
JSS Journal of Statistical Software
MMMMMM YYYY, Volume VV, Code Snippet II. http://www.jstatsoft.org/

R Functions to Symbolically Compute the Central

and Non-central Moments of the Multivariate

Normal Distribution

Kem Phillips

Abstract

The central moments of the multivariate normal distribution are functions of its n×n
variance-covariance matrix Σ. These moments can be expressed symbolically as linear
combinations of products of powers of the elements of Σ. A formula for these moments
derived by differentiating the characteristic function is developed. The formula requires
searching integer matrices for matrices whose n successive row and column sums equal
the n exponents of the moment. This formula is implemented in R, with R functions
to display moments in LATEX and to evaluate moments at specified variance-covariance
matrices are included.

This vignette also describes how the symmoments package has been augmented to cal-
culate symbolic representations of non-central multivariate moments, and to calculate the
expected value of such moments as well as the expected value of multivariate polynomials.
In addition, it is shown that first non-central multivariate moments are in a one-to-one
relationship to phylogenetic trees. Functions making this correspondence, as well as a
function for the correspondence with matchings are provided.

Keywords: non-central moments, multivariate Normal distribution, symbolic computation,
multivariate polynomials, phylogenetic trees, R, LATEX.

1. Introduction

The central moments of an n-dimensional random vector X are defined as

mk1,...,kn = E[(X1 − µ1)k1(X2 − µ2)k2 · · · (Xn − µn)kn ], (1)

where E[· · · ] denotes expected value. Suppose that X is distributed according to the multi-
variate normal distribution with mean µ and variance-covariance matrix

Σ = (σij) (2)

http://www.jstatsoft.org/
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where the variance terms are σii, i = 1, . . . , n, the covariance terms are σij , i 6= j, and by
symmetry σij = σji. For the multivariate normal distribution the central moments are not
functions of the mean vector µ, and depend only on the variance-covariance terms σij .

Simple cases are familiar. Setting µ to 0,

m2 = E[X2
1 ] = σ1,1 (3)

m1,2 = E[X1X2] = σ1,2 (4)

Slightly more complicated cases can be computed directly or by manipulating simple expres-
sions obtained for moments of the form E[X1 · · ·Xn] (Wikipedia contributors 2009). For
example,

m2,2 = E[X2
1X

2
2 ] = 2σ2

1,2 + σ1,1σ2,2 (5)

m2,1,1 = E[X2
1X

1
2X

1
3 ] = 2σ1,2σ1,3 + σ1,1σ2,3 (6)

m1,1 = E[X3
1X

1
2 ] = 3σ1,1σ1,2 (7)

Although some higher order moments follow known patterns, most are much harder to deter-
mine by simple calculations.

We wish to compute the symbolic expression of any moment mk1,...,kn in terms of the n(n+1)
symbols σij . Note that if

∑n
i=1 ki is an odd integer, the moment is 0, so that only moments

where this sum is even need be considered.

The multivariate normal distribution is fundamental to mathematical statistics, and its mo-
ments play a central role in statistical methodology. Various methods have been developed to
numerically compute them (Muirhead 1982, p. 46) and (Anderson 1971, p. 49). Kan (2008)
developed a formula (his Proposition 1) for the central moments as a repeated sum. He gives
an excellent review of other formulas that have been developed, and cites Isserlis (1918) as
deriving the first expression for the central moments. Muirhead (page 49) used the matrix
derivatives of the multivariate normal distribution’s characteristic function to derive a for-
mula for multivariate cumulants. Tracy and Sultan (1993) also used matrix derivatives to
derive an expression for the distribution’s moments (their Theorem 2) based on a recurrence
relationship of the derivatives. This article develops a new explicit formula for the moments
starting with the derivatives of the characteristic function. The expression for the moments is
based on a search algorithm over certain integer matrices. This formula has been translated
into R functions that produce symbolic representations of moments in terms of the variance-
covariance terms σij . In addition, a formula for non-central moments is developed based on
central moments. This formula is programmed, and is extended to the expected values of
multivariate polynomials. Finally, it is shown that first central moments are equivalent to
phylogenetic trees, and R functions making this correspondence are described.

The functions described here are based on Phillips (2010), and are available in the package
symmoments implemented in the R system for statistical computing (R Development Core
Team 2008). Both R itself and the symmoments package (as well as all other packages used
in this paper) are available under the terms of the General Public License (GPL) from the
Comprehensive R Archive Network (CRAN, http://CRAN.R-project.org/).

http://CRAN.R-project.org/
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2. Development of the formula for central moments

The moments of any distribution can be represented by the derivatives of the distribution’s
characteristic function. The characteristic function of the multivariate normal distribution is
(Muirhead 1982, p. 5, 49)

E[eit
>X ] = eit

>µ− 1
2
t>Σt (8)

where t = (t1, t2, ..., tn). Within a constant, the moment is the k1, ..., kn-order derivative of
the characteristic function evaluated at t = 0:

mk1,...,kn = i−
∑n

i=1 ki
d
∑n

i=1 ki

dk1t1dk2t2 · · · dkntn
E[eit

>X ] |t=0 (9)

where i is the imaginary unit. Expanding the exponential into an infinite sum, this is

mk1,...,kn = i−
∑n

i=1 ki
d
∑n

i=1 ki

dk1t1dk2t2 · · · dkntn

∞∑
`=0

(it>µ− 1

2
(t>Σt))`/`! |t=0 (10)

Since we are to compute the central moment, we will set µ = 0, so that the term it>µ will
not appear:

mk1,...,kn = i−
∑n

i=1 ki
d
∑n

i=1 ki

dk1t1dk2t2 · · · dkntn

∞∑
`=0

(−1

2
(t>Σt))`/`! |t=0 (11)

Since
∑n

i=1 ki is even, the term i−
∑n

i=1 ki = (−1)−
∑n

i=1 ki/2. We note that the term i−
∑n

i=1 ki

will ultimately cancel with the negative in the infinite sum, and will be omitted for convenience
in notation.

The expression in t is

t>Σt =
∑
ij

σijtitj (12)

We need to find the coefficient of t`11 t
`2
2 · · · t`nn in

(t>Σt)` = (
∑
ij

σijtitj)
` =

∑
ij

σijtitj · · ·
∑
ij

σijtitj (13)

All products in the elements of the sum will occur. Any product will be obtained by choosing
σijtitj a certain number of times, say `ij . Since one term is chosen from each of ` terms,∑

ij `ij = `. Further, for any such matrix (`ij), there will be a term, since it can be constructed
by choosing σijtitj from the first `ij terms, and so forth for each (ij) until ` is exhausted. For
any (`ij) there are (

`
`11 . . . `nn

)
(14)

ways to choose the terms, where this is the multinomial coefficient. So,

(
∑
ij

σijtitj)
` =

∑
{(`ij)|

∑
ij `ij=`}

(
`

`11 . . . `nn

) ∏
ij

(σijtitj)
`ij (15)
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=
∑

{(`ij)|
∑

ij `ij=`}

(
`

`11 . . . `nn

) ∏
ij

σ
`ij
ij

∏
ij

(titj)
`ij (16)

For the moment, we distinguish between σij and σji as symbols. As a result, each
∏
ij σ

`ij
ij is

unique as determined by unique (`ij). However, titj = tjti, so since each σij is combined with

two t’s, the total exponent in t is 2`. That is, a term t`11 t
`2
2 · · · t`nn must have

∑n
i=1 `i = 2`.

We need to determine the terms for which, for any (`1, . . . , `n),∏
ij

(titj)
`ij = t`11 · · · t

`n
n (17)

We will get tk in the product in the following mutually exclusive cases:

Condition Exponent of tk

i = k, j 6= k 1
i 6= k, j = k 1
i = j = k 2

(18)

So the exponent of tk will be ∑
i=k,j 6=k

`ij +
∑

i 6=k,j=k
`ij + 2`kk (19)

This sum is obtained by adding the sum of `ij across row k to the sum across column k, since
the diagonal element k occurs in both sums. That is, we get∑

i

`ik +
∑
j

`kj =
∑
i

(`ik + `ki) = `k (20)

We can now partition the set of (`ij) in Equation 16 according to these sums, that is, {`k, k =
1 . . . n}. As stated before, the sum of the exponents, `k, must be 2`.

(
∑
ij

σijtitj)
` =

∑
{(`1,...`n)|

∑
k `k=2`}

∑
{(`11,...,`nn)|

∑
i(`ik+`ki)=`k,k=1...n}

( `
`11 . . . `nn

)∏
ij

σ
`ij
ij

 n∏
i=1

t`ii (21)

Since differentiation is distributive with respect to addition and multiplication by constants,
the derivative of the product of ts can be determined from the derivatives of the individual
terms:

d
∑n

i=1 ki

dk1t1dk2t2 · · · dkntn

n∏
i=1

t`ii =
n∏
i=1

dki

dtkii
t`ii (22)

=
n∏
i=1

I{ki ≤ `i}
`i!

(`i − ki)!
t`i−kii (23)
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Thus,

d
∑n

i=1 ki

dk1dk2 · · · dkn
(
∑
ij

σijtitj)
` =

∑
{(`1,...,`n)|

∑
i `i=2`}

∑
{(`11,`12,...,`nn)|

∑
i(`ih+`hi)=`h,h=1,...,n}

( `
`11 . . . `nn

)∏
ij

σ
`ij
ij


n∏
i=1

I{ki ≤ `i}
`i!

(`i − ki)!
t`i−kii (24)

Incorporating the constants from Equation 11, noting again that the negative signs will cancel,
the full sum is

∞∑
`=0

(
1

2
)`/`!

∑
{(`1,...,`n)|

∑
i li=2`}

 ∑
{(`11,`12,...,`nn)|

∑
j(`hj+`jh)=`i,h=1,...,n}

(
`

`11 . . . `nn

)∏
ij

σ
`ij
ij


n∏
i=1

I{ki ≤ `i}
`i!

(`i − ki)!
t`i−kii (25)

Setting t = 0, only terms with `i = ki for all i will remain. Otherwise, the only ` in the
infinite sum which occurs is for ` =

∑n
i=1 ki/2. So this reduces to

(
1

2
)
∑n

i=1 ki/2/(
n∑
i=1

ki/2)!

 ∑
{(`11,...,`nn)|

∑
j(`hj+`jh)=ki,h=1,...,n}

( ∑n
i=1 ki/2

`11 . . . `nn

)∏
ij

σ
`ij
ij

 n∏
i=1

ki!

(26)
Rearranging the terms, we have

mk1,...,kn = C
∑

{(`11,`12,...,`nn)|
∑n

j=1(`jh+`hj)=kh,h=1,...,n}

( ∑n
i=1 ki/2

`11 . . . `nn

)∏
ij

σ
`ij
ij (27)

where

C =
1

2

∑n
i=1 ki/2

(
n∏
i=1

ki!)/(
n∑
i=1

ki/2)! (28)

This formula shows that evaluating mk1,...,kn symbolically requires enumerating all n × n-
dimensional matrices of non-negative integers, (`ij), which satisfy the condition

n∑
j=1

(`ji + `ij) = ki, i = 1, ..., n (29)

Conceding now that the symbols σij and σji signify the same entity, we can search for (`ij)

by looking only at terms
∏
ij σ

`ij
ij for which i ≤ j. In fact, any other matrix for the term can

be obtained by decrementing `ij and incrementing `ji by the same integer for one or more

subscripts for which i < j. For any σ
`ij
ij in the term, this can be done in `ij +1 ways. So there
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are a total of
∏
i<j(`ij + 1) transpositions. The multinomial coefficients derived above must

be applied separately to each of these (`ij) matrices. Thus, the full coefficient for a matrix will
include as a multiplier the sum of these coefficients over all of the

∏
i<j(`ij + 1) transposed

matrices. Let Υ be the set of upper-triangular integer matrices, and, for any (`ij) ∈ Υ, let
Λ((`ij)) be the set of all integer matrices (hij) obtained by so transposing (`ij). Then the
sum above can be decomposed in terms of Υ and Λ((`ij)) for each (`ij) ∈ Υ:

mk1,...,kn =

C
∑

{(`11,`12,...,`nn)∈Υ|
∑n

j=1(`jh+`hj)=kh,h=1,...,n}

∑
{(hij)∈Λ((`ij))}

( ∑n
i=1 ki/2

h11 . . . hnn

)∏
ij

σ
hij
ij (30)

But by symmetry, the products in (σij) are the same for each member of Λ((`ij)), specifically∏
ij σ

`ij
ij . So the final formula is

mk1,...,kn =

[
1

2

∑n
i=1 ki/2

(

n∏
i=1

ki!)/(

n∑
i=1

ki/2)!

]
∑

{(`11,`12,...,`nn)∈Υ|
∑n

j=1(`jh+`hj)=kh,h=1,...,n}

 ∑
{(hij)∈Λ((`ij))}

( ∑n
i=1 ki/2

h11 . . . hnn

)∏
ij

σ
`ij
ij (31)

3. Non-central moments

We now drop the condition thatµ = 0. That is, we want to calculate the symbolic represen-
tation of E[Xk1

1 Xk2
2 · · ·Xkn

n | µ,Σ], where X ∼ N(µ,Σ). First, transform to Y = X − µ ∼
N(0,Σ), so that E[Y | µ,Σ] = 0. Then, since X = Y + µ,

E[Xk1
1 Xk2

2 · · ·X
kn
n | µ,Σ] = E[(Y1 + µ1)k1(Y2 + µ2)k2 · · · (Yn + µn)kn | µ,Σ] (32)

For each term in the product we can choose Yi li times and µi ki − li times, and this can be
done in (

ki
li

)
(33)

ways. So, using the notation k = (k1, k2, · · · kn), this is

(Y1 + µ1)k1(Y2 + µ2)k2 · · · (Yn + µn)kn =
∑

0≤l≤k

n∏
i=1

(
ki
li

) n∏
i=1

Y li
i

n∏
i=1

µki−lii (34)

Therefore, since E[Y l1
1 Y l2

2 · · ·Y ln
n | µ,Σ] = E[Y l1

1 Y l2
2 · · ·Y ln

n | Σ] = ml1,...,ln ,

E[Xk1
1 Xk2

2 · · ·X
kn
n | µ,Σ] =

∑
0≤l≤k

(
n∏
i=1

(
ki
li

) n∏
i=1

µki−lii

)
ml1,...,ln (35)

There are d
∏n
i=1(ki + 1)e such moments. However, since the ml1,...,ln are central moments,

they are 0 for odd moments, and we need to consider only even moments, although k itself
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does not have to be even. So, this can be written

E[Xk1
1 Xk2

2 · · ·X
kn
n | µ,Σ] =

∑
0≤l≤k, l even

(
n∏
i=1

(
ki
li

) n∏
i=1

µki−lii

)
ml1,...,ln (36)

This formula involves the symbols
∏n
i=1 µ

li
i , for 0 ≤ l ≤ k. There are

∏n
i=1(ki + 1) such ”µ-

products”. As a general formula, all these terms are required, but in numerical calculations
if any µi = 0, all µ-products containing that µi will be 0.

Each ml1,...,ln term in the sum has a unique σ-product (such as σ1,4σ
2
2,4σ3,3), so that the µ-

products, which are also unique, cannot be combined across σ-expressions. That is, the sum
above is the best we can do.

Here is an example of a non-central moment:

E[X1
1X

2
2X

3
3 | µ,Σ] =

µ1µ
2
2µ

3
3

+ 2 µ2µ
3
3(σ1,2)

+ µ1µ
3
3(σ2,2)

+ 3 µ2
2µ

2
3(σ1,3)

+ 6 µ1µ2µ
2
3(σ2,3)

+ 3 µ2
3(2σ1,2σ2,3 + σ1,3σ2,2)

+ 3 µ1µ
2
2µ3(σ3,3)

+ 6 µ2µ3(σ1,2σ3,3 + 2σ1,3σ2,3)

+ 3 µ1µ3(σ2,2σ3,3 + 2σ2
2,3)

+ µ2
2(3σ1,3σ3,3)

+ 2 µ1µ2(3σ2,3σ3,3)

+ (6σ1,2σ2,3σ3,3 + 3σ1,3σ2,2σ3,3 + 6σ1,3σ
2
2,3)

(37)

4. Expected Values of Multivariate Polynomials

By a multivariate polynomial, we mean a linear combination of products of powers of the
components of X. That is, if K is a set of exponents k = (k1, · · · , kr), and {γk | k ∈ K} is a
corresponding set of constants, a multivariate polynomial p is defined as

p(X1, · · ·Xr) =
∑
k∈K

γk X
k1
1 · · ·X

kr
r (38)

For example,
p(X1, X2, X3) = 5 + 3X1X

2
2 +X2

1X
3
2 +X4

3 (39)

Multivariate polynomials are discussed by Hankin (2010) and Kahle (2014). Functions for the
evaluation and algebra of multivariate polynomials is included in the multipol and mpoly

packages.
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A multivariate polynomial can be integrated against the multivariate normal distribution to
give its expected value. Since these polynomials are linear combinations of products of powers
of the components of X, their expectations are obtained easily from the corresponding non-
central moments. So if X ∼ N(µ,Σ), the expectation of the general multivariate polynomial
above is

E[p(X1, · · ·Xr) | µ,Σ] =
∑
k∈K

γk E
[
Xk1

1 · · ·X
kr
r | µ,Σ

]
(40)

where the expectations are given in equation 36. Functions to compute these expectations
are described below.

5. Multivariate moments, matchings, and phylogenetic trees

Phylogenetic trees are used to ascertain evolutionary relationships among species (Felsenstein
2004). A common model is the rooted, bifurcating tree. Diaconis and Holmes (1998) describe
such a tree as “a binary rooted tree with n labeled leaves.” Felsenstein (Chapter 3) shows
that the number of rooted, bifurcating trees for n species is

(2n− 3)!

2n−2(n− 2)!
(41)

He also discusses the numbers of distinct shapes of trees and displays these shapes for n = 2
to n = 6 species. Diaconis and Holmes described how such phylogenetic trees are closely
related to matchings.

Surprisingly, at least for computationally feasible values of n, for the first moment

E[X1 · · ·X2(n−1)] (42)

the number of upper-triangular integer matrices that determine the moment is the same as the
number of phylogenetic trees for n species. In fact, for any number of species there is a one-
to-one correspondence between two seemingly disparate objects, phylogenetic trees and the
symbolic first central moments of the multivariate normal distribution. The correspondence
is established through matchings.

Diaconis and Holmes define a perfect matching on 2n points as a “pairing of the points into n
groups of two.” We show that there is a one-to-one correspondence, or bijection, between the
components of a representation of a multivariate normal first moment with 2n components
and matchings on 2n points.

For any n, let Λ(2n) be the collection of 2n × 2n-dimensional matrices associated with the
symbolic first moment of the 2n-dimensional multivariate normal distribution. Let Γ(2n) be
the set of perfect matchings on a set ∆ of 2n points.

First suppose that L = (lij) ∈ Λ(2n). Then criterion 29 becomes

2n∑
j=1

(lji + lij) = 1, i = 1, ..., 2n (43)

That is, there is exactly one lij = 1 in the union of the cell in row k and column k for each
1 ≤ k ≤ n. The sum of these sums over i is twice the total count of cells with 1s, and is
obviously 2n. Therefore, the number of cells containing 1 is n.
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Let γ = {(i, j) | li,j = 1, i = 1, ..., 2n, j = 1, ..., 2n}, that is, the set of cells containing 1. By
criterion 43, for any pair (i, j) ∈ Γ, i 6= j since the diagonal terms in the sum occur twice, so
that if i = j we would have kj ≥ 2. Furthermore, if any two pairs (i1, j1) and (i2, j2) were
to share a common index, say i1 = j2 = h, then the union of row h and column h would
have at least two cells containing 1, leading to kh ≥ 2. Therefore, the indices in these cells
are unique, and since there are n cells containing 1, there are 2n distinct indices among these
cells, namely 1, ..., 2n. It is clear that γ is a perfect matching on this set of indices. So for
any L ∈ Λ(2n) there corresponds a perfect matching γ on 1, ..., 2n.

Now suppose that γ ∈ Γ(2n). For specificity, assume that the points in γ are numbered
1, ..., 2n. Order the pairs in γ lexicographically by the second components so that for any pair
(i, j), i < j. Let L = (li,j) be a 2n× 2n-dimensional matrix of 0s with the rows and columns
labeled 1, ..., 2n. Set any cell in L corresponding to a pair in γ to 1. Since any point occurs
in one and only one pair, for any index i there is one and only one cell in row i and column i
with a 1 in it. Every point is in the matching, so for each i, there must be a 1 in one cell of
row i and column i. So for any γ ∈ Γ(2n) there is an L ∈ Λ(2n).

Invoking the algorithm projecting Λ(2n) into Γ(2n), the L computed above will be mapped
back into the matching just defined. That is, these two procedures are inverses.

Paradis describes various formats for encoding trees and R functions to transform one to an-
other. Functions are described below to transform between an ape matching object or Newick
format to a moment object. Using these functions and the functions read.tree, write.tree,
as.matching, and as.phylo.matching from the ape package, trees can be transformed among
the moment, matching, phylo, and Newick formats. Table 1 shows the functions used for each
transformation. Empty cells can be reached by obvious paths.

From To

Newick Phylo Matching Moment

Newick ———– read.tree toMoment

Phylo write.tree ———– as.Matching

Matching as.phylo.matching ———– toMoment

Moment toNewick toMatching ———–

Table 1: Functions for converting between tree formats

6. Discussion

Formula 31 was implemented in R with a recursive function that determines the set of upper-
triangular integer matrices that satisfy Criterion 29. A second function calculates their asso-
ciated coefficients. Additional functions were written to create LATEX (LATEX3 Project Team
2009) code to display the moments symbolically, and to calculate the moments for specified
variance-covariance matrices, and these have been augmented with functions for non-central
moments.

The potential for complexity in these computations is seen from the results in Table 2. In
this table, n is the dimension of the multivariate vector and #(σij) is the number of distinct

elements in the variance-covariance matrix, N = n(n+1
2 . Size is measured by two values,
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M and r. M is the total of the exponents of the moment, M =
∑n

i=1 ki. The value r is
the number of terms for a moment E[X1

1 , ..., X
1
n] with all exponents equal to 1, which is

(2M − 1)!/(2M−1(M − 1)!) (Wikipedia contributors 2009). Example is a moment of the given
Size. Potential Terms is a maximum for the number of (`ij) matrices to be checked for this
example, determined as the product of 1+max(ki, kj) over i 6= j times the product of 1+[ki/2]
over i, where [ ] denotes truncation. The last column, # Terms, is the actual number of terms
in the moment as determined by the functions.

It is clear that computation of high-order moments will be very intensive. The equivalence
of first moments of dimension 2(n − 1) and phylogenetic trees for n species has been shown
above. Note that it would be possible that the L-representation of symbolic multivariate
normal moments is sufficient but not necessary to determine the moment. However, the L
representation of a multivariate normal moment can be determined by inspection from the σ
terms, so that the symbolic moment and its L representation are, in fact, equivalent.

Felsenstein (2004, page 61) notes that finding the best tree using maximum parsimony is NP-
hard, as shown by Foulds and Graham (1982). Felsenstein also notes that the Fitch algorithm
for finding the number of changes in a given bifurcating tree is efficient (Felsenstein 2004, page
11). This implies that finding all trees is itself NP-hard, and that therefore computing first
multivariate moments is NP-hard. Note that for any even n and any integer r, the moment
E[Xr

1 X
r
2 · · · Xr

n] has L components whose terms are L matrices from the representation of
E[X1

1 X
1
2 · · · X1

n] multiplied by r. So the representation of this first moment can be obtained
from inspection of the higher moment, implying that computing these higher moments is also
NP-hard.

Finally, Criterion 29 might arise in other contexts, such as networks (Stergiou and Siganos
1996). For example, suppose that there are n airports and airport i can accommodate ki
arrivals or departures on a day, where a plane may take off and land at the same airport.
This network is illustrated in Figure 1. The problem is to determine the set of flights between
airports that totally expend the capacities, ki, of all airports. For this problem, `ij represents
the number of flights from airport i to airport j, and `ii is the number of flights which start
and end at airport i. The set of flights is the set satisfying Criterion 29.

"!
# 
ki "!
# 
kj

-
`ij

�
`ji

-�
�`ii

� �
�`jj

Figure 1: Airport Capacity Network

7. R functions

7.1. R functions for computing central moments

The following R functions calculate expressions and values for central and non-central mo-
ments.

In these R functions, upper-triangular matrices (`ij) for n dimensions are represented as
vectors of length n(n + 1), with row 1 followed by row 2, etc. For example, for n = 2,
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(`ij) is represented as (`11, `12, `22). Each such matrix represents the exponents for a single
product of σijs. For example, (1, 2, 0) represents σ1

11σ
2
12σ

0
22 = σ11σ

2
12. The representations

are accumulated and stored internally, raising the possibility of space allocation problems as
encountered in the second to last example in Table 2. This problem could be alleviated by
saving the representation matrix to a file instead.

The function multmoments searches the integer matrices for those satisfying Criterion 29.
This is a recursive function which implements a branch-and-bound algorithm. The function
multmoments is called by callmultmoments. This function initializes variables, determines
the coefficients of the terms from the upper-triangular representations, and returns a list
consisting of the original moment vector, the set of representations, and the corresponding
set of coefficients. This list is set to class moment. The moment class has three methods:
print, toLatex, evaluate, and simulate.

The print method prints a moment object, usually the output of callmultmoments, showing
a mathematical representation of the moment, followed by the rows of the representation with
the corresponding coefficient attached.

The toLatex method uses a moment object, usually the output of callmultmoments, to
determine the LATEX code for the moment sorted lexicographically. Note that it inserts double
backslashes where LATEX requires a backslash; these can be reset to single backslashes by
writing the output to a file using the R function writeLines (base package), as illustrated
below.

The evaluate method determines the value of a moment object for a specified variance-
covariance matrix Σ, which must be represented as an upper-triangular matrix in vector
form.

The simulate method uses Monte Carlo integration Rizzo (2008) to numerically approximate
a moment object for a specified mean and variance-covariance matrix Σ (represented as a square
matrix in vector form), with a specified number of random samples. Note that simulate uses
only the moment definition, not the representation, so can be used with any moment in vector
notation by converting the vector to a moment object as shown below. The simulate method
uses the rmvnorm function from the mvtnorm package (Genz, Bretz, with contributions by
Tetsuhisa Miwa, Mi, Leisch, and Scheipl (2008).)

7.2. R functions for computing non-central moments

The toLatex_noncentral function produces a Latex expression for a noncentral moment.
This function uses central moments in the environment specified in the function call. The
default environment is symmoments.

The evaluate_noncentral function evaluates a noncentral moment with specified mean and
covariance matrix. This function uses central moments in the environment specified in the
function call. The default environment is symmoments.

The evaluate_expected.polynomial function evaluates a multivariate polynomial, assuming
a specified non-central multivariate distribution. This is done by calling evaluate_noncentral
for each term in the polynomial. The polynomial is expressed as a multipol object, an mpoly

object, or defined by a list giving the exponents in each term and its coefficient. The central
moment objects required for this computation must be computed before invoking this func-
tion. The central moments must reside in the environment specified in the function call. The
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default environment is symmoments.

The convert.multipol function converts between multipol objects and lists representing
the same multivariate polynomial.

The convert.mpoly function converts between mpoly objects and lists representing the same
multivariate polynomial. Note that convert.multipol and convert.mpoly can be composed
to transform between these two types of objects. However, the names of the variables will
not be preserved.

The tounsorted function produces an unsorted central moment object from a sorted object
of class ”moment”. Unsorted moments are those with exponents not in numeric order, e.g.,
m3,1,2.

The make.all.moments function creates all central moment objects of a specified or smaller
size. That is, if c(k1, ..., kn) is input, all moments ml1,...,ln with (l1, ..., ln) ≤ (k1, ..., kn) are
produced. The moments are placed in the symmoments environment. If this environment
does not exist, the user is prompted to create it. Moments that exist in the symmoments

environment are not recreated. Unsorted moments, those with exponents are not in numeric
order, are created using the tounsorted function to transform from the sorted moment. If
the sorted moment does not exist, it is created. Moments of lower dimension are not created;
for example, if c(2, 4) is input, m20 is created, but m2 is not.

As a convention, moments are named mij..l, e.g., m136. If any exponent is greater than
9, lower case letters and then upper case letters are used. For example, m3bA is the name
of the moment m3,11,36. The function callmultmoments theoretically accommodates larger
exponents, but the largest exponent allowed by this scheme is 61. If an object with a name
of this form exists but is not an object of class ”moment”, it is replaced (overwritten) by the
moment object.

The integrate.polynomial function integrates a multivariate polynomial against a specified
non-central multivariate distribution using ordinary integration by invoking the adaptIntegrate
function from the cubature package. This function was written mainly for checking.

7.3. R functions for correspondence with phylogenetic trees

Three R functions were written to implement the correspondences among the moment, match-
ing, and Newick formats.

The toMoment function converts a tree to moment format. Its input is a tree in Newick format
(Felsenstein 1990) or a matching object from the ape package (Paradis, Claude, and Strimmer
2004). toMoment outputs an object of class L-matrix. This class consists of 5 components as
defined in the function description, and includes the L matrix. Note that the symmoments
package defines the moment class, which encompasses all L-matrices for symbolic multivariate
normal moments.

The toNewick function converts a tree in moment format to Newick format. The input can be
an L-matrix object, a square L matrix, or an L matrix in reduced upper-triangular (vector)
form. The toNewick function sets its list output to class L-Newick, which has 5 components,
including the tree in Newick format.

The toMatching function converts a tree in moment format to an ape matching object. The
input can be an L-matrix object, a square L matrix, or an L matrix in reduced upper-
triangular (vector) form. toMatching sets its list output to class matching to conform to the
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definition in the ape package.

7.4. Examples of computing central moments

These examples of the functions for central moments use the following moment:

E[X1
1X

2
2X

3
3X

4
4 ] =

18σ1,2σ2,3σ3,3σ
2
4,4 + 72σ1,2σ2,3σ

2
3,4σ4,4 + 72σ1,2σ2,4σ3,3σ3,4σ4,4 + 48σ1,2σ2,4σ

3
3,4+

9σ1,3σ2,2σ3,3σ
2
4,4 + 36σ1,3σ2,2σ

2
3,4σ4,4 + 18σ1,3σ

2
2,3σ

2
4,4 + 144σ1,3σ2,3σ2,4σ3,4σ4,4+

36σ1,3σ
2
2,4σ3,3σ4,4 + 72σ1,3σ

2
2,4σ

2
3,4 + 36σ1,4σ2,2σ3,3σ3,4σ4,4 + 24σ1,4σ2,2σ

3
3,4+

72σ1,4σ
2
2,3σ3,4σ4,4 + 72σ1,4σ2,3σ2,4σ3,3σ4,4 + 144σ1,4σ2,3σ2,4σ

2
3,4 + 72σ1,4σ

2
2,4σ3,3σ3,4

(44)

The use of the toLatex and evaluate methods and writeLines is also illustrated. The file
created by writeLines can be included in a LATEX document using the \input command, or
can be included in Sweave as done here.
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Compute the representation of a central moment (callmultmoments)

The following code calculates a central moment and shows the three components, moment,
representation, and coefficients.

> m1234 <- callmultmoments(c(1,2,3,4))

> unclass(m1234)

$moment

[1] 1 2 3 4

$representation

S(1,1) S(1,2) S(1,3) S(1,4) S(2,2) S(2,3) S(2,4) S(3,3) S(3,4) S(4,4)

1 0 0 0 1 0 0 2 1 1 0

2 0 0 0 1 0 1 1 0 2 0

3 0 0 0 1 0 1 1 1 0 1

4 0 0 0 1 0 2 0 0 1 1

5 0 0 0 1 1 0 0 0 3 0

6 0 0 0 1 1 0 0 1 1 1

7 0 0 1 0 0 0 2 0 2 0

8 0 0 1 0 0 0 2 1 0 1

9 0 0 1 0 0 1 1 0 1 1

10 0 0 1 0 0 2 0 0 0 2

11 0 0 1 0 1 0 0 0 2 1

12 0 0 1 0 1 0 0 1 0 2

13 0 1 0 0 0 0 1 0 3 0

14 0 1 0 0 0 0 1 1 1 1

15 0 1 0 0 0 1 0 0 2 1

16 0 1 0 0 0 1 0 1 0 2

$coefficients

rep 1 rep 2 rep 3 rep 4 rep 5 rep 6 rep 7 rep 8 rep 9 rep 10 rep 11

72 144 72 72 24 36 72 36 144 18 36

rep 12 rep 13 rep 14 rep 15 rep 16

9 48 72 72 18
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Print a representation of a central moment (print method)

The following shows the result of using the print method with the moment in Equation 44.

> m1234

E[ X1^1 X2^2 X3^3 X4^4 ]:

coef S(1,1) S(1,2) S(1,3) S(1,4) S(2,2) S(2,3) S(2,4) S(3,3) S(3,4) S(4,4)

1 72 0 0 0 1 0 0 2 1 1 0

2 144 0 0 0 1 0 1 1 0 2 0

3 72 0 0 0 1 0 1 1 1 0 1

4 72 0 0 0 1 0 2 0 0 1 1

5 24 0 0 0 1 1 0 0 0 3 0

6 36 0 0 0 1 1 0 0 1 1 1

7 72 0 0 1 0 0 0 2 0 2 0

8 36 0 0 1 0 0 0 2 1 0 1

9 144 0 0 1 0 0 1 1 0 1 1

10 18 0 0 1 0 0 2 0 0 0 2

11 36 0 0 1 0 1 0 0 0 2 1

12 9 0 0 1 0 1 0 0 1 0 2

13 48 0 1 0 0 0 0 1 0 3 0

14 72 0 1 0 0 0 0 1 1 1 1

15 72 0 1 0 0 0 1 0 0 2 1

16 18 0 1 0 0 0 1 0 1 0 2
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Compute the LATEX representation of a central moment (toLatex method)

The following shows the computation of the representation of the central moment in Equa-
tion 44.

> toLatex(m1234)

[1] "E[X_{1}^{1}X_{2}^{2}X_{3}^{3}X_{4}^{4}]=\\\\"

[2] "18\\sigma_{1,2}\\sigma_{2,3}\\sigma_{3,3}\\sigma_{4,4}^{2}+"

[3] "72\\sigma_{1,2}\\sigma_{2,3}\\sigma_{3,4}^{2}\\sigma_{4,4}+"

[4] "72\\sigma_{1,2}\\sigma_{2,4}\\sigma_{3,3}\\sigma_{3,4}\\sigma_{4,4}+"

[5] "48\\sigma_{1,2}\\sigma_{2,4}\\sigma_{3,4}^{3}+\\\\"

[6] "9\\sigma_{1,3}\\sigma_{2,2}\\sigma_{3,3}\\sigma_{4,4}^{2}+"

[7] "36\\sigma_{1,3}\\sigma_{2,2}\\sigma_{3,4}^{2}\\sigma_{4,4}+"

[8] "18\\sigma_{1,3}\\sigma_{2,3}^{2}\\sigma_{4,4}^{2}+"

[9] "144\\sigma_{1,3}\\sigma_{2,3}\\sigma_{2,4}\\sigma_{3,4}\\sigma_{4,4}+\\\\"

[10] "36\\sigma_{1,3}\\sigma_{2,4}^{2}\\sigma_{3,3}\\sigma_{4,4}+"

[11] "72\\sigma_{1,3}\\sigma_{2,4}^{2}\\sigma_{3,4}^{2}+"

[12] "36\\sigma_{1,4}\\sigma_{2,2}\\sigma_{3,3}\\sigma_{3,4}\\sigma_{4,4}+"

[13] "24\\sigma_{1,4}\\sigma_{2,2}\\sigma_{3,4}^{3}+\\\\"

[14] "72\\sigma_{1,4}\\sigma_{2,3}^{2}\\sigma_{3,4}\\sigma_{4,4}+"

[15] "72\\sigma_{1,4}\\sigma_{2,3}\\sigma_{2,4}\\sigma_{3,3}\\sigma_{4,4}+"

[16] "144\\sigma_{1,4}\\sigma_{2,3}\\sigma_{2,4}\\sigma_{3,4}^{2}+"

[17] "72\\sigma_{1,4}\\sigma_{2,4}^{2}\\sigma_{3,3}\\sigma_{3,4}\\\\"

The LATEXrepresentation can be written to a file using the writeLines function as follows:

> writeLines(toLatex(m1234), "yourfilename")

Compute a value of a central moment (evaluate method)

The code below evaluates the moment at the following variance-covariance matrix:

[,1] [,2] [,3] [,4]

[1,] 4 2 1 1

[2,] 2 3 1 1

[3,] 1 1 2 1

[4,] 1 1 1 2

> evaluate(m1234, c(4, 2, 1, 1, 3, 1, 1, 2, 1, 2))

[1] 3480
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Estimate a central moment using simulation (simulate method)

The value of E[X1
1X

2
2X

3
3X

4
4 ] when X has a normal distribution with mean µ = (1, 2, 0, 3) and

the same variance-covariance matrix as above could be estimated using simulate with 1000
random samples More samples may be required to obtain an accurate estimate.

> #simulate(m1234,1000,NULL, c(1,2,0,3),c(4,2,1,1,2,3,1,1,1,1,2,1,1,1,1,2))

7.5. Examples of computing non-central moments

Note that several of these examples would require moments of various sizes exist, so have not
been run. These moments can be created using the make.all.moments function, or directly
using the callmultmoments function.

Calculate symbolic representation of a non-central moment (not run)

> # as.matrix(toLatex_noncentral(c(1,3)))

Create all 2-dimensional moment objects with exponents up to 3 (not run)

Note that this will overwrite objects in the symmoments environment with names of the form
mxx, where 0 <= x <= 3

> # make.all.moments(c(3,3))

Evaluate a non-central moment at a specified mean and covariance matrix
(not run)

Note that this would require moments to exist of order up to c(1,3).

> # evaluate_noncentral(c(1,3),c(1,2),c(1,0,1))

Create an mpoly object

> t0 <- mpoly(list(c(coef=3,x1=2),c(coef=2,x1=1,x2=3),

+ c(coef=-4,z=2),c(coef=1,x1=1,x2=2,z=1)))

> print(t0)

[1] "3 x1^2 + 2 x1 x2^3 - 4 z^2 + x1 x2^2 z"

Convert an mpoly object to a moment object
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> t1 <<- convert.mpoly(t0)

> t1

$coeff

[1] 3 2 -4 1

$powers

[,1] [,2] [,3]

[1,] 2 0 0

[2,] 1 3 0

[3,] 0 0 2

[4,] 1 2 1

Convert a moment object to a multipol object

> t2 <<- convert.multipol(t1)

> t2

, , z^0

y^0 y^1 y^2 y^3

x^0 0 0 0 0

x^1 0 0 0 2

x^2 3 0 0 0

, , z^1

y^0 y^1 y^2 y^3

x^0 0 0 0 0

x^1 0 0 1 0

x^2 0 0 0 0

, , z^2

y^0 y^1 y^2 y^3

x^0 -4 0 0 0

x^1 0 0 0 0

x^2 0 0 0 0

Convert from multipol back to mpoly through moment

> print(mpoly(convert.mpoly(convert.multipol(t2))))

[1] "3 X1^2 + 2 X1 X2^3 + X1 X2^2 X3 - 4 X3^2"
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Evaluate the expected value of a multivariate polynomial (not run)

See the Latex example in the text. This requires moments to exist of order up to c(1, 2, 3).

> # evaluate_expected.polynomial(t0,c(1,2,3),c(1,0,0,1,0,1))

7.6. Examples of correspondence between first multivariate moments and
phylogenetic trees

The following examples convert a tree in Newick format to trees in phylo, matching, and
moment format.

Create a Newick representation of a tree

> exam.Newick <- "(((a,b),c),d);"

Convert to phylo format

> library(ape)

> exam.phylo <- read.tree(text=exam.Newick)

> exam.phylo

Phylogenetic tree with 4 tips and 3 internal nodes.

Tip labels:

[1] "a" "b" "c" "d"

Rooted; no branch lengths.

Convert to matching format

> exam.matching <- as.matching(exam.phylo)

> exam.matching

$matching

[,1] [,2]

[1,] 1 2

[2,] 3 5

[3,] 4 6

$tip.label

[1] "a" "b" "c" "d"

attr(,"class")

[1] "matching"
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Convert to L-matrix format

> exam.L.matrix <- toMoment(exam.matching)

> exam.L.matrix

$L

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0 1 0 0 0 0

[2,] 0 0 0 0 0 0

[3,] 0 0 0 0 1 0

[4,] 0 0 0 0 0 1

[5,] 0 0 0 0 0 0

[6,] 0 0 0 0 0 0

$L.ut

[1] 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

$Newick

[1] "(((a,b),c),d);"

$tip.label

[1] "a" "b" "c" "d"

$tip.label.n

[1] 4

attr(,"class")

[1] "L-matrix"

Convert back to various formats (not run)

> # backto.matching <- toMatching(exam.L.matrix )

> # backto.L.matrix <- toMoment(backto.matching$matching[,c(1,2)])

> # backto.Newick <- toNewick(exam.L.matrix$L,type="square")

> # backto.L.matrix.tips <- toMoment(exam.Newick,tip.label=c("d","a","c","b"))

> # backto.phylo <- as.phylo.matching(backto.matching)
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