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Abstract

The package oro.nifti facilitates the interaction with and manipulation of medical
imaging data that conform to the ANALYZE, NIfTI and AFNI formats. The S4 class
framework is used to develop basic ANALYZE and NIfTI classes, where NIfTI extensions
may be used to extend the fixed-byte NIfTI header. One example of this, that has been
implemented, is an XML-based “audit trail” tracking the history of operations applied to a
data set. The conversion from DICOM to ANALYZE/NIfTI is straightforward using the
capabilities of oro.dicom. The S4 classes have been developed to provide a user-friendly
interface to the ANALYZE/NIfTI data formats; allowing easy data input, data output,
image processing and visualization.

Keywords: export, imaging, import, medical, visualization.

1. Introduction

Medical imaging is well established in both the clinical and research areas with numerous
equipment manufacturers supplying a wide variety of modalities. The ANALYZE format was
developed at the Mayo Clinic (in the 1990s) to store multidimensional biomedical images. It
is fundamentally different from the DICOM standard since it groups all images from a single
acquisition (typically three- or four-dimensional) into a pair of binary files, one containing
header information and one containing the image information. The DICOM standard groups
the header and image information, typically a single two-dimensional image, into a single file.
Hence, a single acquisition will contain multiple DICOM files but only a pair of ANALYZE
files.

The NIfTI format was developed in the early 2000s by the DFWG (Data Format Working
Group) in an effort to improve upon the ANALYZE format. The resulting NIfTI-1 format
adheres to the basic header/image combination from the ANALYZE format, but allows the
pair of files to be combined into a single file and re-defines the header fields. In addition,
NIfTI extensions allow one to store additional information (e.g., key acquisition parameters,
experimental design) inside a NIfTI file.

The material presented here provides users with a method of interacting with ANALYZE and
NIfTI files in R (R Development Core Team 2010). Real-world data sets, that are publicly
available, are used to illustrate the basic functionality of oro.nifti (Whitcher et al. 2011). It
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oro.nifti

afni, anlz, nifti Class constructors for AFNI, ANA-
LYZE and NIfTI objects.

as(<obj>, "nifti") Coerce object into class nifti.
audit.trail, aux.file, descrip Extract or replace slots in specific

header fields.
fmri2oro, oro2fmri Convert between fmridata (fmri) and

nifti objects.
hotmetal, tim.colors Useful color tables for visualization.
image, orthographic, overlay Two-dimensional visualization meth-

ods.
is.afni, is.anlz, is.nifti Logical checks.
readAFNI, readANALYZE, readNIfTI Data input.
writeAFNI, writeANALYZE, writeNIfTI Data otuput.

Table 1: List of functions available in oro.nifti. Functionality around the AFNI data format
was recently added to the oro.nifti package. Please visit http://afni.nimh.nih.gov/afni
for more information about the AFNI data format.

should be noted that oro.nifti focuses on functions for data input/output and visualization.
S4 classes nifti and anlz are provided for further statistical analysis in R without losing con-
textual information from the original ANALYZE or NIfTI files. Images in the metadata-rich
DICOM format may be converted to NIfTI semi-automatically using oro.dicom by utilizing
as much information from the DICOM files as possible. Basic visualization functions, similar
to those commonly used in the medical imaging community, are provided for nifti and anlz

objects. Additionally, the oro.nifti package allows one to track every operation on a nifti

object in an XML-based audit trail.

The oro.nifti package should appeal not only to R package developers, but also to scientists
and researchers who want to interrogate medical imaging data using the statistical capabilities
of R without writing and validating their own basic data input/output functionality. Table 1
lists the key functions for oro.nifti and groups them according to common functionality. An
example of using statistical methodology in R for the analysis of functional magnetic resonance
imaging (fMRI) data is given in section 2.7. Packages already available on CRAN that utilize
oro.nifti include: cudaBayesreg (Ferreira da Silva 2011), dcemriS4 (Whitcher and Schmid
2011), dpmixsim (Ferreira da Silva 2010), and RNiftyReg (Clayden 2011).

2. oro.nifti: NIfTI-1 data input/output in R

Although the industry standard for medical imaging data is DICOM, another format has
come to be heavily used in the image analysis community. The ANALYZE format was orig-
inally developed in conjunction with an image processing system (of the same name) at the
Mayo Foundation. A common version of the format, although not the most recent, is called
ANALYZE 7.5. A copy of the file ANALYZE75.pdf has been included in oro.nifti (accessed
via system.file("doc/ANALYZE75.pdf", package="oro.dicom")) since it does not appear
to be available from www.mayo.edu any longer. An ANALYZE 7.5 format image is comprised

http://afni.nimh.nih.gov/afni
www.mayo.edu
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of two files, the “.hdr” and “.img”files, that contain information about the acquisition and the
acquisition itself, respectively. A more recent adaption of this format is known as NIfTI-1 and
is a product of the Data Format Working Group (DFWG) from the Neuroimaging Informat-
ics Technology Initiative (NIfTI; http://nifti.nimh.nih.gov). The NIfTI-1 data format is
almost identical to the ANALYZE format, but offers a few improvements

• merging of the header and image information into one file (.nii)

• re-organization of the 348-byte fixed header into more relevant categories

• possibility of extending the header information.

There are several R packages that also offer input/output functionality for the NIfTI and
ANALYZE data formats in addition to image analysis capabilities for specific MRI acquisition
sequences; e.g., AnalyzeFMRI (Bordier et al. 2009), fmri (Polzehl and Tabelow 2007) and
tractor.base (Clayden 2010). The Rniftilib package provides access to NIfTI data via the
nifticlib library (Granert 2010).

2.1. The NIfTI header

The NIfTI header inherits its structure (348 bytes in length) from the ANALYZE data format.
The last four bytes in the NIfTI header correspond to the “magic” field and denote whether
or not the header and image are contained in a single file (magic = "n+1\0") or two separate
files (magic = "ni1\0"), the latter being identical to the structure of the ANALYZE data
format. The NIfTI data format added an additional four bytes to allow for “extensions” to
the header. By default these four bytes are set to zero.

The first example of reading in, and displaying, medical imaging data in NIfTI format
avg152T1_LR_nifti.nii.gz was obtained from the NIfTI website (http://nifti.nimh.
nih.gov/nifti-1/). Successful execution of the commands

R> fname <- system.file(file.path("nifti", "mniLR.nii.gz"), package="oro.nifti")

R> (mniLR <- readNIfTI(fname))

NIfTI-1 format

Type : niftiAuditTrail

Data Type : 2 (UINT8)

Bits per Pixel : 8

Slice Code : 0 (Unknown)

Intent Code : 0 (None)

Qform Code : 0 (Unknown)

Sform Code : 4 (MNI_152)

Dimension : 91 x 109 x 91

Pixel Dimension : 2 x 2 x 2

Voxel Units : mm

Time Units : sec

R> pixdim(mniLR)

http://nifti.nimh.nih.gov
http://nifti.nimh.nih.gov/nifti-1/
http://nifti.nimh.nih.gov/nifti-1/
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[1] 0 2 2 2 1 1 1 1

R> descrip(mniLR)

[1] "FSL3.2beta"

R> aux.file(mniLR)

[1] "none "

produces an S4 "nifti" object (or "niftiAuditTrail" if the audit trail option is set). Some
accessor functions are also provided; e.g., aux.file and descrip. The former is used to
access the original name of the file (if it has been provided) and the latter is the name of a
valid NIfTI header field used to hold a “description” (up to 80 characters in length).

2.2. The NIfTI image

Image information begins at the byte position determined by the voxoffset slot. In a single
NIfTI file (magic = "n+1\0"), this is by default after the first 352 bytes. Header extensions
extend the size of the header and come before the image information leading to a consequent
increase of voxoffset for single NIfTI files. The split NIfTI (magic = "ni1\0") and ANA-
LYZE formats contain pairs of files, where the header and image information are separated,
and do not have this problem. In this case voxoffset is set to 0.

The image function has been overloaded so that it behaves differently when dealing with
medical image objects (nifti and anlz). The command

R> image(mniLR)

produces a three-dimensional array of the MNI brain, with the default NIfTI axes, and is
displayed on a 10×10 grid of images (Figure 1a). The image function for medical image
S4 objects is an attempt to balance minimal user input with enough flexibility to customize
the display when necessary. For example, single slices may be viewed by using the option
plot.type="single" in conjunction with the option z= to specify the slice.

The second example of reading in and displaying medical imaging data in the NIfTI format
avg152T1_RL_nifti.nii.gz was also obtained from the NIfTI website (http://nifti.nimh.
nih.gov/nifti-1/). Successful execution of the commands

R> fname <- system.file(file.path("nifti", "mniRL.nii.gz"), package="oro.nifti")

R> (mniRL <- readNIfTI(fname))

NIfTI-1 format

Type : niftiAuditTrail

Data Type : 2 (UINT8)

Bits per Pixel : 8

Slice Code : 0 (Unknown)

Intent Code : 0 (None)

http://nifti.nimh.nih.gov/nifti-1/
http://nifti.nimh.nih.gov/nifti-1/
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(a) (b)

Figure 1: (a) Axial slices of MNI volume mniLR_nifti stored in the neurological convention
(right-is-right), but displayed in the radiological convention (right-is-left). (b) Axial slices of
MNI volume mniRL_nifti stored and displayed in the radiological convention.

Qform Code : 0 (Unknown)

Sform Code : 4 (MNI_152)

Dimension : 91 x 109 x 91

Pixel Dimension : 2 x 2 x 2

Voxel Units : mm

Time Units : sec

R> image(mniRL)

produces a three-dimensional array of the MNI brain that is displayed in a 10×10 grid of
images (Figure 1b). The two sets of data in Figure 1 are stored in two different orientations,
commonly referred to as the radiological and neurological conventions. The neurological
convention is where “right is right” and one is essentially looking through the subject. The
radiological convention is where “right is left” and one is looking at the subject.

An additional graphical display function has been added for nifti and anlz objects that
allows a so-called orthographic visualization of the data.

R> orthographic(mniRL)

As seen in Figure 2 the mid-axial, mid-sagittal and mid-coronal planes are displayed by
default. The slices used may be set using xyz = c(I,J,K), where (I, J,K) are appropriate
indices, and the crosshairs will provide a spatial reference in each plane relative to the other
two.
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Figure 2: Orthographic display of the MNI volume mniRL_nifti. By default the mid-axial,
mid-sagittal and mid-coronal planes are chosen.
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2.3. A note on axes and orientation

The NIfTI format contains an implicit generalized spatial transformation from the data co-
ordinate system (i, j, k) into a real-space“right-handed”co-ordinate system. In this real-space
system, the (x, y, z) axes are usually set such that x increases from left to right, y increases
from posterior to anterior and z increases from inferior to superior.

At this point in time the oro.nifti package cannot apply an arbitrary transform to the imaging
data into (x, y, z) space – such a transform may require non-integral indices and interpolation
steps. The package does accommodate straightforward transformations of imaging data; e.g.,
setting the i-axis to increase from right to left (the neurological convention). Future versions
of oro.nifti will attempt to address more complicated spatial transformations and provide
functionality to display the (x, y, z) axes on orthographic plots.

2.4. NIfTI and ANALYZE data in S4

A major improvement in the oro.nifti package is the fact that standard medical imaging
formats are stored in unique classes under the S4 system (Chambers 2008). Essentially, NIfTI
and ANALYZE data are stored as multi-dimensional arrays with extra slots created that
capture the format-specific header information; e.g., for a nifti object

R> slotNames(mniRL)

[1] ".Data" "trail" "extensions"

[4] "sizeof_hdr" "data_type" "db_name"

[7] "extents" "session_error" "regular"

[10] "dim_info" "dim_" "intent_p1"

[13] "intent_p2" "intent_p3" "intent_code"

[16] "datatype" "bitpix" "slice_start"

[19] "pixdim" "vox_offset" "scl_slope"

[22] "scl_inter" "slice_end" "slice_code"

[25] "xyzt_units" "cal_max" "cal_min"

[28] "slice_duration" "toffset" "glmax"

[31] "glmin" "descrip" "aux_file"

[34] "qform_code" "sform_code" "quatern_b"

[37] "quatern_c" "quatern_d" "qoffset_x"

[40] "qoffset_y" "qoffset_z" "srow_x"

[43] "srow_y" "srow_z" "intent_name"

[46] "magic" "extender" "reoriented"

R> c(cal.min(mniRL), cal.max(mniRL))

[1] 0 255

R> range(mniRL)

[1] 0 255
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R> mniRL@"datatype"

[1] 2

R> convert.datatype(mniRL@"datatype")

[1] "UINT8"

Note, an ANALYZE object has a slightly different set of slots. Slots 4–47 are taken verbatim
from the definition of the NIfTI format and are read directly from a file. The slot .Data is
the multidimensional array (since class nifti inherits from class array) and the slots trail,
extensions and reoriented are used for internal bookkeeping. In the code above we have
accessed the min/max values of the imaging data using the cal.min and cal.max accessor
functions which matches a direct interrogation of the .Data slot using the range function.
Looking at the datatype slot provides a numeric code that may be converted into a value that
indicates the type of byte structure used (in this case an 8-bit or 1-byte unsigned integer).

As introduced in Section 2.1 there are currently only two accessor functions to slots in the
NIfTI header (aux.file and descrip) – all other slots are either ignored or used inside of
functions that operate on ANALYZE/NIfTI objects. The NIfTI class also has the ability
to read and write extensions that conform to the NIfTI data format. Customized printing
and validity-checking functions are available to the user and every attempt has been made to
ensure that the information from the multi-dimensional array is in agreement with the header
values.

The constructor function nifti produces valid NIfTI objects, including a consistent header,
from an arbitrary array.

R> n <- 100

R> (random.image <- nifti(array(runif(n*n), c(n,n,1))))

NIfTI-1 format

Type : niftiAuditTrail

Data Type : 2 (UINT8)

Bits per Pixel : 8

Slice Code : 0 (Unknown)

Intent Code : 0 (None)

Qform Code : 0 (Unknown)

Sform Code : 0 (Unknown)

Dimension : 100 x 100 x 1

Pixel Dimension : 1 x 1 x 1

Voxel Units : Unknown

Time Units : Unknown

R> random.image@"dim_"

[1] 3 100 100 1 1 1 1 1
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R> dim(random.image)

[1] 100 100 1

The function writeNIfTI outputs valid NIfTI class files, which can be opened in other medical
imaging software. Files can either be stored as standard .nii files or compressed with gnuzip
(default).

R> writeNIfTI(random.image, "random")

R> list.files(pattern="random")

[1] "random.nii.gz"

2.5. The audit trail

Following on from the S4 implementation of both the NIfTI and ANALYZE data formats,
the ability to extend the NIfTI data format header is utilized in the oro.nifti package. Please
use the command

R> options(niftiAuditTrail=TRUE)

to turn on the“audit trail”option in oro.nifti and then execute the function enableAuditTrail().
With the option enabled extensions are properly handled when reading and writing NIfTI
data, users are allowed to add extensions to newly-created NIfTI objects by casting them
as niftiExtension objects and adding niftiExtensionSection objects to the extensions
slot, and all operations that are performed on a NIfTI object will generate what we call an
audit trail that consists of an XML-based log (Temple Lang 2010).

Figure 3 displays output from the accessor function audit.trail(mniLR), the XML-based
audit trail that is stored as a NIfTI header extension.

Each log entry contains information not only about the function applied to the NIfTI object,
but also various system-level information; e.g., version of R, user name, date, time, etc. When
writing NIfTI-class objects to disk, the XML-based NIfTI extension is converted into plain
text and saved using ecode=6 to denote plain ASCII text. The user may control the tracking
of data manipulation via the audit trail using the global option niftiAuditTrail.

2.6. Interactive visualization

Basic visualization of nifti and anlz class images can be achieved with any visualization for
arrays in R. For example, the EBImage package provides functions display and animate for
visualization (Sklyar et al. 2010). Please note that functions in EBImage expect grey-scale
values in the range [0, 1], hence the display of nifti data may be performed using

R> mniLR.range <- range(mniLR)

R> display((mniLR - min(mniLR)) / diff(mniLR.range))
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Interactive visualization of multi-dimensional arrays, stored in NIfTI or ANALYZE format,
is however best performed outside of R at this point in time. Popular viewers, especially for
neuroimaging data, include

• FSLView (http://www.fmrib.ox.ac.uk/fsl/fslview/),

• MRIcron (http://cabiatl.com/mricron/),

• ITKSnap (http://www.itksnap.org), and

• VolView (http://www.kitware.com/products/volview.html).

The mritc package provides basic interactive visualization of ANALYZE/NIfTI data using a
Tcl/Tk interface (Feng and Tierney 2010).

2.7. An example using functional MRI data

This is an example of reading in, and displaying, a four-dimensional medical imaging data
set in NIfTI format filtered_func_data obtained from the FSL evaluation and example
data suite (http://www.fmrib.ox.ac.uk/fsl/fsl/feeds.html). Successful execution of the
commands

R> filtered.func.data <-

+ system.file(file.path("nifti", "filtered_func_data.nii.gz"),

+ package="oro.nifti")

R> (ffd <- readNIfTI(filtered.func.data))

NIfTI-1 format

Type : niftiAuditTrail

Data Type : 4 (INT16)

Bits per Pixel : 16

Slice Code : 0 (Unknown)

Intent Code : 0 (None)

Qform Code : 0 (Unknown)

Sform Code : 0 (Unknown)

Dimension : 64 x 64 x 21 x 64

Pixel Dimension : 1 x 1 x 1 x 1

Voxel Units : Unknown

Time Units : Unknown

R> image(ffd, zlim=range(ffd)*0.95)

produces a four-dimensional (4D) array of imaging data that may be displayed in a 5×5 grid
of images (Figure 4a). The first three dimensions are spatial locations of the voxel (volume
element) and the fourth dimension is time for this functional MRI (fMRI) acquisition. As seen
from the summary of object, there are 21 axial slices of fairly coarse resolution (4×4×6 mm)
and reasonable temporal resolution (3 s). Figure 4b depicts the orthographic display of
the filtered_func_data using the axial plane containing the left-and-right thalamus to
approximately center the crosshair vertically.

http://www.fmrib.ox.ac.uk/fsl/fslview/
http://cabiatl.com/mricron/
http://www.itksnap.org
http://www.kitware.com/products/volview.html
http://www.fmrib.ox.ac.uk/fsl/fsl/feeds.html
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(a)

(b)

Figure 4: (a) Axial slices of the functional MRI data set filtered_func_data from the first
acquisition. (b) Orthographic display of the first volume from the functional MRI data set
filtered_func_data.
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Figure 5: Visual (30 seconds on/off) and auditory (45 seconds on/off) stimuli, convolved with
a parametric haemodynamic response function, used in the GLM-based fMRI analysis.

R> orthographic(ffd, xyz=c(34,29,10), zlim=range(ffd)*0.9)

Statistical analysis

The R programming environment provides a wide variety of statistical methodology for the
quantitative analysis of medical imaging data. For example, functional MRI (fMRI) data
are typically analyzed by applying a multiple linear regression model, commonly referred to
in the literature as a general linear model (GLM), that utilizes the stimulus experiment to
construct the design matrix. Estimation of the regression coefficients in the GLM produces
a statistical image; e.g., Z-statistics for a voxel-wise hypothesis test on activation in fMRI
experiments (Friston et al. 1994, 1995).

The 4D volume of imaging data in filtered_func_data was acquired in an experiment with
a repetition time TR = 3 s, using both visual and auditory stimuli. The visual stimulus was
applied using an on/off pattern for a duration of 60 seconds and the auditory stimulus was
applied using an on/off pattern for a duration of 90 seconds. A parametric haemodynamic
response function (HRF), with mean µ = 6 and standard deviation σ = 3, is utilized here
which is similar to the default values in FSL (Smith et al. 2004). We construct the experimen-
tal design and HRF in seconds, perform the convolution and then downsample by a factor of
three in order to obtain columns of the design matrix that match the acquisition of the MRI
data.

R> visual <- rep(c(-0.5,0.5), each=30, times=9)

R> auditory <- rep(c(-0.5,0.5), each=45, times=6)

R> hrf <- c(dgamma(1:15, 4, scale=1.5))

R> hrf0 <- c(hrf, rep(0, length(visual)-length(hrf)))
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R> visual.hrf <- convolve(hrf0, visual)

R> hrf0 <- c(hrf, rep(0, length(auditory)-length(hrf)))

R> auditory.hrf <- convolve(hrf0, auditory)

R> index <- seq(3, 540, by=3)

R> visual.hrf <- visual.hrf[index]

R> auditory.hrf <- auditory.hrf[index]

Figure 5 depicts the visual and auditory stimuli, convolved with the HRF, in the order of
acquisition. The design matrix is then used in a voxel-wise GLM, where the lsfit function
in R estimates the parameters in the linear regression. At each voxel t-statistics and their
associated p-values are computed for the hypothesis test of no effect for each individual stim-
ulus, along with an F -statistic for the hypothesis test of no effect of any stimuli using the
ls.print function.

R> ##reduced length due to R package storage limitations

R> visual.hrf<-visual.hrf[1:64]

R> auditory.hrf<-auditory.hrf[1:64]

R> ## background threshold: 10% max intensity

R> voxel.lsfit <- function(x, thresh) { # general linear model

+ ## check against background threshold

+ if (max(x) < thresh) {

+ return(rep(NA, 5))

+ }

+ ## glm

+ output <- lsfit(cbind(visual.hrf, auditory.hrf), x)

+ ## extract t-statistic, p-values

+ output.t <- ls.print(output, print.it=FALSE)$coef.table[[1]][2:3,3:4]

+ output.f <- ls.print(output, print.it=FALSE)$summary[3]

+ c(output.t, as.numeric(output.f))

+ }

R> ## apply local glm to each voxel

R> ffd.glm <- apply(ffd, 1:3, voxel.lsfit, thresh=0.1 * max(ffd))

Given the multidimensional array of output from the GLM fitting procedure, the t-statistics
are separated and converted into Z-statistics to follow the convention used in FSL. For the
purposes of this example we have not applied any multiple comparisons correction procedure
and, instead, use a relatively large threshold of Z > 5 for visualization.

R> dof <- ntim(ffd) - 1

R> Z.visual <- nifti(qnorm(pt(ffd.glm[1,,,], dof, log.p=TRUE), log.p=TRUE),

+ datatype=16)

R> Z.auditory <- nifti(qnorm(pt(ffd.glm[2,,,], dof, log.p=TRUE), log.p=TRUE),

+ datatype=16)

R> yrange <- c(5, max(Z.visual, na.rm=TRUE))

R> overlay(ffd, ifelse(Z.visual > 5, Z.visual, NA),

+ zlim.x=range(ffd)*0.95, zlim.y=yrange)
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(a)

(b)

Figure 6: (a) Axial slices of the functional MRI data with the statistical image from the
visual stimulus overlayed. (b) Axial slices of the functional MRI data with the statistical
image from the auditory stimulus overlayed. Both sets of test statistics were thresholded at
Z ≥ 5 for all voxel.
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R> yrange <- c(5, max(Z.auditory, na.rm=TRUE))

R> overlay(ffd, ifelse(Z.auditory > 5, Z.auditory, NA),

+ zlim.x=range(ffd)*0.95, zlim.y=yrange)

Statistical images in neuroimaging are commonly displayed as an overlay on top of a reference
image (one of the dynamic acquisitions) in order to provide anatomical context. The overlay
command in oro.nifti allows one to display the statistical image of voxel-wise activations
overlayed on one of the original EPI (echo planar imaging) volumes acquired in the fMRI
experiment. The 3D array of Z-statistics for the visual and auditory tasks are overlayed on
the original data for “anatomical” reference in Figure 6. The Z-statistics that exceed the
threshold appear to match know neuroanatomy, where the visual cortex in the occipital lobe
shows activation under the visual stimulus (Figure 6a) and the primary auditory cortex in
the temporal lobe shows activation under the auditory stimulus (Figure 6b).

3. Conclusion

Medical image analysis depends on the efficient manipulation and conversion of DICOM
data. The oro.nifti package has been developed to provide the user with a set of functions
that mask as many of the background details as possible while still providing flexible and
robust performance.

The future of medical image analysis in R will benefit from a unified view of the imaging
data standards: DICOM, NIfTI, ANALYZE, AFNI, MINC, etc. The existence of a single
package for handling imaging data formats would facilitate interoperability between the ever
increasing number of R packages devoted to medical image analysis. We do not assume that
the data structures in oro.nifti are best-suited for this purpose and we welcome an open
discussion around how best to provide this standardization to the end user.
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