment and mediating variables equal t and m, respectively. Consider a
standard experimental design where only the treatment variable is randomized. We observe
only one of the potential outcomes, and the observed outcome, Yi, equals Yi(Ti,Mi(Ti)) where
Mi(Ti) represents the observed value of the mediator Mi. With this notation, the total unit
treatment effect can be written as,

τi ≡ Yi(1,Mi(1))− Yi(0,Mi(0)). (1)

We can decompose this total effect into the two components. First, the causal mediation
effects are represented by (Robins and Greenland 1992; Pearl 2001),

δi(t) ≡ Yi(t,Mi(1))− Yi(t,Mi(0)), (2)

for each treatment status t = 0, 1. All other causal mechanisms can be represented by the
direct effects of the treatment as,

ζi(t) ≡ Yi(1,Mi(t))− Yi(0,Mi(t)), (3)

for each unit i and each treatment status t = 0, 1. Together, we see that they sum up to the
total effect,

τi = δi(t) + ζi(1− t) (4)

for t = 0, 1. The case of multiple candidate mediating variables requires additional notation
and is discussed in Section 6. The average causal mediation effects (ACME) δ̄(t) and the
average direct effects (ADE) ζ̄(t), represent the population averages of these causal mediation
and direct effects.

Identification of the ACME requires an additional assumption beyond the strong ignorability
of the treatment, which is sufficient for identifying the average total effect of the treatment.
Let Xi be a vector of the observed pre-treatment confounders for unit i. The key identifying
assumption is called sequential ignorability and can be written as,
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Assumption 1 (Sequential Ignorability; Imai et al. 2010c)

{Yi(t′,m),Mi(t)} ⊥⊥ Ti | Xi = x, (5)

Yi(t
′,m) ⊥⊥ Mi(t) | Ti = t,Xi = x, (6)

where 0 < P(Ti = t | Xi = x) and 0 < p(Mi = m | Ti = t,Xi = x) for t = 0, 1, and all x and

m in the support of Xi and Mi, respectively.

Equation 5 is the standard strong ignorability of the treatment assignment and is satisfied, for
example, if the treatment is randomized (possibly conditional on Xi). However, Equation 6
requires that the mediator is also ignorable given the observed treatment and pre-treatment
confounders. This additional assumption is quite strong because it excludes the existence of
(measured or unmeasured) post-treatment confounders as well as that of unmeasured pre-
treatment confounders. This assumption, therefore, rules out the possibility of multiple me-
diators that are causally related to each other (see Section 6 for the method that is designed
to deal with such a scenario).

3. Model-based causal mediation analysis

In this section, we discuss the functionalities of the mediation package for model-based causal
mediation analysis under the assumption of sequential ignorability. Many of these function-
alities are described in detail in Imai et al. (2010b), but the current version of the package
accommodates a larger class of statistical models.

The model-based causal mediation analysis proceeds in two steps. First, the researcher speci-
fies two statistical models, the mediator model for the conditional distribution of the mediator
Mi given the treatment Ti and a set of the observed pre-treatment covariates Xi and the out-
come model for the conditional distribution of the outcome Yi given Ti, Mi, and Xi. These
models are fitted separately and then their fitted objects comprise the main inputs to the
mediate function, which computes the estimated ACME and other quantities of interest un-
der these models and the sequential ignorability assumption. Since the sequential ignorability
assumption is untestable, we recommend that the researchers conduct a sensitivity analy-
sis via the medsens function, which can be applied to certain statistical models. We now
illustrate these functionalities with an empirical example.
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Outcome model types
Mediator model types Linear GLM Ordered Censored Quantile GAM Survival

Linear (lm/lmer) X X X∗ X X X∗ X
GLM (glm/bayesglm/ X X X∗ X X X∗ X

glmer)
Ordered (polr/bayespolr) X X X∗ X X X∗ X
Censored (tobit via vglm) – – – – – – –
Quantile (rq) X∗ X∗ X∗ X∗ X∗ X∗ X
GAM (gam) X∗ X∗ X∗ X∗ X∗ X∗ X∗

Survival (survreg) X X X∗ X X X∗ X

Table 1: Types of statistical models that can be used with the mediate function. Aster-
isks, ∗, indicate the model combinations that can only be estimated using the nonparametric
bootstrap (i.e., with the argument boot = TRUE for the mediate function).

3.1. Estimation of the average causal mediation effects

The mediate function takes various standard model objects (such as obtained with lm and
glm), which correspond to mediator and outcome models, and returns the estimates of the
average causal mediation effects along with other causal quantities of interest. The output
of the mediate function can be passed to the plot and summary functions in order to obtain
graphical and numerical summaries, respectively. The mediate function automatically detects
the type of models used for the mediator and outcome models and calculates the estimates of
the ACME and other quantities of interest via the general algorithms described in Imai et al.
(2010a). Our estimation strategy overcomes the limitation of the standard methods based on
the product or difference of coefficients, which are only appropriate for the analysis of causal
mediation effects when both the mediator and outcome models are linear regressions where
Ti and Mi enter the models additively (e.g., without interaction). In contrast, the algorithms
used in the mediation package nest this as a special case and accommodate a greater range
of statistical models as shown in Table 1.

We now illustrate the use of the mediate function with an empirical example based on the
framing data of Brader, Valentino, and Suhat (2008). This data set is a part of the mediation
package and can be loaded via the following syntax,

R> library("mediation")

R> set.seed(2014)

R> data("framing", package = "mediation")

A brief description of each variable in the data can be obtained through a help file,

R> ?framing

Brader et al. (2008) conducted a randomized experiment where subjects are exposed to differ-
ent media stories about immigration and the authors investigated how their framing influences
attitudes and political behavior regarding immigration policy. They posit anxiety as the me-
diating variable for the causal effect of framing on public opinion. We first fit the mediator
model where the measure of anxiety (emo) is modeled as a function of the framing treatment
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(treat) and pre-treatment covariates (age, educ, gender, and income). Next, we model the
outcome variable, which is a binary variable indicating whether or not the participant agreed
to send a letter about immigration policy to his or her member of Congress (cong_mesg). The
explanatory variables of the outcome model include the mediator, treatment status, and the
same set of pre-treatment variables as those used in the mediator model.1 In this example,
the treatment is expected to increase the level of respondents’ emotional response, which in
turn is hypothesized to make subjects more likely to send a letter to his or her member of
Congress. We use the linear regression fit with least squares and the probit regression for the
mediator and outcome models, respectively.

R> med.fit <- lm(emo ~ treat + age + educ + gender + income, data = framing)

R> out.fit <- glm(cong_mesg ~ emo + treat + age + educ + gender + income,

+ data = framing, family = binomial("probit"))

We now use the mediate function to estimate the ACME and ADE. As the inputs to this
function, we must specify the model fits (in this case med.fit and out.fit) as well as the
names of the treatment and mediating variables, which are represented as the arguments
treat and mediator, respectively. Here and throughout the rest of this paper, we use a
small number of simulations (sims = 100) for the purpose of illustration to calculate the
uncertainty estimates, but one may wish to use the default (1000) or even larger number if
the estimates vary too much from one simulation to another. The default simulation type is
the quasi-Bayesian Monte Carlo method based on normal approximation (Imai et al. 2010a).
We use White’s heteroskedasticity-consistent estimator for the covariance matrix from the
sandwich package (vcovHC; Zeileis 2006) by setting the robustSE argument to TRUE. This
argument can be omitted if standard uncertainty estimates are desired. Finally, like most
functions in R, the results of the mediate function can be summarized numerically by the
summary function, which calculates point estimates, confidence intervals, and the p-values, for
the average direct, indirect, and total effects.2 The syntax is now given as,

R> med.out <- mediate(med.fit, out.fit, treat = "treat", mediator = "emo",

+ robustSE = TRUE, sims = 100)

R> summary(med.out)

Causal Mediation Analysis

Quasi-Bayesian Confidence Intervals

Estimate 95% CI Lower 95% CI Upper p-value

ACME (control) 0.0791 0.0351 0.1501 0.00

ACME (treated) 0.0804 0.0367 0.1557 0.00

ADE (control) 0.0206 -0.0976 0.1158 0.70

ADE (treated) 0.0218 -0.1053 0.1226 0.70

1Using different sets of pre-treatment covariates for the mediator and outcome models may be justified
depending on the causal relationships assumed for those covariates. See Pearl (2014) and Imai, Keele, Tingley,
and Yamamoto (2014).

2Note that the results will be slightly different in each run of mediate because of Monte Carlo errors,
especially when sims is set to a small number. If exact reproduction of results is desired, users can set a
specific randomness seed (set.seed) before calling the mediate function.
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Total Effect 0.1009 -0.0497 0.2339 0.14

Prop. Mediated (control) 0.6946 -6.3109 3.6793 0.14

Prop. Mediated (treated) 0.7118 -5.7936 3.4965 0.14

ACME (average) 0.0798 0.0359 0.1537 0.00

ADE (average) 0.0212 -0.1014 0.1192 0.70

Prop. Mediated (average) 0.7032 -6.0523 3.5879 0.14

Sample Size Used: 265

Simulations: 100

One new feature in the tabular output from the mediate functions is the addition of p-
values for the various estimates. In this example, the estimated ACMEs are statistically
significantly different from zero but the estimated average direct and total effects are not. The
results suggest that the treatment in the framing experiment may have increased emotional
response, which in turn made subjects more likely to send a message to his or her member of
Congress. Here, since the outcome is binary all estimated effects are expressed as the increase
in probability that the subject sent a message to his or her Congress person.

In addition, we can use the nonparametric bootstrap rather than the quasi-Bayesian Monte
Carlo simulation for variance estimation via the boot = TRUE argument,

R> med.out <- mediate(med.fit, out.fit, boot = TRUE, treat = "treat",

+ mediator = "emo", sims = 100)

R> summary(med.out)

Causal Mediation Analysis

Nonparametric Bootstrap Confidence Intervals with the Percentile Method

Estimate 95% CI Lower 95% CI Upper p-value

ACME (control) 0.0832 0.0426 0.1332 0.00

ACME (treated) 0.0844 0.0425 0.1333 0.00

ADE (control) 0.0114 -0.1158 0.1277 0.84

ADE (treated) 0.0125 -0.1274 0.1360 0.84

Total Effect 0.0958 -0.0477 0.2171 0.24

Prop. Mediated (control) 0.8691 -3.4279 6.2842 0.24

Prop. Mediated (treated) 0.8811 -2.9262 5.9626 0.24

ACME (average) 0.0838 0.0434 0.1319 0.00

ADE (average) 0.0120 -0.1210 0.1318 0.84

Prop. Mediated (average) 0.8751 -3.1770 6.1234 0.24

Sample Size Used: 265

Simulations: 100
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The output now indicates that the bootstrap is used for inferences. As expected, the results
are largely the same. In general, as long as computing power is not an issue, analysts should
estimate confidence intervals via the bootstrap with more than 1000 resamples, which is the
default number of simulations.

Two types of methods for calculating bootstrap-based confidence intervals are available via the
boot.ci.type argument. The basic percentile intervals are calculated by default or setting
the argument to "perc". The bias-corrected and accelerated (BCa) intervals are computed if
the argument is set to "bca" (see DiCiccio and Efron 1996, for the definition of the method).
The latter has better asymptotic properties and is often recommended for the estimation of
mediation effects (Preacher and Hayes 2008).

As an alternative to the numerical summary, using the output from the mediate function
as the input to the plot command provides a graphical summary of the three parameters
(indirect, direct, and total effects) along with their confidence intervals. Figure 2 shows the
result of plotting the med.out object.3

Treatment and mediator interaction

It is possible that the ACME takes different values depending on the baseline treatment status.
In such a situation, the researcher can add an interaction term between the treatment and
mediator to the outcome model. Then, the mediate function automatically detects the change
in the specification and explicitly estimates the ACME conditional on treatment status.4 In
the output given below, the estimated ACME now varies with treatment status.

R> med.fit <- lm(emo ~ treat + age + educ + gender + income, data=framing)

R> out.fit <- glm(cong_mesg ~ emo * treat + age + educ + gender + income,

+ data = framing, family = binomial("probit"))

R> med.out <- mediate(med.fit, out.fit, treat = "treat", mediator = "emo",

+ robustSE = TRUE, sims = 100)

R> summary(med.out)

Causal Mediation Analysis

Quasi-Bayesian Confidence Intervals

Estimate 95% CI Lower 95% CI Upper p-value

ACME (control) 0.07942 0.02497 0.14275 0.00

ACME (treated) 0.10362 0.03558 0.17073 0.00

ADE (control) 0.00319 -0.10976 0.13230 0.98

ADE (treated) 0.02739 -0.11584 0.16657 0.68

Total Effect 0.10682 -0.05053 0.24410 0.20

Prop. Mediated (control) 0.65447 -2.16982 3.57927 0.20

Prop. Mediated (treated) 0.80207 -2.28937 3.64659 0.20

3Users may make further modifications to the plot via standard plot options, including changes to the
labels.

4When the outcome model is nonlinear, the ACME and direct effect estimates will differ between the
treatment and control conditions even when the model does not include an interaction term. The summary

output in such cases includes average values of these two estimates to ease interpretation of the results.
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Figure 2: Graphical display of results from the mediate function.

ACME (average) 0.09152 0.03203 0.14967 0.00

ADE (average) 0.01529 -0.11744 0.14746 0.90

Prop. Mediated (average) 0.72827 -2.15158 3.54922 0.20

Sample Size Used: 265

Simulations: 100

The statistical significance of the treatment-mediator interaction can be tested via the test.TMint
function in the following manner.

R> test.TMint(med.out, conf.level = .95)

Test of ACME(1) - ACME(0) = 0

data: estimates from med.out
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ACME(1) - ACME(0) = 0.0242, p-value = 0.3

alternative hypothesis: true ACME(1) - ACME(0) is not equal to 0

95 percent confidence interval:

-0.01795541 0.06809042

The mediate function’s output contains a range of additional quantities that users might find
helpful. Each is stored as part of the model’s output. This includes vectors of the simulation
output for all quantities of interests (see ?mediate for details), which can be used for a variety
of tasks, such as more intensive plotting.

Missing data

Our simulation-based approach to the estimation of mediation effects enables users to deal
with missing data via standard multiple imputation procedures in a straightforward fashion.
The mediation package includes a pair of utility functions – mediations and amelidiate

– to facilitate such analysis. First, users simulate multiple data sets using their preferred
imputation software. Next, run mediate on each data set by simply passing the data sets
through mediations. Next, pass the output of mediations to the amelidiate function,
which combines the components of the output from mediations into a format that can be
analyzed with the standard summary and plot commands.5 Alternatively, users can manually
run mediate on their imputed data sets and simply stack the vectors of quantities they are
interested in, and use basic functions like quantile to calculate confidence intervals.

3.2. Moderated mediation

One new important feature of the mediate function is the ability to study moderated me-
diation. Often analysts hypothesize that the magnitude of the ACME depends on (or is
moderated by) a pre-treatment covariate. Such a pre-treatment covariate is called a moder-
ator. In the framing example, the ACME may be much stronger among older respondents
than younger ones. In other words, the ACME may be moderated by age.

There are two alternative routes to the analysis of moderated mediation with the mediation
package. The first method involves alteration of both the statistical models as well as the
syntax for the mediate function. First, the mediator and outcome models should contain the
moderator and its interaction terms with respect to the treatment and mediating variables
that are theoretically justified. For example, we may modify the previous models as follows,

R> med.fit <- lm(emo ~ treat * age + educ + gender + income, data=framing)

R> out.fit <- glm(cong_mesg ~ emo + treat * age + emo * age + educ + gender

+ + income, data = framing, family = binomial("probit"))

Once the two models are fitted, the researcher must specify the levels of the moderator at
which effects will be calculated by the mediate function.6 In the current example, this can
be done by setting the age covariate to a specific value. To allow the mediation effects to be
moderated by age, we set the value of age to be 20 in one model and 60 in another model.

5Note that amelidiate does not support some models and features yet; see ?amelidiate for details.
6If the models include moderator-treatment interactions and yet this option is not specified, then the

resulting ACME and direct effect estimates will simply be averages over the empirical distribution of the
covariates.
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More complicated moderated mediation involving multiple moderators could be specified by
expanding the list of the covariates.

R> med.age20 <- mediate(med.fit, out.fit, treat = "treat",

+ mediator = "emo", covariates = list(age = 20), sims = 100)

R> med.age60 <- mediate(med.fit, out.fit, treat = "treat",

+ mediator = "emo", covariates = list(age = 60), sims = 100)

R> summary(med.age20)

Causal Mediation Analysis

Quasi-Bayesian Confidence Intervals

(Inference Conditional on the Covariate Values Specified in `covariates')

Estimate 95% CI Lower 95% CI Upper p-value

ACME (control) 0.0702 0.0101 0.1813 0.04

ACME (treated) 0.0852 0.0144 0.2020 0.04

ADE (control) 0.2275 0.0224 0.4638 0.04

ADE (treated) 0.2425 0.0248 0.4714 0.04

Total Effect 0.3127 0.1122 0.5568 0.00

Prop. Mediated (control) 0.2126 0.0235 0.8238 0.04

Prop. Mediated (treated) 0.2641 0.0334 0.8608 0.04

ACME (average) 0.0777 0.0123 0.1914 0.04

ADE (average) 0.2350 0.0236 0.4676 0.04

Prop. Mediated (average) 0.2383 0.0285 0.8423 0.04

Sample Size Used: 265

Simulations: 100

R> summary(med.age60)

Causal Mediation Analysis

Quasi-Bayesian Confidence Intervals

(Inference Conditional on the Covariate Values Specified in `covariates')

Estimate 95% CI Lower 95% CI Upper p-value

ACME (control) 0.07703 0.01058 0.13799 0.04

ACME (treated) 0.06900 0.00919 0.13829 0.04

ADE (control) -0.08905 -0.22558 0.05295 0.28

ADE (treated) -0.09708 -0.24478 0.05592 0.28

Total Effect -0.02005 -0.17471 0.14057 0.78

Prop. Mediated (control) -0.52540 -8.25181 17.47875 0.78
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Prop. Mediated (treated) -0.43131 -7.16792 16.01512 0.78

ACME (average) 0.07302 0.00989 0.13905 0.04

ADE (average) -0.09306 -0.23236 0.05453 0.28

Prop. Mediated (average) -0.47836 -7.70987 16.74694 0.78

Sample Size Used: 265

Simulations: 100

Thus, the researcher receives two different sets of output. In the first output, the average
mediation effect is estimated for those who are 20 years old. In contrast, the second output
applies to those who are 60 years old.

The second approach to moderated mediation consists of directly testing the statistical sig-
nificance of the difference in the ACME and ADE between two chosen levels of pre-treatment
covariates. This analysis is conducted via the test.modmed function. For example, the fol-
lowing syntax can be used to test whether the ACME and ADE significantly differ between
the subjects who are 20 years old and those who are 60 years old.

R> med.init <- mediate(med.fit, out.fit, treat = "treat", mediator = "emo", sims=2)

R> test.modmed(med.init, covariates.1 = list(age = 20),

+ covariates.2 = list(age = 60), sims = 100)

Test of ACME(covariates.1) - ACME(covariates.2) = 0

data: estimates from med.init

ACME(covariates.1) - ACME(covariates.2) = 0.008, p-value = 0.92

alternative hypothesis: true ACME(covariates.1) - ACME(covariates.2) is not equal to 0

95 percent confidence interval:

-0.1075738 0.1249199

Test of ADE(covariates.1) - ADE(covariates.2) = 0

data: estimates from med.init

ADE(covariates.1) - ADE(covariates.2) = 0.3027, p-value = 0.02

alternative hypothesis: true ADE(covariates.1) - ADE(covariates.2) is not equal to 0

95 percent confidence interval:

0.04676954 0.59796646

Unlike the first approach, the initial mediate fit does not need the covariates argument set
to specific values; the choice of covariate levels is made directly in the call to the test.modmed
function. Note that the initial mediate call does not require a large number of simulation
draws, for the actual calculation of uncertainty for the test happens within the test.modmed

function.

3.3. Non-binary treatment variables
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Experimental manipulations are often complex and go beyond simple treatment and control
conditions. In the framing experiment, for example, the researchers actually used a 2 × 2
factorial design. That is, each subject was exposed to two different binary treatments, yielding
four different experimental manipulations. In the analysis presented above, we have focused
on a comparison of one of these conditions relative to the other three conditions. The mediate
function, however, has the capability to handle more complex experimental contrasts, which
can be represented by a non-binary treatment variable.

Here, instead of using the binary treat variable, we use a variable named cond, which records
which of the four conditions the subject was randomly exposed to. Using the control.value

and treat.value options, the user can calculate the specific contrast of interest. For example,
the comparison between the second and third conditions can be done with the following code.

R> med.fit <- lm(emo ~ cond + age + educ + gender + income, data = framing)

R> out.fit <- glm(cong_mesg ~ emo + cond + age + educ + gender + income,

+ data = framing, family = binomial("probit"))

R> med23.out <- mediate(med.fit, out.fit, treat = "cond", mediator = "emo",

+ control.value = 2, treat.value = 3, sims = 100)

R> summary(med23.out)

Similarly, the researcher can compare the first and fourth experimental conditions via the
following syntax,

R> med14.out <- mediate(med.fit, out.fit, treat = "cond", mediator = "emo",

+ control.value = 1, treat.value = 4, sims = 100)

R> summary(med14.out)

Nothing changes in the format of the output, but the contrasts differ depending on the
categories chosen for comparison by the researcher. In the case of a continuous treatment
variable, the researcher would specify two values of the treatment to make the contrast (Imai
et al. 2010a). For example, the causal mediation effects can be defined for any two levels of
the treatment,

δi(t; t1, t0) ≡ Yi(t,Mi(t1))− Yi(t,Mi(t0)), (7)

where t1 6= t0. The corresponding average causal mediation effect is defined as δ̄(t; t1, t0) ≡
E(δi(t; t1, t0)). Thus, the researcher can set control.value to t0 and treat.value to t1. The
researcher may also vary the value of t1, while fixing the base line value of t0, to examine how
the ACME changes as the function of t1.

3.4. Sensitivity analysis for sequential ignorability

Sequential ignorability is a strong assumption, and therefore a sensitivity analysis is recom-
mended. The mediation package allows the researcher to conduct a sensitivity analysis for
the possible existence of unobserved pre-treatment covariates. Specifically, the output of the
mediate function can be passed to the medsens function, which then computes the values of
causal quantities as a function of sensitivity parameters. Both summary and plot functions
are available for sensitivity analysis, and they display the results in a tabular and graphical
form, respectively. Since derivation of sensitivity formulas must be done on a case-by-case
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Outcome model types
Mediator model types Linear Binary probit

Linear X X
Binary probit X –

Table 2: The types of models that can be handled by medsens for sensitivity analysis.

basis, the range of options for conducting sensitivity analyses is somewhat limited. Table 2
gives the model combinations currently supported by the medsens function.

In our running example, after computing the ACME, we conduct a sensitivity analysis by
passing the object from mediate to the medsens function. We first choose as the sensitivity
parameter the correlation ρ between the residuals of the mediator and outcome regressions
(Imai et al. 2010a,c). If there exist unobserved pre-treatment confounders which affect both
the mediator and the outcome, we expect that the sequential ignorability assumption is vio-
lated and ρ is no longer zero. The sensitivity analysis is conducted by varying the value of
ρ and examining how the estimated ACME changes. The following syntax can be used to
conduct this analysis,

R> med.fit <- lm(emo ~ treat + age + educ + gender + income, data = framing)

R> out.fit <- glm(cong_mesg ~ emo + treat + age + educ + gender + income,

+ data = framing, family = binomial("probit"))

R> med.out <- mediate(med.fit, out.fit, treat = "treat", mediator = "emo",

+ robustSE = TRUE, sims = 100)

R> sens.out <- medsens(med.out, rho.by = 0.1, effect.type = "indirect", sims = 100)

R> summary(sens.out)

Mediation Sensitivity Analysis: Average Mediation Effect

Sensitivity Region: ACME for Control Group

Rho ACME(control) 95% CI Lower 95% CI Upper R^2_M*R^2_Y* R^2_M~R^2_Y~

[1,] 0.3 0.0058 -0.0055 0.0206 0.09 0.0493

[2,] 0.4 -0.0095 -0.0285 0.0024 0.16 0.0877

Rho at which ACME for Control Group = 0: 0.3

R^2_M*R^2_Y* at which ACME for Control Group = 0: 0.09

R^2_M~R^2_Y~ at which ACME for Control Group = 0: 0.0493

Sensitivity Region: ACME for Treatment Group

Rho ACME(treated) 95% CI Lower 95% CI Upper R^2_M*R^2_Y* R^2_M~R^2_Y~

[1,] 0.3 0.0066 -0.0069 0.0222 0.09 0.0493

[2,] 0.4 -0.0118 -0.0351 0.0026 0.16 0.0877

Rho at which ACME for Treatment Group = 0: 0.3



Dustin Tingley, Teppei Yamamoto, Kentaro Hirose, Luke Keele, Kosuke Imai 15

−0.5 0.0 0.5

−
0.

2
0.

0
0.

1
0.

2

Anxiety

Sensitivity Parameter: ρ

A
ve

ra
ge

 M
ed

ia
tio

n 
E

ffe
ct

0

−0.5 0.0 0.5

−
0.

2
0.

0
0.

1
0.

2

Anxiety

Sensitivity Parameter: ρ

A
ve

ra
ge

 M
ed

ia
tio

n 
E

ffe
ct

1

Figure 3: Graphical display of results from the medsens function. Results as a function of ρ.

R^2_M*R^2_Y* at which ACME for Treatment Group = 0: 0.09

R^2_M~R^2_Y~ at which ACME for Treatment Group = 0: 0.0493

where rho.by = 0.1 specifies that ρ will vary from −0.9 to 0.9 by 0.1 increments, and
effect.type = "indirect" means that sensitivity analysis is conducted for the ACME. Al-
ternatively, specifying effect.type = "direct" performs sensitivity analysis for the ADE
and "both" returns sensitivity analysis for the ACME and ADE.

The tabular output from the summary function displays the values of ρ at which the confidence
intervals contain zero for the ACME. For both the control and treatment conditions, the
confidence intervals for the ACME contain zero when ρ equals 0.3 and 0.4. An alternative
but mathematically equivalent way to conduct sensitivity is in terms of the product of R2 (or
coefficients of determination) statistics from the mediator and outcome models. Discussed
in more detail elsewhere (Imai et al. 2010c, 2011, 2010a), the first row captures the point at
which the ACME is 0 as a function of the proportions of residual variance in the mediator
and outcome explained by the hypothesized unobserved confounder. The second line uses the
total variance instead of residual variance. We use R∗2 for residual variance and R̃2 for total
variance. For example, when the product of the original variance explained by the omitted
confounding is .049 the point estimate for ACME would be 0.

A graphical display is often more intuitive and useful for the sensitivity analysis, especially
for the R2 interpretations. This can be done, as before, by passing the object from the
medsens function to the plot function. The plot function allows the researcher to graphically
summarize the results of sensitivity analysis either in terms of ρ (sens.par = "rho") or R2

statistics (sens.par = "R2").

R> plot(sens.out, sens.par = "rho", main = "Anxiety", ylim = c(-0.2, 0.2))

When using the R2 statistic version of sensitivity analysis the user must specify whether the
hypothesized confounder affects the mediator and outcome variables in the same direction or
in different directions. This matters because the sensitivity analysis is in terms of the product
of R2 statistics. In the current example, we assume that the confounder influences both
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Figure 4: Graphical display of results from the medsens function. Results as a function of
R̃2.

variables in the same direction by setting sign.prod = "positive" (rather than sign.prod

= "negative"). Here, we plot the total variance version of the sensitivity analysis. The bold
line represents the various combinations of the R2 statistics where the ACME would be 0
(in this case the product equals .049). The graphical display also presents the corresponding
contour plots for other products of the R2 statistics.

R> plot(sens.out, sens.par = "R2", r.type = "total", sign.prod = "positive")

4. Causal mediation analysis of multilevel data

As of version 4.2, the mediation package supports causal mediation analysis of multilevel data
via the lmer and glmer functions in the lme4 package (Bates, Maechler, Bolker, and Walker
2014). Researchers are often interested in analyzing data where individual observations such
as students, patients, and employees are clustered within groups such as schools, hospitals,
and companies. Data on individuals may be correlated within groups, but also different
groups may have different data generating processes. Multilevel models take into account
such heterogeneity within and between groups simultaneously.

Mediation analysis of multilevel data can be categorized into various types depending on
whether the treatment, mediator and outcome variables are each measured at the individual
or group level (see Krull and MacKinnon 2001; Zhang, Zyphur, and Preacher 2009). Regard-
less of these types, researchers can use the mediate function to analyze multilevel data by
choosing appropriate statistical models for the mediator and outcome variables. In this sec-
tion, we illustrate the use of our package for multilevel data by focusing on two types of data
structure: (1) the treatment is assigned at the group level whereas the mediator and outcome
are measured at the individual level, and (2) both the treatment and mediator are group-level
variables while the outcome is recorded at the individual level. Other combinations of data
levels can be handled via straightforward modifications to the syntax used in these examples.7

7We note that as of the writing of this article the lme4 package is known to generate slightly different
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To illustrate the usage, we analyze data from the Education Longitudinal Study (2002)8 where
students are clustered within schools. The mediation package contains two related data sets.
The student data set contains both student- and school-level variables organized at the
student level. The school data set only contains school-level variables, such that the number
of observations in this data set equals the number of unique levels of the school identifier
variable (SCH_ID) in the student data set. As explained below in detail, the group-level data
set (school) is required only when we analyze the data where both the treatment and the
mediator are group-level variables.

4.1. Group-level treatment and individual-level mediator

First, consider the case where the treatment is a group-level variable but the mediator and
outcome variables are measured at the individual level. In this case, we only need the student-
level data set,

R> data("student", package = "mediation")

Here, we analyze as an example whether a school is Catholic or not (catholic) affects a
student’s likelihood of fighting (fight) at the school, and hypothesize that a student’s emo-
tional attachment to the school (attachment) functions as the causal mechanism. That is,
we postulate that students in a Catholic school may have an increased sense of attachment
to their school, which may in turn decrease their likelihood of getting involved in a fight. We
model these causal processes using the following hierarchical logistic-normal regression model
for the (binary) mediator,

P(Mij = 1) = logit−1
(
αj + γ>Xij

)
,

αj = α+ βTj + εj ,

where i and j are student and school indicators, respectively, εj is a normally distributed
group-level stochastic error with mean zero, and Xij represents the vector of student-level
pre-treatment covariates (gender, income and pared). Likewise, we use the following model
for the (binary) outcome,

P(Yij = 1) = logit−1
(
λj + φjMij + ζ>Xij

)
,

λj = λ+ ψTj + υj ,

φj = φ+ θTj + νj ,

where υj and νj are group-level errors jointly bivariate normally distributed with mean zero.
If desired, more complex data generating processes can be assumed (with appropriate changes

random number draws across computing platforms (Windows, Mac, etc.) for a given seed which given the
simulation method used can generate small numerical differences in some cases.

8To protect the anonymity of the individuals involved in the study, we generated hypothetical individual-
level variables via multiple imputation. The results reported below do not take into account any statistical
uncertainty due to the imputation procedure and should thus be regarded only as illustration. The original data
can be obtained from Education Longitudinal Study (ELS), 2002: Base Year (ICPSR 4275) by the United
States Department of Education, National Center of Education Statistics. http://www.icpsr.umich.edu/

icpsrweb/ICPSR/studies/4275.

http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/4275
http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/4275
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in the syntax for the models below), such as allowing for group-varying slopes on the treatment
variable or incorporating group-level pre-treatment covariates.

Now, note that these two models can be equivalently written as follows,

P(Mij = 1) = logit−1
(

(α+ εj) + βTj + γ>Xij

)
,

and
P(Yij = 1) = logit−1

(
(λ+ υj) + ψTj + (φ+ νj)Mij + θTjMij + ζ>Xij

)
,

which can both be estimated via the glmer function,

R> library(lme4)

R> med.fit <- glmer(attachment ~ catholic + gender + income + pared + (1|SCH_ID),

+ family = binomial(link = "logit"), data = student)

R> out.fit <- glmer(fight ~ catholic*attachment +

+ gender + income + pared + (1 + attachment|SCH_ID),

+ family = binomial(link = "logit"), data = student)

These fitted objects can then be fed into the mediate function in the usual manner.

R> med.out <- mediate(med.fit, out.fit, treat = "catholic", mediator = "attachment",

+ sims = 100)

R> summary(med.out)

Causal Mediation Analysis

Quasi-Bayesian Confidence Intervals

Mediator Groups: SCH_ID

Outcome Groups: SCH_ID

Output Based on Overall Averages Across Groups

Estimate 95% CI Lower 95% CI Upper p-value

ACME (control) -0.00393 -0.00685 -0.00135 0

ACME (treated) -0.00392 -0.00777 -0.00142 0

ADE (control) -0.02564 -0.04068 -0.00605 0

ADE (treated) -0.02563 -0.03975 -0.00639 0

Total Effect -0.02956 -0.04432 -0.01182 0

Prop. Mediated (control) 0.12983 0.05464 0.31910 0

Prop. Mediated (treated) 0.12167 0.05060 0.36426 0

ACME (average) -0.00392 -0.00693 -0.00156 0

ADE (average) -0.02564 -0.04021 -0.00622 0

Prop. Mediated (average) 0.12575 0.05705 0.33895 0

Sample Size Used: 9679
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Simulations: 100

The estimated mediation, direct, and total effects are all significantly different from zero.
The results suggest that the school-level treatment (catholic) increases the value of the
individual-level mediator (attachment), which in turn decreases the value of the outcome
(fight), and also that the treatment decreases the value of the outcome directly or in different
causal paths.

4.2. Group-level treatment and mediator

Next, consider the case where both the treatment and mediator are group-level variables while
the outcome is measured at the individual level. In this case, we need the second data set
containing only the group-level variables,

R> data("school", package = "mediation")

Note that the group-level data set must also contain the group indicator used in the individual-
level data set under the same variable name (SCH_ID in our running example). The current
version of mediate also requires that the model frames of the mediator and outcome models
contain the exact same set of groups, which becomes important when each model contains
different covariates and some groups drop out of the model frames due to missingness.

As an illustration, we investigate the effects of school-level economic condition (free; pro-
portion of students who receive free lunch) on students’ tardiness (late; days per semester
they are late for school). As a causal path, we postulate that school-level poverty negatively
impacts school-level morale (smorale), which in turn increases tardiness among students. We
use the following hierarchical regressions to model the hypothesized causal mechanism,

Mj = α+ βTj + γ>Vj + εj ,

Yij = λj + ζ>Xij + υij ,

λj = λ+ θTj + φMj + κ>Vj + νj ,

where Vj is the vector of school-level covariates (catholic and coed), Xij is the vector of
student-level covariates (gender, income and pared), and εj , υij and νj are each normally
distributed stochastic errors with mean zero. Again, more complex models can be used (e.g.,
adding a treatment-mediator interaction term to the outcome model) if desired.

In this case, the mediator model is solely composed of the school-level variables and fixed
coefficients. Hence the mediator model can be fit via the lm function using the school-level
data set,

R> med.fit <- lm(smorale ~ free + catholic + coed, data = school)

and the outcome model, which can be equivalently written as,

Yij = (λ+ υj) + θTj + φMj + (γ> + κ>)Vj + ζ>Xij + υij ,

can be estimated with the lmer function and the student-level data set,
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R> out.fit <- lmer(late ~ free + smorale + catholic + coed +

+ gender + income + pared + (1|SCH_ID),

+ data = student)

These fitted model objects can then be passed to the mediate function. Since the treatment
variable is a continuous variable, we use the values of 3 and 4 as the control and treatment
values, respectively, and estimate the quantities of interest in terms of these values.

R> med.out <- mediate(med.fit, out.fit, treat = "free", mediator = "smorale",

+ control.value = 3, treat.value = 4, sims = 100)

R> summary(med.out)

Causal Mediation Analysis

Quasi-Bayesian Confidence Intervals

Mediator Groups:

Outcome Groups: SCH_ID

Output Based on Overall Averages Across Groups

Estimate 95% CI Lower 95% CI Upper p-value

ACME 0.007094 0.002554 0.012211 0.00

ADE 0.020356 -0.000729 0.038802 0.06

Total Effect 0.027450 0.005651 0.047817 0.02

Prop. Mediated 0.260223 0.080815 0.851923 0.02

Sample Size Used: 9679

Simulations: 100

The estimated mediation effect is significantly different from zero, suggesting that the school-
level treatment (free) decreases the value of the school-level mediator (smorale), which in
turn increases the value of the outcome (late).

We conclude this section by providing more details about the current version of our package for
multilevel mediation analysis. First, the summary function can produce estimates of group-
specific effects by adding the output argument, which can be set to either "bygroup" or
"byeffect". In the above example, summary(med.out, output = "bygroup") produces the
output organized by schools, and summary(med.out, output = "byeffect") produces the
output organized into quantities of interest. Group-specific effects can also be graphically
displayed by plot(med.out, group.plots = TRUE). Second, the mediate function allows
researchers to specify different groups in the mediator and outcome models (nested or non-
nested). For example, it may be reasonable to assume that the mediator variable is correlated
within schools but the outcome variable is clustered at the district level. In such a case, the
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group.out argument for the mediate function allows researchers to choose the group into
which the estimated group-specific effects are aggregated.

The current version of the package also has some limitations for multilevel mediation analysis.
First, it only allows for one group type for each model. For example, it is not possible to
let coefficients of the mediator (or outcome) model vary not only for schools but also for
districts. Second, the bootstrap-based uncertainty estimates for the mediation effects are
not yet available. Third, the medsens function for sensitivity analysis cannot be applied to
the mediate outputs based on multilevel regression models. Future updates may add these
missing functionalities. Finally, it is important to reiterate that the validity of the estimates
crucially rests on Assumption 1, regardless of whether hierarchical models are fitted to the
data or not.

5. Design-based causal mediation analysis

An alternative approach to model-based inference is to use different research designs that are
specifically designed for identifying causal mechanisms. Imai et al. (2013) propose several
such designs and describe the assumptions required for the identification of causal mediation
effects under each of the designs. In this section we briefly illustrate how to use our software
to calculate the estimates of the quantities of interest under each design.

5.1. Single experiment design

The single experiment design randomizes the treatment variable and measures the mediating
and outcome variables. In Section 3, we discussed estimation functions that can be used with
parametric and semi-parametric models. If the researchers wish to pursue a completely non-
parametric approach the mediation package offers two options via the mediate.sed function.
First, the researchers can continue to make the sequential ignorability assumption and non-
parametrically estimate the ACME. This approach works only when the mediator variable is
discrete. Second, the sharp bounds on the ACME can be computed under the assumption
that only the treatment is randomized. Imai et al. (2013) derive the bounds in the case with
all binary variables (treatment, mediator, and outcome) and show that, unfortunately, the
bounds are never informative about the sign of the ACME (i.e., they always include 0).

Most mediation analysis proceeds under the sequential ignorability assumption. Those anal-
yses also tend to be model-based, but they need not be. Imai et al. (2010c) outline a design-
based estimator for the ACME for when the mediator is discrete. This estimator for the
ACME is fully nonparametric. One drawback to this estimator is that one can encounter
mediator-treatment combinations for which there are no subjects because of data sparsity.
Standard error calculation for this estimator is based on either the Delta method or the
nonparametric bootstrap.

The mediate.sed function requires the names of the outcome, mediator, and treatment vari-
ables, along with the name of the data frame that contains these variables. When SI = TRUE,
the function will return the point estimates under the sequential ignorability assumption, and
otherwise the results will be a set of sharp bounds for the ACME. The method for inference
also differs slightly from the mediate function. When boot = TRUE the bootstrap is used,
but when boot = FALSE, the Delta method is used to compute standard errors.

Below, we present an example using the framing data from Brader et al. (2008). The treatment
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variable is the same as before, i.e., treat, and the mediator is anx, which refers to a subject’s
reported level of anxiety. This four level measure is one component of the emo variable that
was previously used as the mediator and in the data all treatment-mediator combinations are
present (a requirement for the estimator). The outcome variable in this example is english

and measures on a four point scale how much someone supports English only laws, from
strongly support to strongly oppose. Note that the mediate.sed function only takes numeric
variables as arguments. Variables that are stored as factors must be converted to numeric
variables as we show below.

R> framing$english <- as.numeric(framing$english)

R> framing$anx <- as.numeric(framing$anx)

R> sed.est <- mediate.sed("english", "anx", "treat", data = framing, SI = TRUE,

+ boot = TRUE, sims = 100)

R> summary(sed.est)

Design-Based Causal Mediation Analysis

Single Experiment Design with Sequential Ignorability

Confidence Intervals Based on Nonparametric Bootstrap

Estimate 95% CI Lower 95% CI Upper

ACME (control) 0.10212 -0.56766 1.011

ACME (treated) 0.07066 -0.21566 0.379

Sample Size Used: 265

The results from the summary function display the mediation effects along with the default
95% confidence intervals. In this example both δ̄(0) and δ̄(1) are not significantly different
from 0.

5.2. Parallel design

An alternative to the single experiment design is the “parallel design” proposed by Imai et al.
(2013). In this design there are two separate experiments that are run in parallel with subjects
randomly assigned to one of the two experiments. The first experiment follows the single
experiment design. In the second experiment, subjects are randomly assigned to treatment
or control. Then, a randomly selected set of subjects in each condition is assigned a value
of the mediating variable. A key assumption of this design is that the manipulation of the
mediating variable is possible and has no direct effect on the outcome variable.

Under the parallel design, the ACME is not point identified without an additional assumption.
The mediation package offers two options via the mediate.pd function. First, the researchers
can assume no interaction between the treatment and mediating variables by setting NINT =

TRUE. In this case, the mediate.pd function will calculate the ACME along with its boot-
strap confidence intervals. Second, the assumption of no-interaction between treatment and
mediator can be dropped via NINT = FALSE, and then the sharp bounds can be calculated for
the ACME. These bounds may be informative about the sign (i.e., do not cover 0) and are
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always narrower compared to the bounds under the single experiment design where the only
assumption is randomization of the treatment.

For illustration, we simulated data based on the media framing experiment by Brader et al.
(2008) by creating a population distribution of potential mediators and outcomes (see Imai
et al. (2013) for more details). We then sampled 1000 cases from this distribution. In this
example, out represents the outcome variable (immigration attitudes), med represents the
mediator (anxiety), and ttt represents the treatment. All variables are binary. The vari-
able manip represents whether the subject had the mediator manipulated (−1 if mediator is
manipulated down, 0 if no manipulation, and 1 if manipulated up). First, the no-interaction
assumption is made and options for the number of bootstrap simulations and confidence inter-
vals are specified. In this case, the mediation effect is estimated at −0.12 with 95% confidence
intervals spanning [−0.21,−0.03]. In the second example, the no interaction assumption is
dropped and the sharp bounds are calculated to span [−0.3, 0.3] for the control condition and
[0.2, 0.77] for the treatment condition.

R> data("boundsdata", package = "mediation")

R> pd <- mediate.pd("out", "med", "ttt", "manip", boundsdata,

+ NINT = TRUE, sims = 100, conf.level = 0.95)

R> summary(pd)

Design-Based Causal Mediation Analysis

Parallel Design (with No Interaction Assumption)

Estimate 95% CI Lower 95% CI Upper

ACME -0.1236 -0.2198 -0.035

Sample Size Used: 1000

R> pd1 <- mediate.pd("out", "med", "ttt", "manip", boundsdata,

+ NINT = FALSE)

R> summary(pd1)

Design-Based Causal Mediation Analysis

Parallel Design (Interaction Allowed)

Lower Bound Upper Bound

ACME (control) -0.3207 0.330

ACME (treated) 0.2006 0.768

Sample Size Used: 1000

5.3. Parallel encouragement design

In many situations, perfect manipulation of the mediating variable may be difficult. In the
parallel encouragement design, subjects are split into two separate experiments. The first
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experiment is based on the single experiment design. In the second experiment subjects are
randomly assigned to the treatment and control conditions and then, within each condition,
a subset of subjects are randomly encouraged to have a high or low value of the mediator.
Both the mediator and outcome variable are then measured. The mediate.ped function
reports the sharp bounds on two estimands. First is the ACME and second is the ACME
for the “compliers” who respond to the encouragement. The calculation of these bounds is
accomplished via a standard linear programming approach as discussed in Imai et al. (2013).

The parallel encouragement design requires the analyst to specifically design some form of
encouragement. The functionality of the mediate.ped closely mirrors that of mediate.sed.
The key difference is that the analyst must also include an indicator for encouragement. For
illustration, we simulated data based on the media framing experiment by Brader et al. (2008).
We did this by creating a population distribution of potential mediators and outcomes, and
compliance types. We then randomly draw the joint probabilities of the causal types and
assign an encouragement status for those in the encouragement condition (see Imai et al.
(2013) for more details). Based on the encouragement condition and encouragement status
(enc, −1 if mediator is encouraged down, 0 if no encouragement, and 1 if encouraged up), the
observed binary values of the mediator (med.enc) and outcome (out.enc) are determined.
Using this simulated data we can then pass it to the mediate.ped function for the parallel
encouragement design.

R> data("boundsdata", package = "mediation")

R> ped <- mediate.ped("out.enc", "med.enc", "ttt", "enc", boundsdata)

R> summary(ped)

Design-Based Causal Mediation Analysis

Parallel Encouragement Design

Lower Bound Upper Bound

Population ACME (control) -0.43407 0.324

Complier ACME (control) -0.14649 0.208

Population ACME (treated) -0.02014 0.743

Complier ACME (treated) 0.01137 0.707

Sample Size Used: 1000

Here, the results from mediate.ped function are a set of sharp bounds. We see that for the
compliers, the sharp bounds on ACME under the treatment condition are informative as they
do not cross 0.

5.4. Crossover encouragement design

The fourth experimental design included in the mediation package is the crossover encour-
agement design. Under this design, subjects are exposed to two experiments, with each
subject participating in each experiment. In the first experiment, the treatment variable is
randomized and the mediator and outcome variables observed. In the second experiment, the
treatment condition is set to the opposite value from the first period, but an encouragement
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is given to a randomly selected set of subjects so that the mediator variable will take on the
value observed in the first experiment. Under this design, the ACME is point identified for
the set of subjects that are able to have their mediator value manipulated (known as “pliable
units”). A crucial identification assumption is that the first experiment does not influence
behavior in the second experiment. For this experimental design the mediate.ced function
calculates point estimates and the bootstrap is used for estimates of uncertainty.

For illustration, we simulated data based on the identification assumptions necessary for this
design. Y2 is the value of the outcome variable in the second experiment, M1 and M2 are the
mediator values for the first and second experiment, T1 is the value of the treatment in the first
experiment, and Z indicates whether the subject’s mediator value in the second experiment
is encouraged to take on the value opposite to that observed in the first experiment. All
variables are binary.

R> data("CEDdata", package = "mediation")

R> ced <- mediate.ced("Y2", "M1", "M2", "T1", "Z", CEDdata, sims = 100)

R> summary(ced)

Design-Based Causal Mediation Analysis

Crossover Encouragement Design

Estimate 95% CI Lower 95% CI Upper

Pliable ACME (control) 0.09069 -0.11769 0.300

Pliable ACME (treated) 0.11935 -0.05790 0.313

Sample Size Used: 2000

The results from the mediate.ced function are point estimates and confidence intervals for
the ACME under the treatment and control conditions. These estimates apply only to the
pliable units. In this example, both values of the ACME are positive but the 95% confidence
intervals overlap with zero.

6. Analysis of causally dependent multiple mechanisms

Our discussion so far has focused on a single mediator, M . Frequently, however, researchers
take measurements for more than one mediating variable. Accounting for alternative mecha-
nisms is indeed crucial for the identification of the mechanism of primary interest, especially
when such mechanisms are causally not independent. This is because the alternative depen-
dent mediators affect both the mediator of primary interest and the outcome variable, which,
by definition, violates the sequential ignorability assumption (Assumption 1).

6.1. The methodology

Imai and Yamamoto (2013) develop methods for dealing with multiple mediators based on the
current framework. We briefly review this framework. First, in the case of causally unrelated
multiple mediators, it turns out that there is no need to fundamentally modify the current
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framework or estimation procedure. To see this, suppose that there are multiple causally
unrelated mediators, and one is interested in estimating the causal mediation effects with
respect to each of them. In this scenario, note that for each mediator, the other mediators
are neither pre-treatment nor post-treatment confounders (since by construction they have no
causal effect on the mediator of interest). Therefore, one can consistently estimate the desired
effects by simply applying the mediate function successively for the mediators as explained
in Section 3, ignoring the existence of the other, causally unrelated, mediators each time.
Likewise, sensitivity analysis via the medsens function can be conducted for the mediators of
interest in the usual fashion. The mediations function can be useful for such analysis.

Second, when the multiple mediators are causally related (or equivalently, when one mediator
acts as a post-treatment confounder for the other mediator on the outcome), we need to
expand the notational framework, and the analysis requires new assumptions. Let Wi(t)
denote the vector of the potential values of those alternative mediators given treatment status
t. To allow the causal dependence of both the primary mediator and outcome on W , we
write the potential mediator and outcome as Mi(t, w) and Yi(t,m,w), respectively. The
observed values of these potential response variables can then be expressed as Wi = Wi(Ti),
Mi = Mi(Ti,Wi(Ti)), and Yi = Yi(Ti,Mi(Ti,Wi(Ti)),Wi(Ti)). The causal mediation effects
can now be re-expressed using this notation as,

δi(t) = Yi(t,Mi(1,Wi(1)),Wi(t))− Yi(t,Mi(0,Wi(0)),Wi(t)),

for t = 0, 1. Note that this quantity represents the treatment effects that are transmitted
through the mediator of primary interest Mi, irrespective of whether they also come through
the alternative mediators Wi or not. Therefore, the quantity of interest remains unchanged
from the previous sections, except that the existence of the other mediators are now explicitly
taken into consideration.

The framework of Imai and Yamamoto (2013) is based on the following varying coefficient
linear structural equations model,

Mi(t, w) = α2 + β2it+ ξ>2iw + µ>2itw + λ>2ix+ ε2i, (8)

Yi(t,m,w) = α3 + β3it+ γim+ κitm+ ξ>3iw + µ>3itw + λ>3ixi + ε3i, (9)

where E(ε2i) = E(ε3i) = 0 without loss of generality. Although these equations may resemble
a traditional linear structural equations model at a first glance, they are considerably more
flexible because the coefficients are all allowed to vary arbitrarily across individual units.

Imai and Yamamoto (2013) propose two strategies for the analysis of the average causal medi-
ation effects, δ̄(t) ≡ E(δi(t)). First, it can be shown that the ACME is point identified under
the above model and sequential ignorability (a weaker version allowing for post-treatment
confounding; see Imai and Yamamoto) if the homogeneous interaction assumption is satisfied.
This additional assumption is formally written as,

Yi(1,m,Wi(1))− Yi(0,m,Wi(0)) = Bi + Cm

for any m. The assumption states that the degree of interaction between the treatment and
the primary mediator is constant across individual units, which may or may not be plausible
depending on the empirical context.

Second, when this assumption is violated, one can express the sharp bounds on the ACME
as functions of a parameter representing the degree of the violation, and conduct a sensitivity
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analysis. The sensitivity parameter here is the standard deviation of the coefficient on the
treatment-mediator interaction term, i.e.,

σ ≡
√
VAR(κi),

and the expression for the sharp bounds are given in Imai and Yamamoto (2013, Footnote
6). Researchers can then analyze robustness to the potential violation of the homogeneous
interaction assumption by examining how the location and width of the bounds vary as σ
changes.

The sensitivity analysis can also be formulated in terms of two alternative sensitivity parame-
ters, both based on coefficients of determination as in the single mediator case (see Section 3.4).
Specifically, we use the proportion of the residual or total variance of the outcome variable
that would be explained by allowing the heterogeneity in the treatment-mediator interaction
in the outcome model. These parameters are formally defined as

R2∗ =
VAR(κ̃iTiMi)

VAR(η3i(Ti,Mi,Wi))
and R̃2 =

VAR(κ̃iTiMi)

VAR(Yi)
, (10)

where κ̃i = κi − E(κi). Researchers may find these parameters to be easier to interpret in
substantive terms, as they represent how important it would be to incorporate the interaction
heterogeneity in order to explain the variation in the outcome model. Imai and Yamamoto
(2013) show that these parameters have a one-to-one relationship with σ, implying that the
ACME can also be written as a function of R2∗ or R̃2.

6.2. Single experiment design

The above framework has been implemented in the mediation package as the multimed func-
tion. The function takes a data frame containing the necessary variables (outcome, primary
mediator, alternative mediator, treatment, and pre-treatment covariates if any) and outputs
an object of class ‘multimed’, a list consisting of estimated bounds along with uncertainty es-
timates. In the current version, only a single post-treatment confounder is allowed, although
the theoretical framework accommodates more than one such confounder.

The functionality of multimed differs in important ways from mediate. First, there is not a
separate function for sensitivity analysis. Instead, a sensitivity analysis is conducted within
the function along with the estimates of the mediation effects. Second, the arguments for
the multimed function are rather different. Here, the names of the outcome (outcome), first
mediator (med.main), second mediator (med.alt) and treatment (treat) variables are passed
to the function along with a vector of the names of the pre-treatment covariates to condition on
(covariates). In the multimed function, inference can only be done with the nonparametric
bootstrap.

To illustrate the use of the function we revisit the media framing example in Section 3.
Here, we use a different outcome variable immigr, which is a five category measure of whether
immigration should be increased or decreased (treated as a continuous measure for the purpose
of illustration). The main mediator is the same composite measure of anxiety, emo, and the
treatment and pre-treatment covariates are defined as before. We now introduce an alternative
mediator p_harm, which is an eight category measure of the perceived economic harm of
immigrants. The reasoning behind the inclusion of this variable is that the media framing
treatment may also affect participants’ opinion about immigrants by changing their factual
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belief about the economic impact of increased immigration, which may also affect the level of
anxiety and therefore confound the mediator-outcome relationship.

R> Xnames <- c("age", "educ", "gender", "income")

R> m.med <- multimed(outcome = "immigr", med.main = "emo", med.alt = "p_harm",

+ treat = "treat", covariates = Xnames,

+ data = framing, sims = 100)

R> summary(m.med)

Causal Mediation Analysis with Confounding by an Alternative Mechanism

Estimates under the Homogeneous Interaction Assumption:

Estimate 95% CI Lower 95% CI Upper

ACME (treated) 0.06447 -0.09734 0.23

ACME (control) 0.12397 0.01555 0.23

ACME (average) 0.10870 0.00618 0.21

ADE (treated) 0.29355 0.06426 0.52

ADE (control) 0.35305 0.05892 0.65

ADE (average) 0.33778 0.06765 0.61

Total Effect 0.41752 0.16818 0.62

Sensitivity Analysis:

Values of the sensitivity parameters at which ACME first crosses zero:

sigma(bounds) sigma(CI) R2s(bounds) R2s(CI) R2t(bounds) R2t(CI)

ACME (treated) 0.0299 0.0000 0.0300 0.0000 0.0178 0.00

ACME (control) 0.0489 0.0173 0.0800 0.0100 0.0474 0.01

ACME (average) 0.0423 0.0173 0.0600 0.0100 0.0356 0.01

Values of the sensitivity parameters at which ADE first crosses zero:

sigma(bounds) sigma(CI) R2s(bounds) R2s(CI) R2t(bounds) R2t(CI)

ADE (treated) 0.1106 0.0386 0.4100 0.0500 0.2430 0.03

ADE (control) 0.1393 0.0423 0.6500 0.0600 0.3853 0.04

ADE (average) 0.1316 0.0457 0.5800 0.0700 0.3438 0.04

The summary function produces two tables. The first table shows the estimated ACME and
total treatment effect and their confidence intervals (default at 95%) under the homogeneous
interaction assumption. Three variants of the ACME are shown: the ACME conditional on
the treatment group, the control group, and the weighted average of the two with the weights
being equal to the proportions of the treatment and control groups. The second table shows
key summary results from the sensitivity analysis with respect to possible heterogeneity in
treatment-mediator interactions. Specifically, the table presents the values of σ (column 1),
R2∗ (column 3), and R̃2 (column 5) at which the estimated ACMEs equal zero. The remaining
columns (2, 4 and 6) show those values for the confidence bands of the three ACMEs.

The results from the multimed function can also be analyzed graphically using the plot

function. One can produce two types of plots, corresponding to the two tables in the summary

output. First, one can plot the point estimates under the homogeneous interaction assumption
by setting the type argument to "point", as shown below. The output is in Figure 5.



Dustin Tingley, Teppei Yamamoto, Kentaro Hirose, Luke Keele, Kosuke Imai 29

0.0 0.2 0.4 0.6

Point Estimate

Average Effects

●

●

●

●

●

●

●

To
ta

l (
τ)Con

tro
l (

ζ 0
)Tr

ea
te

d 
(ζ 1

)Ave
ra

ge
 (ζ

)Con
tro

l (
δ 0

)Tr
ea

te
d 

(δ 1
)Ave

ra
ge

 (δ
)

Figure 5: Graphical summary of the results from the multimed function under the homoge-
neous interaction assumption.

R> plot(m.med, type = "point")

Second, the results from the sensitivity analysis with respect to σ, R2∗ or R̃2 can be plotted. In
this case, the type argument can be used to specify which parameter(s) the estimated ACME
should be plotted against. The possible values are "sigma", "R2-residual", or "R2-total".
One can also choose the types of the ACME from "treated", "control" and "average" via
the tgroup argument. In the example below, we plot the estimated ACME for both treatment
and control conditions as a function of σ and R̃2. The output is in Figure 6.

R> plot(m.med, type = c("sigma", "R2-total"), tgroup = c("treated", "control"))

6.3. Parallel design

Imai and Yamamoto (2013, Section 7) show that the above framework can also be applied
to the data collected under the parallel design. As discussed in Section 5.2, the parallel
design consists of two separate experiments to which subjects are randomly selected. In one
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Figure 6: Graphical summary of sensitivity analysis using the multimed function. Results as
a function of σ and R̃2.

experiment, only the treatment is randomized and the researcher observes the mediator and
outcome variables, whereas in the other experiment both the treatment and mediator are
randomly manipulated and the outcome variable is measured and recorded.

Unlike the single experiment design, one need not assume any kind of sequential ignorability
under the parallel design. This is due to the existence of the second experimental group where
both the treatment and mediator are randomly assigned. This implies that there is no need to
explicitly incorporate an alternative mediator in the analysis, for any kind of post-treatment
confounding (observed or unobserved) is allowed to exist in the natural causal process to
identify the ACME under the parallel design using the proposed framework.

To apply the framework for the parallel design, one can use the multimed function with slightly
modified inputs. First, the med.alt is no longer needed because the estimation framework is
agnostic about what particular alternative mechanisms are confounding the mediator-outcome
relationship. Second, one need to supply an additional variable (experiment) indicating
whether units are assigned to the experiment with (1) or without (0) mediator manipulations.
Finally, the design argument must be set to "parallel", as opposed to the default value of
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"single". For illustration, we again use the simulated data introduced in Section 5.2 and
apply the varying coefficient linear structural equations framework.

R> m.med.para <- multimed(outcome = "out", med.main = "med", treat = "ttt",

+ experiment = "manip", design = "parallel",

+ data = boundsdata, sims = 100)

R> summary(m.med.para)

Causal Mediation Analysis with Confounding by an Alternative Mechanism

Estimates under the Homogeneous Interaction Assumption:

Estimate 95% CI Lower 95% CI Upper

ACME (treated) 0.362 0.235 0.49

ACME (control) 0.307 0.188 0.43

ACME (average) 0.322 0.204 0.44

ADE (treated) -0.101 -0.198 0.00

ADE (control) -0.156 -0.262 -0.05

ADE (average) -0.140 -0.241 -0.04

Total Effect 0.206 0.120 0.28

Sensitivity Analysis:

Values of the sensitivity parameters at which ACME first crosses zero:

sigma(bounds) sigma(CI) R2s(bounds) R2s(CI) R2t(bounds) R2t(CI)

ACME (treated) 0.779 0.543 0.370 0.180 0.344 0.17

ACME (control) 0.627 0.425 0.240 0.110 0.223 0.10

ACME (average) 0.665 0.462 0.270 0.130 0.251 0.12

Values of the sensitivity parameters at which ADE first crosses zero:

sigma(bounds) sigma(CI) R2s(bounds) R2s(CI) R2t(bounds) R2t(CI)

ADE (treated) 0.2218 0.1281 0.0300 0.0100 0.0279 0.01

ADE (control) 0.3388 0.1811 0.0700 0.0200 0.0651 0.02

ADE (average) 0.3137 0.1281 0.0600 0.0100 0.0558 0.01

The plot function can also be used in the same manner as in the single experiment case.
The key differences between the above analysis and Section 5.2 are threefold. First, the
point estimates in the first summary table here only rely on the homogeneous interaction
assumption, not the stronger assumption of no interaction. Second, however, the estimates
here depend on the additional assumption of additivity, which is embodied in the varying
coefficient structural equations model in Equations 8 and 9. The additivity assumption may
not be plausible in some applications and needs to be carefully examined. Finally, the second
summary table shows the result of the sensitivity analysis where the homogeneous interac-
tion assumption is gradually relaxed until an arbitrary interaction heterogeneity is allowed.
This may be preferred to the nonparametric bounds approach in Section 5.2, which offers
less nuanced information about how robust the point estimates are to the violation of the
identification assumption.

7. Causal mediation analysis with treatment noncompliance
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A common complication in randomized controlled trials is treatment noncompliance. That
is, experimental subjects may not follow the assigned treatment and instead choose to take
another treatment. This poses a serious challenge to causal analysis in randomized exper-
iments because, even though the assigned treatment is randomized by the researcher, the
actual treatment is selected by the subjects themselves, quite possibly depending on certain
characteristics unobserved to the researcher. In this section, we provide an overview of the
method developed by Yamamoto (2013) to cope with the challenge of treatment noncompli-
ance in the context of causal mediation analysis. The estimation method is implemented by
the ivmediate function in our package, as discussed below.

7.1. The methodology

Analysis of causal mediation in the presence of treatment noncompliance requires additional
notation and assumptions. Let Zi ∈ {0, 1} denote the binary indicator of treatment assign-
ment, or encouragement, for unit i. Then, we use Ti(z) ∈ {0, 1} to denote the potential
treatment which unit i would actually receive when the unit were assigned to the treatment
(z = 1) or control (z = 0) condition. The observed treatment for unit i can then be written
as Ti = Ti(Zi). Following the standard practice in the analysis of treatment noncompliance
(see Angrist, Imbens, and Rubin 1996), we assume that the treatment assignment itself does
not directly affect either the mediator or the outcome. Under these exclusion restrictions,
we can write the potential mediator and outcome as, respectively, Mi(t) and Yi(t,m). Like-
wise, the observed mediator and outcome can respectively be expressed as Mi = Mi(Ti) and
Yi(Ti,Mi(Ti)). Another standard assumption we make is the monotonicity of treatment re-
ception. That is, we assume that there is no unit in the population who would only take the
treatment if assigned to the control condition. This assumption is thus often called the “no
defier” assumption and can be written in our notation as Ti(0) ≤ Ti(1) for any i.

The final and key assumption is local sequential ignorability, which can be formally written
as follows.

Assumption 2 (Local Sequential Ignorability; Yamamoto 2013)

{Yi(t′,m),Mi(t), Ti(z)} ⊥⊥ Zi | Xi = x, (11)

Yi(t
′,m) ⊥⊥ Mi(t) | Ti = t, Ti(0) = 0, Ti(1) = 1, Xi = x, (12)

for t = 0, 1, z = 0, 1, and all x and m in the support of Xi and Mi, respectively.

This assumption is closely related to but slightly weaker than the global sequential ignorability
introduced earlier (Assumption 1). Equation 11 implies that the treatment assignment, Zi,
must be either randomized or can be regarded to be “as-if randomized” after conditioning
on a set of observed pre-encouragement covariates, Xi. Equation 12, on the other hand,
requires that the observed mediator in each treatment condition be as-if randomized among
the compliers, i.e., those units whose actual treatment would always agree with their assigned
treatment (Ti(0) = 0 and Ti(1) = 1). In other words, Assumption 2 implies that sequential
ignorability must hold locally among the compliers.

In the context of treatment noncompliance, researchers typically focus on the estimation
of the intent-to-treat (ITT) effect and the local average treatment effect (LATE) among the
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compliers. The former quantity refers to the average causal effect of the treatment assignment
itself (regardless of the actual treatment) on the outcome, whereas the latter represents the
average effect of the actual treatment on the outcome among the compliers. Here, we consider
the problem of decomposing each of these effects into the direct and indirect portions with
respect to the mediator of interest. First, the ITT effect can be written as the sum of these
two quantities.

Mediated intent-to-treat (ITT) effect:

λ̄(z) ≡ E[Yi(Ti(z),Mi(Ti(1)))− Yi(Ti(z),Mi(Ti(0)))]. (13)

Unmediated ITT effect:

µ̄(z) ≡ E[Yi(Ti(1),Mi(Ti(z)))− Yi(Ti(0),Mi(Ti(z)))]. (14)

Second, the LATE can be decomposed into the following two quantities.

Local average causal mediation effect (LACME):

φ̄(t) ≡ E[Yi(t,Mi(1))− Yi(t,Mi(0)) | Ti(0) = 0, Ti(1) = 1]. (15)

Local average natural direct effect (LANDE):

ψ̄(t) ≡ E[Yi(1,Mi(t))− Yi(0,Mi(t)) | Ti(0) = 0, Ti(1) = 1]. (16)

Yamamoto (2013) shows that the above four quantities (each defined for z = 0, 1 or t = 0, 1)
can be nonparametrically identified under the set of assumptions introduced thus far in this
section. More specifically, each of λ̄(z), µ̄(z), φ̄(t) and ψ̄(t) can be expressed in terms of the
conditional expectations and distributions of the observed outcome, mediator and treatment
variables. These effects of interest can therefore be estimated by fitting regression models to
each of those conditionals (i.e., a model for Yi given Mi, Ti, Zi and Xi, a model for Mi given
Ti, Zi and Xi, and a model for Ti given Zi and Xi) and calculating the sample analogues of
the identified quantities. Uncertainty estimates can then be obtained via simulation-based
methods. The ivmediate function in our package implements this procedure for a selection
of models, as we illustrate with an empirical example in the next section.

7.2. Illustration

We illustrate the use of the ivmediate function through an analysis of data from the Job
Search Intervention Study (JOBS II; see Vinokur, Price, and Schul 1995, for more information
about the study). JOBS II was a randomized job training intervention for unemployed work-
ers which aimed at increasing the prospect of reemployment and improving mental health
of the job seekers involved in the study. A random subsample of the participants were of-
fered to receive the treatment of job-skills workshops which covered skills for job search and
coping with stress, while the remaining participants were assigned to the control group and
sent a booklet containing job-search tips. Despite the random assignment of the treatment
conditions, some participants failed to comply with their assigned treatment status. Namely,
39% of those who were offered to participate in job-skills workshops actually did not enroll.
None of the workers in the control group, on the other hand, participated in workshops, so
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noncompliance in this study was strictly one-sided. Several outcome measures were taken
after the completion of the program via a survey. Here, we focus on the question of whether
participation in the workshops improved the mental health of the unemployed workers (mea-
sured with a continuous scale based on the Hopkins Symptom Checklist) by increasing their
self-confidence in job search ability (measured by a dichotomous indicator).

The relevant portion of the JOBS II data is included as part of the mediation package.

R> data("jobs", package = "mediation")

We begin by estimating three regression models. First, we model the actual treatment status
(comply) conditional on the assigned treatment (treat) and observed pre-encouragement
covariates (sex, age, marital, nonwhite, educ, and income). Here we postulate a linear
probability model for the probability of actually participating in the job-skills workshops.

R> a <- lm(comply ~ treat + sex + age + marital + nonwhite + educ + income,

+ data = jobs)

Next, we model the mediator (job_dich) and outcome (depress2) as functions of causally
precedent variables. That is, we fit a logit model for the dichotomous mediator conditional on
the actual treatment, assigned treatment, and observed pre-encouragement covariates, and
a linear regression model for the outcome as a function of the mediator, actual treatment,
assigned treatment, and pre-encouragement covariates.

R> b <- glm(job_dich ~ comply + treat + sex + age + marital +

+ nonwhite + educ + income, data = jobs, family = binomial)

R> c <- lm(depress2 ~ job_dich * (comply + treat) + sex + age + marital +

+ nonwhite + educ + income, data = jobs)

Generally, it is wise to include an interaction term between the actual and assigned treatment
in these models in order to allow for the regression functions to vary across treatment con-
ditions. Here, however, the interaction term is not needed because noncompliance is strictly
one-sided (i.e., there is no observation for which comply equals 1 and treat equals 0). These
three models can in theory be of any form, as in the case of estimating the ACME via the
mediate function. However, the current version of the ivmediate function only supports
binary outcome models (fitted via glm with family = binomial) and linear models (fitted
via lm).

After fitting the three models, the LACME and LANDE can be easily estimated via the
ivmediate function, which takes those three fitted model objects as main inputs.9

R> out <- ivmediate(a, b, c, sims = 100, boot = FALSE,

+ enc = "treat", treat = "comply", mediator = "job_dich")

In the ivmediate function, the analyst must specify the names of the assigned treatment,
actual treatment, and mediator (as they appear in the data frames used to fit the three
models) via the enc, treat, and mediator arguments, respectively. The analyst can also set

9Currently, ivmediate only estimates the complier average effects and is not capable of estimating the
mediated and unmediated ITT effects. This limitation will be addressed in a future update.
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the number of simulations used for the construction of confidence intervals (sims) as well as
whether the nonparametric bootstrap should be used for the confidence intervals (boot; if
FALSE, the quasi-Bayesian Monte Carlo method will be used). Regardless of this choice, only
the intervals for the confidence levels specified by the conf.level argument (defaults to .95)
will be calculated and retained in the output object (unless the long option is set to TRUE, in
which case the entire set of simulation draws will be available).

An important remark is required on the computational demand of the ivmediate function.
The estimation method of Yamamoto (2013) involves numerical integration over the support
of the mediator for each observation in each simulation iteration. This implies that, if the
mediator is continuous (i.e., if model.m is an ‘lm; object) and the model contains any pre-
encouragement covariate, the calculation of confidence intervals via ivmediate is extremely
time-consuming. To ameliorate the situation, we have implemented a parallel execution of
the simulation routine across multiple CPU cores. To utilize this function, the analyst should
set the multicore option to TRUE and mc.cores to the desired number of cores available on
his or her machine. Using N cores will approximately decrease the total computation time
by the factor of N . This option, unfortunately, is implemented via mclapply and therefore
not currently available on Windows machines.

The output of ivmediate can be summarized using the usual summary function.

R> summary(out)

Causal Mediation Analysis with Treatment Noncompliance

Confidence Intervals Based on Quasi-Bayesian Monte Carlo

Estimate 95% CI Lower 95% CI Upper

LACME (control) -0.036963 -0.089771 -0.0035

LACME (treated) -0.042931 -0.086510 -0.0137

LANDE (control) -0.045669 -0.152165 0.1133

LANDE (treated) -0.051637 -0.157129 0.1189

LATE -0.088600 -0.194514 0.0596

Sample Size Used: 899

Simulations: 100

The resulting summary table shows the point estimates of the LACME for the control and
treatment baseline conditions (φ̄(0) and φ̄(1)), the LANDE for the control and treatment
baselines (ψ̄(0) and ψ̄(1)), and the total LATE for the compliers in the first column, as well
as their confidence intervals in the next two columns (unless the ci argument in ivmediate

is set to FALSE, which makes the evaluation much faster). The confidence level is by default
set at the first level used in the original ivmediate run, but can be changed to any level used
via the conf.level option. Here, we observe that the indirect effect of job-skills workshop on
depressive symptoms via increase in job-search self-efficacy is on average negative and barely
statistically significant among the compliers, although the overall negative effect of treatment
on depression among the compliers misses the conventional level of statistical significance.
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Figure 7: Graphical display of results from the ivmediate function.

The results can also be represented graphically via the plot function.

R> plot(out)

Again, the plotted confidence level can be changed via the conf.level option to any of the
levels used in the original ivmediate call. The effect.type option can be used to specify
which of the estimated quantities will be plotted (the default plots everything). Most of the
standard graphical parameters can be set in the usual manner.

8. Concluding remarks

In this paper, we described the functionalities of the mediation package, which allows applied
researchers to conduct causal mediation analysis in a variety of settings. The package imple-
ments a general algorithm for estimating causal mediation effects with a variety of statistical
models. Since the causal mediation analysis under the standard research design requires
a strong and untestable assumption, we recommend sensitivity analysis which is also im-
plemented in our package. Finally, this strong identification assumption can be relaxed by
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adopting alternative research designs and we show how to use our package to conduct causal
mediation analysis under those new designs. The literature on causal mediation analysis is
fast growing, and we expect new methods to be developed in the coming years. We hope
that the mediation package can serve as a platform to which other researchers can add new
methods.
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