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EnvStats-package Package for Environmental Statistics, Including US EPA Guidance

Description

A comprehensive R package for environmental statistics and the successor to the S-PLUS module
EnvironmentalStats for S-PLUS (first released in April, 1997). EnvStats provides a set of power-
ful functions for graphical and statistical analyses of environmental data, with a focus on analyzing
chemical concentrations and physical parameters, usually in the context of mandated environmental
monitoring. It includes major environmental statistical methods found in the literature and regula-
tory guidance documents, and extensive help that explains what these methods do, how to use them,
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and where to find them in the literature. It also includes numerous built-in data sets from regula-
tory guidance documents and environmental statistics literature, and scripts reproducing analyses
presented in the user’s manual (Millard, 2013).

For a complete list of functions and datasets, you can do any of the following:

* See the help file Functions By Category for a listing of functions by category.

* If you are in the on-line help, scroll to the bottom of this help page and click on the Index
link.

* Type library(help="EnvStats") at the command prompt.
Note: The names of all EnvStats functions start with a lowercase letter, and the names of all

EnvStats datasets and data objects start an uppercase letter. You can type newsEnvStats() at the
R command prompt for the latest news for the EnvStats package.

Details
Package: EnvStats
Type: Package
Version: 2.1.0
Date: 2016-04-18

License: GPL (>=3)
LazylLoad: yes

A companion file EnvStats-manual.pdf containing a listing of all the current help files is located
on the R CRAN web site at http://cran.r-project.org/web/packages/EnvStats/EnvStats.
pdf and also in the doc subdirectory of the directory where the EnvStats package was installed. For
example, if you installed R under Windows, this file might be located in the directory C:\Program
Files\R-*.#* #\library\EnvStats\doc, where *.**.* denotes the version of R you are using (e.g.,
3.2.5) or in the directory C:\Users\Name\Documents\R\win-library\*.**,#*\EnvStats\doc, where
Name denotes your user name on the Windows operating system.

EnvStats comes with companion scripts, located in the scripts subdirectory of the directory where
the package was installed. One set of scripts lets you reproduce the examples in the User’s Manual
(currently is still in preparation). There are also scripts that let you reproduce examples from US
EPA guidance documents.

See the References section below for documentation for the predecessor to EnvStats, Environmen-
talStats for S-PLUS for Windows.

Features of EnvStats include:

* New functions for computing summary statistics and creating summary plots to compare the
distributions of groups side-by-side.

» New probability distributions have been added to the ones already available in R, including
the extreme value distribution and the zero-modified lognormal (delta) distribution. You can
compute quantities associated with these probability distributions (probability density func-
tions, cumulative distribution functions, and quantiles), and generate random numbers from
these distributions.

* Plot probability distributions so you can see how they change with the value of the distribution
parameter(s).


http://cran.r-project.org/web/packages/EnvStats/EnvStats.pdf
http://cran.r-project.org/web/packages/EnvStats/EnvStats.pdf
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 Estimate distribution parameters and distribution quantiles, and compute confidence intervals
for commonly used probability distributions, including special methods for the lognormal and
gamma distributions.

* Perform and plot the results of goodness-of-fit tests:

— Observed and Fitted Distributions
— Quantile-Quantile Plots
— Results of Shaprio-Wilk test, Kolmogorov-Smirnov test, etc.

Includes a new generalized goodness-of-fit test for any continuous distribution.
* Functions for assessing optimal Box-Cox data transformations.

» Compute parametric and non-parametric prediction intervals, simultaneous prediction inter-
vals, and tolerance intervals.

* New functions for hypothesis tests, including:

Nonparametric estimation and tests for seasonal trend

Fisher’s one-sample randomization (permutation) test for location

Quantile test to detect a shift in the tail of one population relative to another

Two-sample linear rank tests

Test for serial correlation based on von Neumann rank test

* Perform calibration based on a machine signal to determine decision and detection limits and
report estimated concentrations along with confidence intervals.

* Easily perform power and sample size computations and create companion plots for sampling
designs based on confidence intervals, hypothesis tests, prediction intervals, and tolerance
intervals.

* Handle singly and multiply censored (less-than-detection-limit) data:

Empirical CDF and Quantile-Quantile Plots
Parameter/Quantile Estimation and Confidence Intervals

Prediction and Tolerance Intervals
Goodness-of-Fit Tests
Optimal Box-Cox Transformations

— Two-Sample Rank Tests
* Functions for performing Monte Carlo simulation and probabilistic risk assessement.

* Reproduce specific examples in EPA guidance documents by using built-in data sets from
these documents and running companion scripts.

Author(s)

Steven P. Millard
Maintainer: Steven P. Millard <EnvStats @ProbStatInfo.com>

References

Millard, S.P. (2013). EnvStats: An R Package for Environmental Statistics. Springer, New York.

Millard, S.P. (2002). EnvironmentalStats for S-PLUS: User’s Manual for Version 2.0. Second
Edition. Springer-Verlag, New York.

Millard, S.P., and N.K. Neerchal. (2001). Environmental Statistics with S-PLUS. CRC Press, Boca
Raton, FL.
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Examples

# Look at plots and summary statistics for the TcCB data given in

# USEPA (1994b), (the data are stored in EPA.94b.tccb.df).

# Arbitrarily set the one censored observation to the censoring level.
# Group by the variable Area.

EPA.94b.tcch.df

# TcCB.orig  TcCB Censored Area
#1 0.22 0.22 FALSE Reference
#2 0.23 0.23 FALSE Reference
#...

#46 1.20 1.20 FALSE Reference
#47 1.33 1.33 FALSE Reference
#48 <0.09 0.09 TRUE  Cleanup
#49 0.09 0.09 FALSE  Cleanup
#...

#123 51.97 51.97 FALSE  Cleanup

#124 168.64 168.64 FALSE  Cleanup

# First plot the data

dev.new()
stripChart(TcCB ~ Area, data = EPA.94b.tccb.df,
xlab = "Area"”, ylab = "TcCB (ppb)")
mtext("TcCB Concentrations by Area”, line = 3, cex = 1.25, font = 2)

dev.new()
stripChart(log10(TcCB) ~ Area, data = EPA.94b.tccb.df,
p.value = TRUE,
xlab = "Area”, ylab = expression(paste(log[10], " [ TcCB (ppb) 1")))
mtext (expression(paste(log[10], "(TcCB) Concentrations by Area")),
line = 3, cex = 1.25, font = 2)

sum(EPA.94b. tcch.df$Censored)
#[1]1 1

with(EPA.94b.tccb.df, TcCB[Censored])
#0.09

# Summary statistics will treat the one censored value
# as assuming the detection limit.

summaryFull(TcCB ~ Area, data = EPA.94b.tccb.df)

# Cleanup Reference
#N 77 47
#Mean .915 .5985

3 [}
#Median 0.43 0.54
#10% Trimmed Mean 0.6846 0.5728
#Geometric Mean 0.5784 0.5382
#Skew 7.717 0.9019
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#Kurtosis 62.
#Min Q.
#Max 168.
#Range 168.
#1st Quartile 0.
#3rd Quartile 1.
#Standard Deviation 20.
#Geometric Standard Deviation 3
#Interquartile Range [}
#Median Absolute Deviation Q.
#Coefficient of Variation 5

67
09
6
5
23
1
02

.898
.87

355

112
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0.132
0.22
1.33
1.1
0.39
0.75
0.2836
1.597
0.36
0.2669
0.4739

8

summaryStats(TcCB ~ Area, data = EPA.94b.tccb.df, digits = 1)

#
#
#

N Mean SD Median Min

Max

Cleanup 77 3.9 20.0 0.4 0.1 168.6

Reference 47 0.6 0.3 0.5 0.2

1.3

# Compute Shapiro-Wilk Goodness-of-Fit statistic for the
# Reference Area TcCB data assuming a lognormal distribution

# ___________________________________________________________
sw.list <- gofTest(TcCB ~ 1, data = EPA.94b.tcch.df,
subset = Area == "Reference"”, dist = "lnorm")
sw.list
# Results of Goodness-of-Fit Test

++

HoHF B HF OHF H HF OF B HF OF H HF OHF OH H OF H H OF H H ¥ B H H

Test Method:
Hypothesized Distribution:

Estimated Parameter(s):

Estimation Method:

Data:

Subset With:

Data Source:

Sample Size:

Test Statistic:

Test Statistic Parameter:
P-value:

Alternative Hypothesis:

Sh

Lo

me
sd

mv

Tc

Ar

EP.

47

W

Tr
Lo

apiro-Wilk GOF

gnormal

anlog = -0.6195712
log 0.4679530

ue

CB

ea == "Reference”

A.94b.tccb.df

0.978638

= 47

.5371935

ue cdf does not equal the
gnormal Distribution.
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# Plot results of GOF test
dev.new()
plot(sw.list)

# Based on the Reference Area data, estimate 90th percentile
# and compute a 95% confidence limit for the 90th percentile
# assuming a lognormal distribution.

with(EPA.94b. tccb.df,

eqlnorm(TcCB[Area == "Reference”], p = 0.9, ci = TRUE))
# Results of Distribution Parameter Estimation
# ____________________________________________
Assumed Distribution: Lognormal
Estimated Parameter(s): meanlog = -0.6195712
sdlog = 0.4679530
Estimation Method: mvue

Estimated Quantile(s):

Confidence Interval for:

HoH H F ¥ H HF ¥ H F ¥ HHF ¥ HHF ¥ HHEHHEH R

90'th %ile = 0.9803307

Quantile Estimation Method: gmle
Data: TcCB[Area == "Reference"]
Sample Size: 47

90'th %ile

Confidence Interval Method: Exact
Confidence Interval Type: two-sided
Confidence Level: 95%
Confidence Interval: LCL = 0.8358791
UCL = 1.2154977
# __________
# Cleanup

rm(TcCB.ref, sw.list)

ACE.13.TCE.df

Trichloroethylene Concentrations Before and After Remedation

Description

Trichloroethylene (TCE) concentrations (mg/L) at 10 groundwater monitoring wells before and

after remediation.
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Usage
data(ACE.13.TCE.df)

Format

A data frame with 20 observations on the following 3 variables.

TCE.mg.per.L TCE concentrations
Well a factor indicating the well number

Period a factor indicating the period (before vs. after remediation)

Source

USACE. (2013). Environmental Quality - Environmental Statistics. Engineer Manual EM 200-1-16,

31 May 2013. Department of the Army, U.S. Army Corps of Engineers, Washington, D.C. 20314-

1000, p. M-10. http://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/
EM_200-1-16.pdf.

anovaPE Compute Lack-of-Fit and Pure Error Anova Table for a Linear Model

Description

Compute a lack-of-fit and pure error anova table for either a linear model with one predictor variable
or else a linear model for which all predictor variables in the model are functions of a single variable
(for example, x, x*2, etc.). There must be replicate observations for at least one value of the
predictor variable(s).

Usage
anovaPE (object)
Arguments
object an object of class "1m"”. The object must have only one predictor variable in

the formula, or else all predictor variables in the model must be functions of a
single variable (for example, X, x2, etc.). Also, the predictor variable(s) must
have replicate observations for at least one value of the predictor variable(s).
Finally, the total number of observations must be such that the degrees of free-
dom associated with the residual sums of squares is greater than the number of
observations minus the number of unique observations.

Details

Produces an anova table with the the sums of squares partitioned by “Lack of Fit” and “Pure Er-
ror”. See Draper and Smith (1998, pp.47-53) for details. This function is called by the function
calibrate.

Value

An object of class "anova" inheriting from class "data.frame".


http://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_200-1-16.pdf
http://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_200-1-16.pdf
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Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Draper, N., and H. Smith. (1998). Applied Regression Analysis. Third Edition. John Wiley and
Sons, New York, pp.47-53.

Millard, S.P., and Neerchal, N.K. (2001). Environmental Statistics with S-PLUS. CRC Press, Boca
Raton, Florida.

See Also

anova.lm, Im, calibrate.

Examples

# The data frame EPA.97.cadmium.111.df contains calibration data for

# cadmium at mass 111 (ng/L) that appeared in Gibbons et al. (1997b)

# and were provided to them by the U.S. EPA.

#

# First, display a plot of these data along with the fitted calibration line
# and 99% non-simultaneous prediction limits. See

# Millard and Neerchal (2001, pp.566-569) for more details on this

# example.

EPA.97.cadmium.111.df
#  Cadmium Spike

#1 0.88 0
#2 1.57 0
#3 0.70 0
#

#33 99.20 100

#34 93.71 100

#35 100.43 100

Cadmium <- EPA.97.cadmium.111.df$Cadmium
Spike <- EPA.97.cadmium.111.df$Spike

calibrate.list <- calibrate(Cadmium ~ Spike,
data = EPA.97.cadmium.111.df)

newdata <- data.frame(Spike = seq(min(Spike), max(Spike), length.out = 100))
pred.list <- predict(calibrate.list, newdata = newdata, se.fit = TRUE)
pointwise.list <- pointwise(pred.list, coverage = .99, individual = TRUE)
plot(Spike, Cadmium, ylim = c(min(pointwise.list$lower),

max (pointwise.list$upper)), xlab = "True Concentration (ng/L)",

ylab = "Observed Concentration (ng/L)")

abline(calibrate.list, lwd = 2)

lines(newdata$Spike, pointwise.list$lower, 1ty = 8, lwd = 2)
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lines(newdata$Spike, pointwise.list$upper, lty = 8, 1lwd = 2)

title(paste(”"Calibration Line and 99% Prediction Limits”,
"for US EPA Cadmium 111 Data”, sep="\n"))

rm(Cadmium, Spike, newdata, calibrate.list, pred.list,
pointwise.list)

# Now fit the linear model and produce the anova table to check for
# lack of fit. There is no evidence for lack of fit (p = 0.41).

fit <- Im(Cadmium ~ Spike, data = EPA.97.cadmium.111.df)

anova(fit)
#Analysis of Variance Table
#
#Response: Cadmium
# Df Sum Sg Mean Sq F value Pr(>F)
#Spike 1 43220 43220 9356.9 < 2.2e-16 **x%x
#Residuals 33 152 5
#___
#Signif. codes: @ 'x*x' 0.001 'xx' 0.01 'x' ©.05 '.' 0.1 ' ' 1
#Analysis of Variance Table
#
#Response: Cadmium
#
#Terms added sequentially (first to last)
# Df Sum of Sq Mean Sq F Value Pr(F)
# Spike 1 43220.27 43220.27 9356.879 (]
#Residuals 33 152.43 4.62
anovaPE(fit)
# Df Sum Sq Mean Sq F value Pr(>F)
#Spike 1 43220 43220 9341.559 <2e-16 **xx%
#lLack of Fit 3 14 5 0.982 0.4144
#Pure Error 30 139 5
#___
#Signif. codes: @ 'x*x' 0.001 'xx' 9.01 'x' ©.05 '.' 0.1 ' ' 1
rm(fit)
aovN Compute Sample Size Necessary to Achieve Specified Power for One-
Way Fixed-Effects Analysis of Variance
Description

Compute the sample sizes necessary to achieve a specified power for a one-way fixed-effects anal-
ysis of variance test, given the population means, population standard deviation, and significance
level.
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Usage

aovN(mu.vec, sigma = 1, alpha = 0.05, power = 0.95,
round.up = TRUE, n.max = 5000, tol = 1e-07, maxiter = 1000)

Arguments
mu.vec required numeric vector of population means. The length of mu.vec must be at
least 2. Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values are not
allowed.
sigma optional numeric scalar specifying the population standard deviation (o) for
each group. The default value is sigma=1.
alpha optional numeric scalar between 0 and 1 indicating the Type I error level asso-
ciated with the hypothesis test. The default value is alpha=0. @5.
power optional numeric scalar between 0 and 1 indicating the power associated with
the hypothesis test. The default value is power=0.95.
round.up optional logical scalar indicating whether to round up the value of the computed
sample size to the next smallest integer. The default value is round. up=TRUE.
n.max positive integer greater then 1 indicating the maximum sample size per group.
The default value is n.max=5000.
tol optional numeric scalar indicating the tolerance to use in the uniroot search
algorithm. The default value is tol=1e-7.
maxiter optional positive integer indicating the maximum number of iterations to use in
the uniroot search algorithm. The default value is maxiter=1000.
Details

The F-statistic to test the equality of k£ population means assuming each population has a normal
distribution with the same standard deviation o is presented in most basic statistics texts, including
Zar (2010, Chapter 10), Berthouex and Brown (2002, Chapter 24), and Helsel and Hirsh (1992,
pp.164-169). The formula for the power of this test is given in Scheffe (1959, pp.38-39,62-65). The
power of the one-way fixed-effects ANOVA depends on the sample sizes for each of the k groups,
the value of the population means for each of the £ groups, the population standard deviation o, and
the significance level . See the help file for aovPower.

The function aovN assumes equal sample sizes for each of the k groups and uses a search algorithm
to determine the sample size n required to attain a specified power, given the values of the population
means and the significance level.

Value

numeric scalar indicating the required sample size for each group. (The number of groups is equal
to the length of the argument mu. vec.)

Note

The normal and lognormal distribution are probably the two most frequently used distributions
to model environmental data. Sometimes it is necessary to compare several means to determine
whether any are significantly different from each other (e.g., USEPA, 2009, p.6-38). In this case,
assuming normally distributed data, you perform a one-way parametric analysis of variance.

In the course of designing a sampling program, an environmental scientist may wish to determine
the relationship between sample size, Type I error level, power, and differences in means if one
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of the objectives of the sampling program is to determine whether a particular mean differs from
a group of means. The functions aovPower, aovN, and plotAovDesign can be used to investigate
these relationships for the case of normally-distributed observations.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Berthouex, P.M., and L.C. Brown. (2002). Statistics for Environmental Engineers. Second Edition.
Lewis Publishers, Boca Raton, FL.

Helsel, D.R., and R.M. Hirsch. (1992). Statistical Methods in Water Resources Research. Elsevier,
New York, NY, Chapter 7.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1995). Continuous Univariate Distributions, Volume
2. Second Edition. John Wiley and Sons, New York, Chapters 27, 29, 30.

Millard, S.P., and Neerchal, N.K. (2001). Environmental Statistics with S-PLUS. CRC Press, Boca

Raton, Florida.

Scheffe, H. (1959). The Analysis of Variance. John Wiley and Sons, New York, 477pp.

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.6-38.

Zar, J.H. (2010). Biostatistical Analysis. Fifth Edition. Prentice-Hall, Upper Saddle River, NJ,

Chapter 10.

See Also

aovPower, plotAovDesign, Normal, aov.

Examples

# Look at how the required sample size for a one-way ANOVA
# increases with increasing power:

aovN(mu.vec =
#[11 21

aovN(mu.vec =
#[1]1 27

aovN(mu.vec =
#[1] 33

c(19, 12, 15), sigma

c(19, 12, 15), sigma

c(19, 12, 15), sigma

5, power

5, power

5, power

0.8)

0.9)

# Look at how the required sample size for a one-way ANOVA,
# given a fixed power, decreases with increasing variability
# in the population means:

aovN(mu.vec = c(10, 10, 11), sigma=5)

#[1] 581
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aovN(mu.vec
#[1] 25

aovN(mu.vec
#[1] 33

aovN(mu.vec
#[1] 10

19

c(19, 10, 15), sigma = 5)

c(19, 13, 15), sigma = 5)

c(19, 15, 20), sigma = 5)

# Look at how the required sample size for a one-way ANOVA,
# given a fixed power, decreases with increasing values of
# Type I error:

aovN(mu.vec
#[1] 89

aovN(mu.vec
#[1] 67

aovN(mu.vec
#[1] 50

aovN(mu.vec
#[1] 42

c(19, 12, 14), sigma = 5, alpha = 0.001)

c(19, 12, 14), sigma = 5, alpha = 0.01)

c(1e, 12, 14), sigma = 5, alpha = 0.05)

c(1e, 12, 14), sigma = 5, alpha = 0.1)

aovPower

Compute the Power of a One-Way Fixed-Effects Analysis of Variance

Description

Compute the power of a one-way fixed-effects analysis of variance, given the sample sizes, popula-
tion means, population standard deviation, and significance level.

Usage

aovPower(n.vec, mu.vec = rep(@, length(n.vec)), sigma = 1, alpha = 0.05)

Arguments

n.vec

mu.vec

sigma

alpha

numeric vector of sample sizes for each group. The i*" element of n.vec de-
notes the sample size for group . The length of n. vec must be at least 2, and all
elements of n.vec must be greater than or equal to 2. Missing (NA), undefined
(NaN), and infinite (Inf, -Inf) values are not allowed.

numeric vector of population means. The length of mu.vec must be the same
as the length of n.vec. The default value is a vector of zeros. Missing (NA),
undefined (NaN), and infinite (Inf, -Inf) values are not allowed.

numeric scalar specifying the population standard deviation (o) for each group.
The default value is sigma=1.

numeric scalar between 0 and 1 indicating the Type I error level associated with
the hypothesis test. The default value is alpha=0.@5.
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Details

Consider k£ normally distributed populations with common standard deviation o. Let p; denote
the mean of the ¢’th group (4 = 1,2,...,k), and let x; = x;1, %2, . . ., Tin, denote a vector of n;
observations from the 7’th group. The statistical method of analysis of variance (ANOVA) tests the
null hypothesis:

Hy:pp=pp=-=p (1)

against the alternative hypothesis that at least one of the means is different from the rest by using
the F-statistic given by:

po ELm@ -z /k-n

o S (@ — 32)2]/ (N — k)

where

I
Il
2=
M»
5
NHI
I
2=
]
8
=

N = Zn (5)

Under the null hypothesis (1), the F-statistic in (2) follows an F-distribution with k — 1 and N — k
degrees of freedom. Analysis of variance rejects the null hypothesis (1) at significance level o when

F > Fk—l,N—k<1 — Oé) (6)

where Fy, ,,(p) denotes the p’th quantile of the F-distribution with v and v, degrees of freedom
(Zar, 2010, Chapter 10; Berthouex and Brown, 2002, Chapter 24; Helsel and Hirsh, 1992, pp.
164-169).

The power of this test, denoted by 1 — 3, where 3 denotes the probability of a Type II error, is given
by:
1=B=PriFr-1n-ka>Fran-k(l—a) (7)

where

o2

1 k
M.:%;Mi 9)

and F,, ,, A denotes a non-central F random variable with v; and v, degrees of freedom and non-
centrality parameter A. Equation (7) can be re-written as:

1—62I—H[kal,]\],k(l—a),k‘—1,N—]{7,A] (10)
where H(x, v, 2, A) denotes the cumulative distribution function of this random variable evalu-

ated at = (Scheffe, 1959, pp.38-39, 62-65).

The power of the one-way fixed-effects ANOVA depends on the sample sizes for each of the &k
groups, the value of the population means for each of the &k groups, the population standard deviation
o, and the significance level a.
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Value

a numeric scalar indicating the power of the one-way fixed-effects ANOVA for the given sample
sizes, population means, population standard deviation, and significance level.

Note

The normal and lognormal distribution are probably the two most frequently used distributions
to model environmental data. Sometimes it is necessary to compare several means to determine
whether any are significantly different from each other (e.g., USEPA, 2009, p.6-38). In this case,
assuming normally distributed data, you perform a one-way parametric analysis of variance.

In the course of designing a sampling program, an environmental scientist may wish to determine
the relationship between sample size, Type I error level, power, and differences in means if one
of the objectives of the sampling program is to determine whether a particular mean differs from
a group of means. The functions aovPower, aovN, and plotAovDesign can be used to investigate
these relationships for the case of normally-distributed observations.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Berthouex, P.M., and L.C. Brown. (2002). Statistics for Environmental Engineers. Second Edition.
Lewis Publishers, Boca Raton, FL.

Helsel, D.R., and R.M. Hirsch. (1992). Statistical Methods in Water Resources Research. Elsevier,
New York, NY, Chapter 7.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1995). Continuous Univariate Distributions, Volume
2. Second Edition. John Wiley and Sons, New York, Chapters 27, 29, 30.

Millard, S.P., and Neerchal, N.K. (2001). Environmental Statistics with S-PLUS. CRC Press, Boca
Raton, Florida.

Scheffe, H. (1959). The Analysis of Variance. John Wiley and Sons, New York, 477pp.

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.6-38.

Zar, J.H. (2010). Biostatistical Analysis. Fifth Edition. Prentice-Hall, Upper Saddle River, NJ,
Chapter 10.

See Also

aoVvN, plotAovDesign, Normal, aov.

Examples

# Look at how the power of a one-way ANOVA increases
# with increasing sample size:

aovPower(n.vec = rep(5, 3), mu.vec = c(10, 15, 20), sigma = 5)
#[1] 0.7015083

aovPower(n.vec = rep(10, 3), mu.vec = c(10, 15, 20), sigma = 5)
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#[1] ©.9732551

# Look at how the power of a one-way ANOVA increases
# with increasing variability in the population means:

aovPower(n.vec = rep(5,3), mu.vec = c(10, 10, 11), sigma=5)
#[1] 0.05795739

aovPower(n.vec = rep(5, 3), mu.vec = c(10, 10, 15), sigma = 5)
#[1] 0.2831863
aovPower(n.vec = rep(5, 3), mu.vec = c(10, 13, 15), sigma = 5)

#[1] 0.2236093

aovPower(n.vec = rep(5, 3), mu.vec = c(10, 15, 20), sigma = 5)
#[1] 0.7015083

# Look at how the power of a one-way ANOVA increases
# with increasing values of Type I error:

aovPower(n.vec = rep(10,3), mu.vec = c(10, 12, 14),
sigma = 5, alpha = 0.001)
#[1] 0.02655785

aovPower(n.vec = rep(10,3), mu.vec = c(10, 12, 14),
sigma = 5, alpha = 0.01)
#[1] 0.1223527

aovPower(n.vec = rep(10,3), mu.vec = c(10, 12, 14),
sigma = 5, alpha = 0.05)
#[1] 0.3085313

aovPower(n.vec = rep(10,3), mu.vec = c(10, 12, 14),
sigma = 5, alpha = 0.1)
#[1] 0.4373292

The example on pages 5-11 to 5-14 of USEPA (1989b) shows
log-transformed concentrations of lead (mg/L) at two
background wells and four compliance wells, where observations
were taken once per month over four months (the data are
stored in EPA.89b.loglead.df.) Assume the true mean levels

at each well are 3.9, 3.9, 4.5, 4.5, 4.5, and 5, respectively.
Compute the power of a one-way ANOVA to test for mean
differences between wells. Use alpha=0.05, and assume the
true standard deviation is equal to the one estimated from

the data in this example.

HoH H HF ¥ B OHF ¥ H R

# First look at the data
names (EPA.89b.loglead.df)
#[1] "LogLead” "Month" "Well” "Well.type"
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dev.new()

stripChart(LogLead ~ Well, data = EPA.89b.loglead.df,
show.ci = FALSE, xlab = "Well Number”,
ylab="Log [ Lead (ug/L) 1",
main="Lead Concentrations at Six Wells")

# Note: The assumption of a constant variance across
# all wells is suspect.

# Now perform the ANOVA and get the estimated sd
aov.list <- aov(LogLead ~ Well, data=EPA.89b.loglead.df)

summary(aov.list)

# Df Sum Sq Mean Sq F value Pr(>F)

#Well 5 5.7447 1.14895 3.3469 0.02599 *

#Residuals 18 6.1791 0.34328

#___

#Signif. codes: @ 'x*x' 0.001 'xx' ©.01 'x' .05 '.' 0.1 '' 1

# Now call the function aovPower
aovPower(n.vec = rep(4, 6),

mu.vec = ¢(3.9,3.9,4.5,4.5,4.5,5), sigma=sqrt(0.34))
#[1] 0.5523148

# Clean up
rm(aov.list)

base Base b Representation of a Number

Description

For any number represented in base 10, compute the representation in any user-specified base.

Usage

base(n, base = 10, num.digits = max(@, floor(log(n, base))) + 1)

Arguments

n

a non-negative integer (base 10).

base a positive integer greater than 1 indicating what base to represent n in.

num.digits a positive integer indicating how many digits to use to represent n in base base.

By default, num.digits is equal to just the number of required digits (i.e.,
max (@, floor(log(n, base))) + 1). Setting num.digits to alarger number
than this will result in 0’s padding the left.

Details

If b is a positive integer greater than 1, and n is a positive integer, then n can be expressed uniquely
in the form
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n=apb® + ar_1b" "+ ...+ a;b+ a0

where k is a non-negative integer, the coefficients ag, a1, . . . , ax are non-negative integers less than
b, and a; > 0 (Rosen, 1988, p.105). The function base computes the coefficients ag, a1, .. ., ak.
Value

A numeric vector of length num.digits showing the representation of n in base base.

Note

The function base is included in EnvStats because it is called by the function
oneSamplePermutationTest.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References
Rosen, K.H. (1988). Discrete Mathematics and Its Applications. Random House, New York,
pp-105-107.

See Also

oneSamplePermutationTest.

Examples

# Compute the value of 7 in base 2.

base(7, 2)
#1111 1

base(7, 2, num.digits=5)
#1100 111

Benthic.df Benthic Data from Monitoring Program in Chesapeake Bay

Description
Benthic data from a monitoring program in the Chesapeake Bay, Maryland, covering July 1994 -
December 1991.

Usage

Benthic.df
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Format

A data frame with 585 observations on the following 7 variables.

Site.ID Site ID

Stratum Stratum Number (101-131)

Latitude Latitude (degrees North)

Longitude Longitude (negative values; degrees West)
Index Benthic Index (between 1 and 5)

Salinity Salinity (ppt)

Silt Silt Content (% clay in soil)

Details

Data from the Long Term Benthic Monitoring Program of the Chesapeake Bay. The data consist of
measurements of benthic characteristics and a computed index of benthic health for several locations
in the bay. Sampling methods and designs of the program are discussed in Ranasinghe et al. (1992).

The data represent observations collected at 585 separate point locations (sites). The sites are di-
vided into 31 different strata, numbered 101 through 131, each strata consisting of geographically
close sites of similar degradation conditions. The benthic index values range from 1 to 5 on a con-
tinuous scale, where high values correspond to healthier benthos. Salinity was measured in parts per
thousand (ppt), and silt content is expressed as a percentage of clay in the soil with high numbers
corresponding to muddy areas.

The United States Environmental Protection Agency (USEPA) established an initiative for the
Chesapeake Bay in partnership with the states bordering the bay in 1984. The goal of the initia-
tive is the restoration (abundance, health, and diversity) of living resources to the bay by reducing
nutrient loadings, reducing toxic chemical impacts, and enhancing habitats. USEPA’s Chesapeake
Bay Program Office is responsible for implementing this initiative and has established an extensive
monitoring program that includes traditional water chemistry sampling, as well as collecting data
on living resources to measure progress towards meeting the restoration goals.

Sampling benthic invertebrate assemblages has been an integral part of the Chesapeake Bay mon-
itoring program due to their ecological importance and their value as biological indicators. The
condition of benthic assemblages is a measure of the ecological health of the bay, including the
effects of multiple types of environmental stresses. Nevertheless, regional-scale assessment of eco-
logical status and trends using benthic assemblages are limited by the fact that benthic assemblages
are strongly influenced by naturally variable habitat elements, such as salinity, sediment type, and
depth. Also, different state agencies and USEPA programs use different sampling methodolo-
gies, limiting the ability to integrate data into a unified assessment. To circumvent these limi-
tations, USEPA has standardized benthic data from several different monitoring programs into a
single database, and from that database developed a Restoration Goals Benthic Index that identifies
whether benthic restoration goals are being met.

Source

Ranasinghe, J.A., L.C. Scott, and R. Newport. (1992). Long-term Benthic Monitoring and Assess-
ment Program for the Maryland Portion of the Bay, Jul 1984-Dec 1991. Report prepared for the
Maryland Department of the Environment and the Maryland Department of Natural Resources by
Versar, Inc., Columbia, MD.
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Examples

attach(Benthic.df)

# Show station locations

# _______________________

dev.new()

plot(Longitude, Latitude,
xlab = "-Longitude (Degrees West)",
ylab = "Latitude”,
main = "Sampling Station Locations”)

# Scatterplot matrix of benthic index, salinity, and silt

dev.new()
pairs(~ Index + Salinity + Silt, data = Benthic.df)

# Contour and perspective plots based on loess fit
# showing only predicted values within the convex hull
# of station locations

library(sp)

loess.fit <- loess(Index ~ Longitude * Latitude,
data=Benthic.df, normalize=FALSE, span=0.25)
lat <- Benthic.df$Latitude
lon <- Benthic.df$Longitude
Latitude <- seq(min(lat), max(lat), length=50)
Longitude <- seq(min(lon), max(lon), length=50)
predict.list <- list(Longitude=Longitude,
Latitude=Latitude)
predict.grid <- expand.grid(predict.list)
predict.fit <- predict(loess.fit, predict.grid)
index.chull <- chull(lon, 1lat)
inside <- point.in.polygon(point.x = predict.grid$Longitude,
point.y = predict.grid$Latitude,
pol.x = lon[index.chull],
pol.y = lat[index.chull])
predict.fit[inside == 0] <- NA

dev.new()

contour(Longitude, Latitude, predict.fit,
levels=seq(1, 5, by=0.5), labcex=0.75,
xlab="-Longitude (degrees West)",
ylab="Latitude (degrees North)")

title(main=paste(”Contour Plot of Benthic Index",
"Based on Loess Smooth”, sep="\n"))

dev.new()
persp(Longitude, Latitude, predict.fit,

xlim = ¢(-77.3, -75.9), ylim = c(38.1, 39.5), zlim = c(@, 6),

theta = -45, phi = 30, d = 0.5,
xlab="-Longitude (degrees West)",
ylab="Latitude (degrees North)",
zlab="Benthic Index"”, ticktype = "detailed")

Benthic.df
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title(main=paste("Surface Plot of Benthic Index",
"Based on Loess Smooth”, sep="\n"))

detach("Benthic.df")

rm(loess.fit, lat, lon, Latitude, Longitude, predict.list,
predict.grid, predict.fit, index.chull, inside)

boxcox Boxcox Power Transformation

Description

boxcox is a generic function used to compute the value(s) of an objective for one or more Box-Cox
power transformations, or to compute an optimal power transformation based on a specified objec-
tive. The function invokes particular methods which depend on the class of the first argument.

Currently, there is a default method and a method for objects of class "1m".
Usage
boxcox(x, ...)

## Default S3 method:
boxcox(x,

lambda = {if (optimize) c(-2, 2) else seq(-2, 2, by = 0.5)},
optimize = FALSE, objective.name = "PPCC",
eps = .Machine$double.eps, include.x = TRUE, ...)
## S3 method for class 'Im'
boxcox(x,
lambda = {if (optimize) c(-2, 2) else seq(-2, 2, by = 0.5)},
optimize = FALSE, objective.name = "PPCC",
eps = .Machine$double.eps, include.x = TRUE, ...)
Arguments
X an object of class "1m" for which the response variable is all positive numbers,
or else a numeric vector of positive numbers. When x is an object of class "1m",
the object must have been created with a call to the function 1m that includes the
data argument. When x is a numeric vector of positive observations, missing
(NA), undefined (NaN), and infinite (-Inf, Inf) values are allowed but will be
removed.
lambda numeric vector of finite values indicating what powers to use for the Box-Cox

transformation. When optimize=FALSE, the default value is

lambda=seq(-2, 2, by=0.5). When optimize=TRUE, 1ambda must be a vec-
tor with two values indicating the range over which the optimization will occur
and the range of these two values must include 1. In this case, the default value
is lambda=c(-2, 2).

optimize logical scalar indicating whether to simply evalute the objective function at the
given values of 1ambda (optimize=FALSE; the default), or to compute the opti-
mal power transformation within the bounds specified by 1lambda (optimize=TRUE).
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objective.name character string indicating what objective to use. The possible values are "PPCC"
(probability plot correlation coefficient; the default), "Shapiro-Wilk" (the Shapiro-
Wilk goodness-of-fit statistic), and "Log-Likelihood" (the log-likelihood func-
tion).

eps finite, positive numeric scalar. When the absolute value of lambda is less than
eps, lambda is assumed to be 0 for the Box-Cox transformation. The default
value is eps=.Machine$double. eps.

include.x logical scalar indicating whether to include the finite, non-missing values of the
argument x with the returned object. The default value is include.x=TRUE.

optional arguments for possible future methods. Currently not used.

Details
Two common assumptions for several standard parametric hypothesis tests are:

1. The observations all come from a normal distribution.

2. The observations all come from distributions with the same variance.

For example, the standard one-sample t-test assumes all the observations come from the same nor-
mal distribution, and the standard two-sample t-test assumes that all the observations come from a
normal distribution with the same variance, although the mean may differ between the two groups.

When the original data do not satisfy the above assumptions, data transformations are often used to
attempt to satisfy these assumptions. The rest of this section is divided into two parts: one that dis-
cusses Box-Cox transformations in the context of the original observations, and one that discusses
Box-Cox transformations in the context of linear models.

Box-Cox Transformations Based on the Original Observations

Box and Cox (1964) presented a formalized method for deciding on a data transformation. Given a
random variable X from some distribution with only positive values, the Box-Cox family of power
transformations is defined as:

y = X1 \#o0

log(X) Ax=0 (1)

where Y is assumed to come from a normal distribution. This transformation is continuous in \.
Note that this transformation also preserves ordering. See the help file for boxcoxTransform for
more information on data transformations.

Let x = z1,29,...,2, denote a random sample of n observations from some distribution and
assume that there exists some value of A such that the transformed observations

zr—1
Yi = ~ A#0

log(z;) A=0 (2)

(i=1,2,...,n) form a random sample from a normal distribution.

Box and Cox (1964) proposed choosing the appropriate value of A based on maximizing the likeli-
hood function. Alternatively, an appropriate value of A can be chosen based on another objective,
such as maximizing the probability plot correlation coefficient or the Shapiro-Wilk goodness-of-fit
statistic.
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In the case when optimize=TRUE, the function boxcox calls the R function nlminb to minimize the
negative value of the objective (i.e., maximize the objective) over the range of possible values of A
specified in the argument 1ambda. The starting value for the optimization is always A = 1 (i.e., no
transformation).

The rest of this sub-section explains how the objective is computed for the various options for
objective.name.

Objective Based on Probability Plot Correlation Coefficient (objective.name="PPCC")

When objective.name="PPCC", the objective is computed as the value of the normal probability
plot correlation coefficient based on the transformed data (see the description of the Probability
Plot Correlation Coefficient (PPCC) goodness-of-fit test in the help file for gofTest). That is, the
objective is the correlation coefficient for the normal quantile-quantile plot for the transformed data.
Large values of the PPCC tend to indicate a good fit to a normal distribution.

Objective Based on Shapiro-Wilk Goodness-of-Fit Statistic (objective.name="Shapiro-Wilk")
When objective.name="Shapiro-Wilk", the objective is computed as the value of the Shapiro-
Wilk goodness-of-fit statistic based on the transformed data (see the description of the Shapiro-Wilk
test in the help file for gofTest). Large values of the Shapiro-Wilk statistic tend to indicate a good
fit to a normal distribution.

Objective Based on Log-Likelihood Function (objective.name="Log-Likelihood")

When objective.name="Log-Likelihood", the objective is computed as the value of the log-
likelihood function. Assuming the transformed observations in Equation (2) above come from
a normal distribution with mean p and standard deviation o, we can use the change of variable
formula to write the log-likelihood function as:

log[L(\, p,0)] = —log(%) - *109 QL Z +(A-1) ZlOQ(l‘i) (3)

where y; is defined in Equation (2) above (Box and Cox, 1964). For a fixed value of A, the log-
likelihood function is maximized by replacing ;o and o with their maximum likelihood estimators:

Z (4)

7;>
3\}—‘

3

—_

ny -9 (5)

Thus, when optimize=TRUE, Equation (3) is maximized by iteratively solving for A using the val-
ues for 1 and o given in Equations (4) and (5). When optimize=FALSE, the value of the objective is
computed by using Equation (3), using the values of X specified in the argument 1ambda, and using
the values for i and o given in Equations (4) and (5).

S

Box-Cox Transformation for Linear Models
In the case of a standard linear regression model with n observations and p predictors:

Y—i:ﬁo%‘ﬁlXﬂﬁ-...ﬁ-ﬁpXip"-q,i:1,2,...,n (6)
the standard assumptions are:

1. The error terms ¢; come from a normal distribution with mean 0.
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2. The variance is the same for all of the error terms and does not depend on the predictor
variables.

Assuming Y is a random variable from some distribution that may depend on the predictor variables
and Y takes on only positive values, the Box-Cox family of power transformations is defined as:

Yo = YEl N#£0

logY) Xx=0 (7)

where Y* becomes the new response variable and the errors are now assumed to come from a
normal distribution with a mean of 0 and a constant variance.

In this case, the objective is computed as described above, but it is based on the residuals from the
fitted linear model in which the response variable is now Y * instead of Y.

Value

When x is an object of class "1m", boxcox returns a list of class "boxcoxLm" containing the results.
See the help file for boxcoxLm.object for details.

When x is simply a numeric vector of positive numbers, boxcox returns a list of class "boxcox”
containing the results. See the help file for boxcox. object for details.

Note

Data transformations are often used to induce normality, homoscedasticity, and/or linearity, com-
mon assumptions of parametric statistical tests and estimation procedures. Transformations are not
“tricks” used by the data analyst to hide what is going on, but rather useful tools for understand-
ing and dealing with data (Berthouex and Brown, 2002, p.61). Hoaglin (1988) discusses “hidden”
transformations that are used everyday, such as the pH scale for measuring acidity. Johnson and
Wichern (2007, p.192) note that "Transformations are nothing more than a reexpression of the data
in different units."

In the case of a linear model, there are at least two approaches to improving a model fit: trans-
form the Y and/or X variable(s), and/or use more predictor variables. Often in environmental data
analysis, we assume the observations come from a lognormal distribution and automatically take
logarithms of the data. For a simple linear regression (i.e., one predictor variable), if regression
diagnostic plots indicate that a straight line fit is not adequate, but that the variance of the errors ap-
pears to be fairly constant, you may only need to transform the predictor variable X or perhaps use
a quadratic or cubic model in X. On the other hand, if the diagnostic plots indicate that the constant
variance and/or normality assumptions are suspect, you probably need to consider transforming the
response variable Y. Data transformations for linear regression models are discussed in Draper and
Smith (1998, Chapter 13) and Helsel and Hirsch (1992, pp. 228-229).

One problem with data transformations is that translating results on the transformed scale back to
the original scale is not always straightforward. Estimating quantities such as means, variances,
and confidence limits in the transformed scale and then transforming them back to the original scale
usually leads to biased and inconsistent estimates (Gilbert, 1987, p.149; van Belle et al., 2004,
p-400). For example, exponentiating the confidence limits for a mean based on log-transformed
data does not yield a confidence interval for the mean on the original scale. Instead, this yields a
confidence interval for the median (see the help file for elnormAlt). It should be noted, however,
that quantiles (percentiles) and rank-based procedures are invariant to monotonic transformations
(Helsel and Hirsch, 1992, p.12).

Finally, there is no guarantee that a Box-Cox tranformation based on the “optimal” value of \ will
provide an adequate transformation to allow the assumption of approximate normality and constant
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variance. Any set of transformed data should be inspected relative to the assumptions you want to
make about it (Johnson and Wichern, 2007, p.194).

Author(s)
Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Berthouex, P.M., and L.C. Brown. (2002). Statistics for Environmental Engineers, Second Edition.
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See Also

boxcox.object, plot.boxcox, print.boxcox, boxcoxLm.object, plot.boxcoxLm, print.boxcoxLm,
boxcoxTransform, Data Transformations, Goodness-of-Fit Tests.

Examples

# Generate 30 observations from a lognormal distribution with

mean=10 and cv=2. Look at some values of various objectives

for various transformations. Note that for both the PPCC and

the Log-Likelihood objective, the optimal value of lambda is

about @, indicating that a log transformation is appropriate.

(Note: the call to set.seed simply allows you to reproduce this example.)

BT T T



32

set.seed(250)
X <- rlnormAlt(30, mean = 10, cv = 2)

dev.new()
hist(x, col = "cyan")

# Using the PPCC objective:

boxcox(x)
#Results of Box-Cox Transformation

#

#0bjective Name: PPCC
#

#Data: X
#

#Sample Size: 30
#

# lambda PPCC

# -2.0 0.5423739

# -1.5 0.6402782

# -1.0 0.7818160

# -0.5 0.9272219

# 0.0 0.9921702

# 0.5 0.9581178

# 1.0 0.8749611

# 1.5 0.7827009

# 2.0 0.7004547

boxcox(x, optimize = TRUE)
#Results of Box-Cox Transformation

#

#0bjective Name: PPCC
#

#Data: X

#

#Sample Size: 30

#

#Bounds for Optimization: lower
# upper
#

#0ptimal Value: lambda
#

#Value of Objective:

# Using the Log-Likelihodd objective

0.04530789

PPCC = ©.9925919

boxcox(x, objective.name = "Log-Likelihood")

#Results of Box-Cox Transformation

#0bjective Name:

Log-Likelihood

boxcox
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#

#Data: X

#

#Sample Size: 30

#

# lambda Log-Likelihood

# -2.0 -154.94255

# -1.5 -128.59988

#  -1.0 -106.23882

# -0.5 -90.84800

# 0.0 -85.10204

# 0.5 -88.69825

# 1.0 -99.42630

# 1.5 -115.23701

# 2.0 -134.54125

boxcox(x, objective.name = "Log-Likelihood”, optimize = TRUE)
#Results of Box-Cox Transformation

# _________________________________

#

#0bjective Name: Log-Likelihood
#

#Data: X

#

#Sample Size: 30

#

#Bounds for Optimization: lower = -2

# upper = 2

#

#0ptimal Value: lambda = 0.0405156
#

#Value of Objective: Log-Likelihood = -85.07123
# __________

boxcox.list <- boxcox(x)
dev.new()
plot(boxcox.list)

#Look at QQ-Plots for the candidate values of lambda

The data frame Environmental.df contains daily measurements of

ozone concentration, wind speed, temperature, and solar radiation

in New York City for 153 consecutive days between May 1 and
September 30, 1973. In this example, we'll plot ozone vs.
temperature and look at the Q-Q plot of the residuals. Then

we'll look at possible Box-Cox transformations. The "optimal” one
based on the PPCC looks close to a log-transformation

(i.e., lambda=@). The power that produces the largest PPCC is

about 0.2, so a cube root (lambda=1/3) transformation might work too.

HOoH H B OF ¥ B FH
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head(Environmental.df)

# ozone radiation temperature wind
#05/01/1973 41 190 67 7.4
#05/02/1973 36 118 72 8.0
#05/03/1973 12 149 74 12.6
#05/04/1973 18 313 62 11.5
#05/05/1973 NA NA 56 14.3
#05/06/1973 28 NA 66 14.9

tail(Environmental.df)

# ozone radiation temperature wind
#09/25/1973 14 20 63 16.6
#09/26/1973 30 193 70 6.9
#09/27/1973 NA 145 77 13.2
#09/28/1973 14 191 75 14.3
#09/29/1973 18 131 76 8.0
#09/30/1973 20 223 68 11.5

# Fit the model with the raw Ozone data

ozone.fit <- Im(ozone ~ temperature, data = Environmental.df)

# Plot Ozone vs. Temperature, with fitted line

dev.new()
with(Environmental.df,

plot(temperature, ozone, xlab = "Temperature (degrees F)",

ylab = "Ozone (ppb)"”, main = "Ozone vs. Temperature”))
abline(ozone.fit)

# Look at the Q-Q Plot for the residuals

dev.new()
ggPlot(ozone.fit$residuals, add.line = TRUE)

# Look at Box-Cox transformations of Ozone
boxcox.list <- boxcox(ozone.fit)

boxcox.list
#Results of Box-Cox Transformation

# _________________________________

#

#0bjective Name: PPCC
#

#lLinear Model: ozone.fit
#

#Sample Size: 116
#

# lambda PPCC

# -2.0 0.4286781

# -1.5 0.4673544

# -1.0 0.5896132

# -0.5 0.8301458

# 0.0 0.9871519

# 0.5 0.9819825

# 1.0 0.9408694

boxcox
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# 1.5 0.8840770
# 2.0 0.8213675

# Plot PPCC vs. lambda based on Q-Q plots of residuals

dev.new()
plot(boxcox.list)

# Look at Q-Q plots of residuals for the various transformation
plot(boxcox.list, plot.type = "Q-Q Plots”, same.window = FALSE)
# Compute the "optimal” transformation

boxcox(ozone.fit, optimize = TRUE)
#Results of Box-Cox Transformation

#0bjective Name: PPCC

#

#Linear Model: ozone.fit
#

#Sample Size: 116

#

#Bounds for Optimization: lower
# upper = 2

#

#Optimal Value: lambda = @.2004305
#

#Value of Objective: PPCC = 0.9940222

I
I
N

rm(x, boxcox.list, ozone.fit)
graphics.off ()

boxcox.object 83 Class "boxcox"

Description

Objects of S3 class "boxcox" are returned by the EnvStats function boxcox, which computes ob-
jective values for user-specified powers, or computes the optimal power for the specified objective.

Details

Objects of class "boxcox” are lists that contain information about the powers that were used, the ob-
jective that was used, the values of the objective for the given powers, and whether an optimization
was specified.
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Value

boxcox.object

Required Components
The following components must be included in a legitimate list of class "boxcox".

lambda

objective

objective.name

optimize

optimize.bounds

eps

sample.size
data.name
bad.obs

Numeric vector containing the powers used in the Box-Cox transformations. If
the value of the optimize component is FALSE, then 1ambda contains the values
of all of the powers at which the objective was evaluated. If the value of the
optimize component is TRUE, then lambda is a scalar containing the value of
the power that maximizes the objective.

Numeric vector containing the value(s) of the objective for the given value(s) of
A that are stored in the component 1ambda.

character string indicating the objective that was used. The possible values are
"PPCC" (probability plot correlation coefficient; the default), "Shapiro-Wilk"
(the Shapiro-Wilk goodness-of-fit statistic), and "Log-Likelihood” (the log-
likelihood function).

logical scalar indicating whether the objective was simply evaluted at the given
values of 1lambda (optimize=FALSE), or instead the optimal power transforma-
tion was computed within the bounds specified by lambda (optimize=TRUE).

Numeric vector of length 2 with a names attribute indicating the bounds within
which the optimization took place. When optimize=FALSE, this contains miss-
ing values.

finite, positive numeric scalar indicating what value of eps was used. When the
absolute value of lambda is less than eps, lambda is assumed to be O for the
Box-Cox transformation.

Numeric scalar indicating the number of finite, non-missing observations.
The name of the data object used for the Box-Cox computations.

The number of missing (NA), undefined (NaN) and/or infinite (Inf, -Inf) values
that were removed from the data object prior to performing the Box-Cox com-
putations.

Optional Component

The following component may optionally be included in a legitimate list of class "boxcox”. It
must be included if you want to call the function plot.boxcox and specify Q-Q plots or Tukey
Mean-Difference Q-Q plots.

data

Methods

Numeric vector containing the data actually used for the Box-Cox computations
(i.e., the original data without any missing or infinite values).

Generic functions that have methods for objects of class "boxcox"” include:
link{plot}, print.

Note

Since objects of class "boxcox" are lists, you may extract their components with the $ and [[

operators.
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Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

See Also

boxcox, plot.boxcox, print.boxcox, boxcoxLm.object.

Examples

# Create an object of class "boxcox"”, then print it out.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
X <= rlnormAlt(30, mean = 10, cv = 2)

dev.new()
hist(x, col = "cyan")

boxcox.list <- boxcox(x)

data.class(boxcox.list)
#[1] "boxcox”

names (boxcox.list)

# [1] "lambda” "objective” "objective.name”
# [4] "optimize” "optimize.bounds"” "eps”
# [7] "data” "sample.size" "data.name”

#[10] "bad.obs"

boxcox.list
#Results of Box-Cox Transformation

# _________________________________

#

#0bjective Name: PPCC
#

#Data: X
#

#Sample Size: 30
#

# lambda PPCC

# -2.0 0.5423739

# -1.5 0.6402782

# -1.0 0.7818160

# -0.5 0.9272219

# 0.0 0.9921702

# 0.5 0.9581178

# 1.0 0.8749611

# 1.5 0.7827009

# 2.0 0.7004547

boxcox(x, optimize = TRUE)
#Results of Box-Cox Transformation

#0bjective Name: PPCC
#
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#Data: X
#
#Sample Size: 30
#
#Bounds for Optimization: lower = -2
# upper = 2
#
#0ptimal Value: lambda = 0.04530789
#
#Value of Objective: PPCC = ©.9925919
# __________
# Clean up
# _________
rm(x, boxcox.list)
boxcoxCensored Boxcox Power Transformation for Type I Censored Data

Description

Compute the value(s) of an objective for one or more Box-Cox power transformations, or to com-
pute an optimal power transformation based on a specified objective, based on Type I censored

data.
Usage
boxcoxCensored(x, censored, censoring.side = "left",
lambda = {if (optimize) c(-2, 2) else seq(-2, 2, by = 0.5)}, optimize = FALSE,
objective.name = "PPCC", eps = .Machine$double.eps,
include.x.and.censored = TRUE, prob.method = "michael-schucany”,

plot.pos.con = 0.375)

Arguments
X a numeric vector of positive numbers. Missing (NA), undefined (NaN), and infi-
nite (-Inf, Inf) values are allowed but will be removed.
censored numeric or logical vector indicating which values of x are censored. This must

be the same length as x. If the mode of censored is "logical”, TRUE values
correspond to elements of x that are censored, and FALSE values correspond to
elements of x that are not censored. If the mode of censored is "numeric”,
it must contain only 1’s and @’s; 1 corresponds to TRUE and @ corresponds to
FALSE. Missing (NA) values are allowed but will be removed.

censoring.side character string indicating on which side the censoring occurs. The possible
values are "left"” (the default) and "right"”.

lambda numeric vector of finite values indicating what powers to use for the Box-Cox
transformation. When optimize=FALSE, the default value is 1ambda=seq(-2, 2, by=0.5).
When optimize=TRUE, lambda must be a vector with two values indicating the
range over which the optimization will occur and the range of these two values
must include 1. In this case, the default value is lambda=c(-2, 2).
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optimize logical scalar indicating whether to simply evalute the objective function at the
given values of 1ambda (optimize=FALSE; the default), or to compute the opti-
mal power transformation within the bounds specified by 1lambda (optimize=TRUE).

objective.name character string indicating what objective to use. The possible values are "PPCC"
(probability plot correlation coefficient; the default), "Shapiro-Wilk" (the Shapiro-
Wilk goodness-of-fit statistic), and "Log-Likelihood" (the log-likelihood func-
tion).

eps finite, positive numeric scalar. When the absolute value of lambda is less than
eps, lambda is assumed to be 0 for the Box-Cox transformation. The default
value is eps=.Machine$double. eps.

include.x.and.censored
logical scalar indicating whether to include the finite, non-missing values of the
argument x and the corresponding values of censored with the returned object.
The default value is include.x.and.censored=TRUE.

prob.method for multiply censored data, character string indicating what method to use to
compute the plotting positions (empirical probabilities) when objective.name="PPCC".
Possible values are "kaplan-meier"” (product-limit method of Kaplan and Meier
(1958)), "modified kaplan-meier” (same as "kaplan-meier" with the max-
imum value included), "nelson” (hazard plotting method of Nelson (1972)),
"michael-schucany” (generalization of the product-limit method due to Michael
and Schucany (1986)), and "hirsch-stedinger” (generalization of the product-
limit method due to Hirsch and Stedinger (1987)). The default value is prob.method="michael-scht

The "nelson” method is only available for censoring.side="right", and the
"modified kaplan-meier"” is only available for censoring.side="1left".
See the DETAILS section for more explanation.

This argument is ignored if objective.name is not equal to "PPCC" and/or the
data are singly censored.

plot.pos.con  for multiply censored data, numeric scalar between 0 and 1 containing the value
of the plotting position constant when objective.name="PPCC". The default
value is plot.pos.con=0.375. See the DETAILS section for more information.
This argument is used only if prob.method is equal to "michael-schucany” or
"hirsch-stedinger”.
This argument is ignored if objective.name is not equal to "PPCC" and/or the
data are singly censored.

Details
Two common assumptions for several standard parametric hypothesis tests are:

1. The observations all come from a normal distribution.

2. The observations all come from distributions with the same variance.

For example, the standard one-sample t-test assumes all the observations come from the same nor-
mal distribution, and the standard two-sample t-test assumes that all the observations come from a
normal distribution with the same variance, although the mean may differ between the two groups.

When the original data do not satisfy the above assumptions, data transformations are often used
to attempt to satisfy these assumptions. Box and Cox (1964) presented a formalized method for
deciding on a data transformation. Given a random variable X from some distribution with only
positive values, the Box-Cox family of power transformations is defined as:

log(X) Ax=0 (1)
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where Y is assumed to come from a normal distribution. This transformation is continuous in A.
Note that this transformation also preserves ordering. See the help file for boxcoxTransform for
more information on data transformations.

Box and Cox (1964) proposed choosing the appropriate value of A based on maximizing the likeli-
hood function. Alternatively, an appropriate value of A\ can be chosen based on another objective,
such as maximizing the probability plot correlation coefficient or the Shapiro-Wilk goodness-of-fit
statistic.

Shumway et al. (1989) investigated extending the method of Box and Cox (1964) to the case of
Type I censored data, motivated by the desire to produce estimated means and confidence intervals
for air monitoring data that included censored values.

In the case when optimize=TRUE, the function boxcoxCensored calls the R function nlminb to
minimize the negative value of the objective (i.e., maximize the objective) over the range of possible
values of \ specified in the argument lambda. The starting value for the optimization is always
A =1 (i.e., no transformation).

The next section explains assumptions and notation, and the section after that explains how the ob-
jective is computed for the various options for objective.name.

Assumptions and Notation

Let x denote a random sample of [N observations from some continuous distribution. Assume n
(0 < n < N) of these observations are known and ¢ (¢ = N — n) of these observations are all
censored below (left-censored) or all censored above (right-censored) at k fixed censoring levels

TlaTQa"'aTK;KZI (2)

For the case when K > 2, the data are said to be Type I multiply censored. For the case when
K =1, set T = T;. If the data are left-censored and all n known observations are greater than
or equal to T, or if the data are right-censored and all » known observations are less than or equal
to T, then the data are said to be Type I singly censored (Nelson, 1982, p.7), otherwise they are
considered to be Type I multiply censored.

Let ¢; denote the number of observations censored below or above censoring level T} for j =

1,2,..., K, sothat
K
ch:c (3)
i=1

Let x (1), T(2), - - - , T(v) denote the “ordered” observations, where now “observation” means either
the actual observation (for uncensored observations) or the censoring level (for censored observa-
tions). For right-censored data, if a censored observation has the same value as an uncensored one,
the uncensored observation should be placed first. For left-censored data, if a censored observation
has the same value as an uncensored one, the censored observation should be placed first.

Note that in this case the quantity ;) does not necessarily represent the i’th “largest” observation
from the (unknown) complete sample.

Finally, let €2 (omega) denote the set of n subscripts in the “ordered” sample that correspond to
uncensored observations, and let €2; denote the set of c; subscripts in the “ordered” sample that
correspond to the censored observations censored at censoring level T); for j = 1,2,..., k.

We assume that there exists some value of A such that the transformed observations
A
21

log(z;) A=0 (4)
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(i=1,2,...,n) form a random sample of Type I censored data from a normal distribution.

Note that for the censored observations, Equation (4) becomes:

X T} -1
vo =17 = =5 A#0

log(T)) A=0 (5)
where ¢ € §);.
Computing the Objective

Objective Based on Probability Plot Correlation Coefficient (objective.name="PPCC")

When objective.name="PPCC", the objective is computed as the value of the normal probability
plot correlation coefficient based on the transformed data (see the description of the Probability Plot
Correlation Coefficient (PPCC) goodness-of-fit test in the help file for gofTestCensored). That is,
the objective is the correlation coefficient for the normal quantile-quantile plot for the transformed
data. Large values of the PPCC tend to indicate a good fit to a normal distribution.

Objective Based on Shapiro-Wilk Goodness-of-Fit Statistic (objective.name="Shapiro-Wilk")
When objective.name="Shapiro-Wilk", the objective is computed as the value of the Shapiro-
Wilk goodness-of-fit statistic based on the transformed data (see the description of the Shapiro-Wilk
test in the help file for gofTestCensored). Large values of the Shapiro-Wilk statistic tend to indi-
cate a good fit to a normal distribution.

Objective Based on Log-Likelihood Function (objective.name="Log-Likelihood")

When objective.name="Log-Likelihood", the objective is computed as the value of the log-
likelihood function. Assuming the transformed observations in Equation (4) above come from
a normal distribution with mean p and standard deviation o, we can use the change of variable
formula to write the log-likelihood function as follows.

For Type I left censored data, the likelihood function is given by:

gz o] = toal (") chzog T+ Y tog Sl + - ) Dloglay]

1€Q 1€

where f and F' denote the probability density function (pdf) and cumulative distribution function
(cdf) of the population. That is,

f=o(= (@)

Py =a(—2) ()

where ¢ and ® denote the pdf and cdf of the standard normal distribution, respectively (Shumway
et al., 1989). For left singly censored data, Equation (6) simplifies to:

N
l = _
oalL O )] = tog] (Y )+ cloglF © 3t -1 S loglee)l ()
1=c+1 1=c+1
Similarly, for Type I right censored data, the likelihood function is given by:

N
log[L(\, pi, )] = log[(qcm”ckn) +Z cjlog[1—F(T. +Zl09{f Yol +(A-1) ZZOQ (i)

1€Q 1€Q
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and for right singly censored data this simplifies to:
N . n n
log[L(\, p,0)] = log[( " )+ clog[l = F(T)]+ Y _Jlog{fly@]} + (A=1) D _loglzn] (1)
i=1 i=1

For a fixed value of )\, the log-likelihood function is maximized by replacing i and o with their
maximum likelihood estimators (see the section Maximum Likelihood Estimation in the help file for
enormCensored).

Thus, when optimize=TRUE, Equation (6) or (10) is maximized by iteratively solving for A\ using
the MLEs for p and 0. When optimize=FALSE, the value of the objective is computed by using
Equation (6) or (10), using the values of \ specified in the argument 1ambda, and using the MLEs
of ;1 and o.

Value

boxcoxCensored returns a list of class "boxcoxCensored” containing the results. See the help file
for boxcoxCensored.object for details.

Note

Data transformations are often used to induce normality, homoscedasticity, and/or linearity, com-
mon assumptions of parametric statistical tests and estimation procedures. Transformations are not
“tricks” used by the data analyst to hide what is going on, but rather useful tools for understand-
ing and dealing with data (Berthouex and Brown, 2002, p.61). Hoaglin (1988) discusses “hidden”
transformations that are used everyday, such as the pH scale for measuring acidity. Johnson and
Wichern (2007, p.192) note that "Transformations are nothing more than a reexpression of the data
in different units."

Shumway et al. (1989) investigated extending the method of Box and Cox (1964) to the case of
Type I censored data, motivated by the desire to produce estimated means and confidence intervals
for air monitoring data that included censored values.

Stoline (1991) compared the goodness-of-fit of Box-Cox transformed data (based on using the “op-
timal” power transformation from a finite set of values between -1.5 and 1.5) with log-transformed
data for 17 groundwater chemistry variables. Using the Probability Plot Correlation Coefficient
statistic for censored data as a measure of goodness-of-fit (see gofTest), Stoline (1991) found that
only 6 of the variables were adequately modeled by a Box-Cox transformation (p >0.10 for these
6 variables). Of these variables, five were adequately modeled by a a log transformation. Ten of
variables were “marginally” fit by an optimal Box-Cox transformation, and of these 10 only 6 were
marginally fit by a log transformation. Based on these results, Stoline (1991) recommends checking
the assumption of lognormality before automatically assuming environmental data fit a lognormal
distribution.

One problem with data transformations is that translating results on the transformed scale back to
the original scale is not always straightforward. Estimating quantities such as means, variances, and
confidence limits in the transformed scale and then transforming them back to the original scale usu-
ally leads to biased and inconsistent estimates (Gilbert, 1987, p.149; van Belle et al., 2004, p.400).
For example, exponentiating the confidence limits for a mean based on log-transformed data does
not yield a confidence interval for the mean on the original scale. Instead, this yields a confidence
interval for the median (see the help file for elnormAltCensored). It should be noted, however,
that quantiles (percentiles) and rank-based procedures are invariant to monotonic transformations
(Helsel and Hirsch, 1992, p.12).

Finally, there is no guarantee that a Box-Cox tranformation based on the “optimal” value of \ will
provide an adequate transformation to allow the assumption of approximate normality and constant



boxcoxCensored 43

variance. Any set of transformed data should be inspected relative to the assumptions you want to
make about it (Johnson and Wichern, 2007, p.194).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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Examples

Generate 15 observations from a lognormal distribution with

mean=10 and cv=2 and censor the observations less than 2.

Then generate 15 more observations from this distribution and

censor the observations less than 4.

Then Look at some values of various objectives for various transformations.
Note that for both the PPCC objective the optimal value is about -0.3,
whereas for the Log-Likelihood objective it is about 0.3.

(Note: the call to set.seed simply allows you to reproduce this example.)

HOHF ¥ H HF ¥ H R

set.seed(250)

Xx.1 <= rlnormAlt(15, mean = 10, cv = 2)
censored.1 <- x.1 < 2
x.1[censored.1] <- 2

X.2 <= rlnormAlt(15, mean = 10, cv = 2)
censored.2 <- x.2 < 4

x.2[censored.2] <- 4

x <= c(x.1, x.2)
censored <- c(censored.1, censored.?2)

boxcoxCensored(x, censored)

#Results of Box-Cox Transformation
#Based on Type I Censored Data

# _________________________________

#

#0bjective Name: PPCC
#

#Data: X

#

#Censoring Variable: censored
#

#Censoring Side: left
#

#Censoring Level(s): 24
#

#Sample Size: 30

#

#Percent Censored: 26.7%
#

# lambda PPCC

# -2.0 0.8954683

# -1.5 0.9338467

# -1.0 0.9643680

# -0.5 0.9812969

# 0.0 0.9776834

# 0.5 0.9471025

# 1.0 0.8901990

# 1.5 0.8187488
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# 2.0 0.7480494

boxcoxCensored(x, censored, optimize = TRUE)

#Results of Box-Cox Transformation
#Based on Type I Censored Data

# _________________________________

#

#0bjective Name: PPCC

#

#Data: X

#

#Censoring Variable: censored

#

#Censoring Side: left

#

#Censoring Level(s): 24

#

#Sample Size: 30

#

#Percent Censored: 26.7%

#

#Bounds for Optimization: lower = -2
# upper = 2
#

#0ptimal Value: lambda = -0.3194799
#

#Value of Objective: PPCC = ©.9827546
# ___________________________________

# Using the Log-Likelihodd objective

# ___________________________________
boxcoxCensored(x, censored, objective.name = "Log-Likelihood")
#Results of Box-Cox Transformation

#Based on Type I Censored Data

# _________________________________

#

#0bjective Name: Log-Likelihood
#

#Data: X

#

#Censoring Variable: censored

#

#Censoring Side: left

#

#Censoring Level(s): 2 4

#

#Sample Size: 30

#

#Percent Censored: 26.7%

#

# lambda Log-Likelihood
#  -2.0 -95.38785

45
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-84.76697
-75.36204
-68.12058
-63.98902
-63.56701
-66.92599
-73.61638
-82.87970
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boxcoxCensored(x, censored, objective.name = "Log-Likelihood”,

optimize = TRUE)

#Results of Box-Cox Transformation
#Based on Type I Censored Data

#0bjective Name:

#

#Data:

#

#Censoring Variable:
#

#Censoring Side:

#

#Censoring Level(s):
#

#Sample Size:

#

#Percent Censored:

#

#Bounds for Optimization:

#

#

#0ptimal Value:

#

#Value of Objective:

Log-Likelihood

censored
left
2 4
30

26.7%

|
1
N

lower =
upper = 2

lambda = 0.3049744

Log-Likelihood = -63.2733

boxcox.list <- boxcoxCensored(x, censored)

dev.new()
plot(boxcox.list)

#lLook at QQ-Plots for the candidate values of lambda

rm(x.1, censored.1, x.2, censored.2, x, censored, boxcox.list)

graphics.off()

boxcoxCensored
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ject 83 Class "boxcoxCensored"

Description

Objects of S3 class "boxcoxCensored” are returned by the EnvStats function boxcoxCensored,
which computes objective values for user-specified powers, or computes the optimal power for the

specified objective,

Details

based on Type I censored data.

Objects of class "boxcoxCensored"” are lists that contain information about the powers that were

used, the objective

that was used, the values of the objective for the given powers, and whether an

optimization was specified.

Value

Required Components
The following components must be included in a legitimate list of class "boxcoxCensored”.

lambda

objective

objective.name

optimize

optimize.bounds

eps

sample.size

censoring.side

Numeric vector containing the powers used in the Box-Cox transformations. If
the value of the optimize component is FALSE, then 1ambda contains the values
of all of the powers at which the objective was evaluated. If the value of the
optimize component is TRUE, then lambda is a scalar containing the value of
the power that maximizes the objective.

Numeric vector containing the value(s) of the objective for the given value(s) of
A that are stored in the component 1ambda.

Character string indicating the objective that was used. The possible values are
"PPCC" (probability plot correlation coefficient; the default), "Shapiro-Wilk"
(the Shapiro-Wilk goodness-of-fit statistic), and "Log-Likelihood” (the log-
likelihood function).

Logical scalar indicating whether the objective was simply evaluted at the given
values of lambda (optimize=FALSE), or instead the optimal power transforma-
tion was computed within the bounds specified by lambda (optimize=TRUE).

Numeric vector of length 2 with a names attribute indicating the bounds within
which the optimization took place. When optimize=FALSE, this contains miss-
ing values.

Finite, positive numeric scalar indicating what value of eps was used. When
the absolute value of 1ambda is less than eps, lambda is assumed to be O for the
Box-Cox transformation.

Numeric scalar indicating the number of finite, non-missing observations.

Character string indicating the censoring side. Possible values are "left" and
"right”.

censoring.levels

Numeric vector containing the censoring levels.

percent.censored

Numeric scalar indicating the percent of observations that are censored.
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data.name The name of the data object used for the Box-Cox computations.

censoring.name The name of the data object indicating which observations are censored.

bad.obs The number of missing (NA), undefined (NaN) and/or infinite (Inf, -Inf) values
that were removed from the data object prior to performing the Box-Cox com-
putations.

Optional Component

The following components may optionally be included in a legitimate list of class "boxcoxCensored”.
They must be included if you want to call the function plot.boxcoxCensored and specify Q-Q
plots or Tukey Mean-Difference Q-Q plots.

data Numeric vector containing the data actually used for the Box-Cox computations
(i.e., the original data without any missing or infinite values).
censored Logical vector indicating which of the vales in the component data are cen-
sored.
Methods

Generic functions that have methods for objects of class "boxcoxCensored” include:
link{plot}, print.
Note

Since objects of class "boxcoxCensored” are lists, you may extract their components with the $
and [[ operators.

Author(s)
Steven P. Millard (<EnvStats@ProbStatInfo.com>)

See Also

boxcoxCensored, plot.boxcoxCensored, print.boxcoxCensored.

Examples
# Create an object of class "boxcoxCensored”, then print it out.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)

x.1 <= rlnormAlt(15, mean = 10, cv = 2)
censored.1 <- x.1 < 2
x.1[censored.1] <- 2

X.2 <= rlnormAlt(15, mean = 10, cv = 2)
censored.2 <- x.2 < 4

x.2[censored.2] <- 4

x <= ¢c(x.1, x.2)
censored <- c(censored.1, censored.2)

boxcox.list <- boxcoxCensored(x, censored)
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data.class(boxcox.list)
#[1] "boxcoxCensored"

names (boxcox.list)

# [1] "lambda” "objective” "objective.name”

# [4] "optimize" "optimize.bounds” "eps”

# [7] "data” "censored” "sample.size”
#[10] "censoring.side"”  "censoring.levels"” "percent.censored”
#[13] "data.name" "censoring.name"” "bad.obs"

boxcox.list

#Results of Box-Cox Transformation
#Based on Type I Censored Data

# _________________________________

#

#0bjective Name: PPCC
#

#Data: X

#

#Censoring Variable: censored
#

#Censoring Side: left
#

#Censoring Level(s): 2 4
#

#Sample Size: 30

#

#Percent Censored: 26.7%
#

# lambda PPCC

# -2.0 0.8954683

# -1.5 0.9338467

# -1.0 0.9643680

# -0.5 0.9812969

# 0.0 0.9776834

# 0.5 0.9471025

# 1.0 0.8901990

# 1.5 0.8187488

# 2.0 0.7480494

boxcox.list2 <- boxcox(x, optimize = TRUE)
names (boxcox.list2)

# [1] "lambda" "objective” "objective.name"
# [4] "optimize” "optimize.bounds” "eps”
# [7] "data” "sample.size"” "data.name"

#[10] "bad.obs”

boxcox.list2
#Results of Box-Cox Transformation

#0bjective Name: PPCC
#

#Data: X

#

#Sample Size: 30
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#

#Bounds for Optimization: lower

#
#

#0ptimal Value:

#

boxcoxLm.object

1 n
1
NN

upper

lambda = -0.5826431

#Value of Objective: PPCC = 0.9755402

rm(x.1, censored.1, x.2, censored.2, x, censored, boxcox.list, boxcox.list2)

boxcoxLm.object

S3 Class "boxcoxLm"

Description

Objects of S3 class "boxcoxLm" are returned by the EnvStats function boxcox when the argument
x is an object of class "1m". In this case, boxcox computes values of an objective function for user-
specified powers, or computes the optimal power for the specified objective, based on residuals
from the linear model.

Details

Objects of class "boxcoxLm” are lists that contain information about the "1m"” object that was su-
plied, the powers that were used, the objective that was used, the values of the objective for the
given powers, and whether an optimization was specified.

Value

The following components must be included in a legitimate list of class "boxcoxLm".

lambda

objective

objective.name

optimize

optimize.bounds

Numeric vector containing the powers used in the Box-Cox transformations. If
the value of the optimize component is FALSE, then 1ambda contains the values
of all of the powers at which the objective was evaluated. If the value of the
optimize component is TRUE, then lambda is a scalar containing the value of
the power that maximizes the objective.

Numeric vector containing the value(s) of the objective for the given value(s) of
A that are stored in the component 1ambda.

character string indicating the objective that was used. The possible values are
"PPCC" (probability plot correlation coefficient; the default), "Shapiro-Wilk"
(the Shapiro-Wilk goodness-of-fit statistic), and "Log-Likelihood"” (the log-
likelihood function).

logical scalar indicating whether the objective was simply evaluted at the given
values of 1ambda (optimize=FALSE), or instead the optimal power transforma-
tion was computed within the bounds specified by lambda (optimize=TRUE).

Numeric vector of length 2 with a names attribute indicating the bounds within
which the optimization took place. When optimize=FALSE, this contains miss-
ing values.
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eps

1Im.obj

sample.size

data.name
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finite, positive numeric scalar indicating what value of eps was used. When the
absolute value of lambda is less than eps, lambda is assumed to be O for the
Box-Cox transformation.

the value of the argument x provided to boxcox (an object that must inherit from
class "1m").

Numeric scalar indicating the number of finite, non-missing observations.

The name of the data object used for the Box-Cox computations.

Generic functions that have methods for objects of class "boxcoxLm"” include:
link{plot}, print.

Note

Since objects of class "boxcoxLm" are lists, you may extract their components with the $ and [[

operators.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

See Also

boxcox, plot.boxcoxLm, print.boxcoxLm, boxcox.object.

Examples

# Create an object of class "boxcoxLm”, then print it out.

o3 o B O H B

The data frame Environmental.df contains daily measurements of

ozone concentration, wind speed, temperature, and solar radiation

in New York City for 153 consecutive days between May 1 and
September 30, 1973. In this example, we'll plot ozone vs.
temperature and look at the Q-Q plot of the residuals. Then

we'll look at possible Box-Cox transformations. The "optimal” one
based on the PPCC looks close to a log-transformation

(i.e., lambda=@). The power that produces the largest PPCC is

about 0.2, so a cube root (lambda=1/3) transformation might work too.

# Fit the model with the raw Ozone data

ozone.fit <- Im(ozone ~ temperature, data = Environmental.df)

# Plot Ozone vs. Temperature, with fitted line

# _____________________________________________
dev.new()
with(Environmental.df,
plot(temperature, ozone, xlab = "Temperature (degrees F)",
ylab = "Ozone (ppb)"”, main = "Ozone vs. Temperature"))

abline(ozone.fit)

# Look at the Q-Q Plot for the residuals

dev.new()
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gqPlot(ozone.fit$residuals, add.line = TRUE)
# Look at Box-Cox transformations of Ozone
boxcox.list <- boxcox(ozone.fit)

boxcox.list
#Results of Box-Cox Transformation

# _________________________________

#

#0bjective Name: PPCC
#

#lLinear Model: ozone.fit
#

#Sample Size: 116
#

# lambda PPCC

# -2.0 0.4286781

# -1.5 0.4673544

# -1.0 0.5896132

# -0.5 0.8301458

# 0.0 0.9871519

# 0.5 0.9819825

# 1.0 0.9408694

# 1.5 0.8840770

# 2.0 0.8213675

# __________

# Clean up

# _________

rm(ozone.fit, boxcox.list)

boxcoxTransform Apply a Box-Cox Power Transformation to a Set of Data

Description

Apply a Box-Cox power transformation to a set of data to attempt to induce normality and homo-
geneity of variance.

Usage
boxcoxTransform(x, lambda, eps = .Machine$double.eps)
Arguments
X a numeric vector of positive numbers.
lambda finite numeric scalar indicating what power to use for the Box-Cox transforma-
tion.
eps finite, positive numeric scalar. When the absolute value of 1ambda is less than

eps, lambda is assumed to be 0 for the Box-Cox transformation. The default
value is eps=.Machine$double.eps.
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Details
Two common assumptions for several standard parametric hypothesis tests are:

1. The observations all come from a normal distribution.

2. The observations all come from distributions with the same variance.

For example, the standard one-sample t-test assumes all the observations come from the same nor-
mal distribution, and the standard two-sample t-test assumes that all the observations come from a
normal distribution with the same variance, although the mean may differ between the two groups.
For standard linear regression models, these assumptions can be stated as: the error terms all come
from a normal distribution with mean 0 and and a constant variance.

Often, especially with environmental data, the above assumptions do not hold because the original
data are skewed and/or they follow a distribution that is not really shaped like a normal distribution.
It is sometimes possible, however, to transform the original data so that the transformed observa-
tions in fact come from a normal distribution or close to a normal distribution. The transformation
may also induce homogeneity of variance and, for the case of a linear regression model, a linear
relationship between the response and predictor variable(s).

Sometimes, theoretical considerations indicate an appropriate transformation. For example, count
data often follow a Poisson distribution, and it can be shown that taking the square root of obser-
vations from a Poisson distribution tends to make these data look more bell-shaped (Johnson et
al., 1992, p.163; Johnson and Wichern, 2007, p.192; Zar, 2010, p.291). A common example in
the environmental field is that chemical concentration data often appear to come from a lognormal
distribution or some other positively-skewed distribution (e.g., gamma). In this case, taking the
logarithm of the observations often appears to yield normally distributed data.

Ideally, a data transformation is chosen based on knowledge of the process generating the data, as
well as graphical tools such as quantile-quantile plots and histograms.

Box and Cox (1964) presented a formalized method for deciding on a data transformation. Given a
random variable X from some distribution with only positive values, the Box-Cox family of power
transformations is defined as:

y = X=1 \zo0
log(X) Xx=0 (1)

where Y is assumed to come from a normal distribution. This transformation is continuous in \.
Note that this transformation also preserves ordering; that is, if X; < X5 then Y7 < Y5.

Box and Cox (1964) proposed choosing the appropriate value of A based on maximizing a likelihood
function. See the help file for boxcox for details.

Note that for non-zero values of ), instead of using the formula of Box and Cox in Equation (1),
you may simply use the power transformation:

Y =X (2

since these two equations differ only by a scale difference and origin shift, and the essential charac-
ter of the transformed distribution remains unchanged.

The value A = 1 corresponds to no transformation. Values of A less than 1 shrink large values of X,
and are therefore useful for transforming positively-skewed (right-skewed) data. Values of A larger
than 1 inflate large values of X, and are therefore useful for transforming negatively-skewed (left-
skewed) data (Helsel and Hirsch, 1992, pp.13-14; Johnson and Wichern, 2007, p.193). Commonly
used values of A include O (log transformation), 0.5 (square-root transformation), -1 (reciprocal),
and -0.5 (reciprocal root).
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It is often recommend that when dealing with several similar data sets, it is best to find a common
transformation that works reasonably well for all the data sets, rather than using slightly different
transformations for each data set (Helsel and Hirsch, 1992, p.14; Shumway et al., 1989).

Value

numeric vector of transformed observations.

Note

Data transformations are often used to induce normality, homoscedasticity, and/or linearity, com-
mon assumptions of parametric statistical tests and estimation procedures. Transformations are not
“tricks” used by the data analyst to hide what is going on, but rather useful tools for understand-
ing and dealing with data (Berthouex and Brown, 2002, p.61). Hoaglin (1988) discusses “hidden”
transformations that are used everyday, such as the pH scale for measuring acidity.

In the case of a linear model, there are at least two approaches to improving a model fit: trans-
form the Y and/or X variable(s), and/or use more predictor variables. Often in environmental data
analysis, we assume the observations come from a lognormal distribution and automatically take
logarithms of the data. For a simple linear regression (i.e., one predictor variable), if regression
diagnostic plots indicate that a straight line fit is not adequate, but that the variance of the errors ap-
pears to be fairly constant, you may only need to transform the predictor variable X or perhaps use
a quadratic or cubic model in X. On the other hand, if the diagnostic plots indicate that the constant
variance and/or normality assumptions are suspect, you probably need to consider transforming the
response variable Y. Data transformations for linear regression models are discussed in Draper and
Smith (1998, Chapter 13) and Helsel and Hirsch (1992, pp. 228-229).

One problem with data transformations is that translating results on the transformed scale back to
the original scale is not always straightforward. Estimating quantities such as means, variances,
and confidence limits in the transformed scale and then transforming them back to the original scale
usually leads to biased and inconsistent estimates (Gilbert, 1987, p.149; van Belle et al., 2004,
p-400). For example, exponentiating the confidence limits for a mean based on log-transformed
data does not yield a confidence interval for the mean on the original scale. Instead, this yields a
confidence interval for the median (see the help file for elnormAlt). It should be noted, however,
that quantiles (percentiles) and rank-based procedures are invariant to monotonic transformations
(Helsel and Hirsch, 1992, p.12).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

boxcox, Data Transformations, Goodness-of-Fit Tests.

Examples

# Generate 30 observations from a lognormal distribution with

# mean=10 and cv=2, then look at some normal quantile-quantile

# plots for various transformations.

# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
X <= rlnormAlt(30, mean = 10, cv = 2)

dev.new()
qgPlot(x, add.line = TRUE)

dev.new()
qgPlot(boxcoxTransform(x, lambda = ©0.5), add.line = TRUE)

dev.new()
qgPlot(boxcoxTransform(x, lambda = @), add.line = TRUE)

# Clean up
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calibrate Fit a Calibration Line or Curve

Description

Fit a calibration line or curve based on linear regression.

Usage

calibrate(formula, data, test.higher.orders = TRUE, max.order = 4, p.crit = 0.05,
F.test = "partial”, weights, subset, na.action, method = "qr"”, model = FALSE,

x = FALSE, y = FALSE, contrasts = NULL, warn = TRUE, ...)
Arguments
formula a formula object, with the response on the left of a ~ operator, and the single

predictor variable on the right. For example, Cadmium ~ Spike.

data an optional data frame, list or environment (or object coercible by
as.data.frame to a data frame) containing the variables in the model. If not
found in data, the variables are taken from environment(formula), typically
the environment from which calibrate is called.

test.higher.orders
logical scalar indicating whether to start with a model that contains a single
predictor variable and test the fit of higher order polynomials to consider for
the calibration curve (test.higher.orders=TRUE; the default), or to simply
use the model suppled and add the model matrix to the fit if it was not already
indicated by the argument x=TRUE in the call to calibrate.

max.order integer indicating the maximum order of the polynomial to consider for the cal-
ibration curve. The default value is max.order=4, however, the final value of
max.order is the minimum of max.order and value of the number of unique
predictor values minus 1. So, for example, if there are only 4 unique values of
the single predictor variable, then the final value of max. order is the minimum
of what the user supplies and 3; thus, in this case, the highest order polynomial
that will be potentially tested is a cubic. See also the explanation below for the
argument warn.

p.crit numeric scaler between 0 and 1 indicating the p-value to use for the stepwise
regression when determining which polynomial model to use. The default value
iSp.crit=e0.05.

F.test character string indicating whether to perform the stepwise regression using the
standard partial F-test (F. test="partial"; the default) or using the lack-of-fit
F-test (F.test="1of").

weights optional vector of observation weights; if supplied, the algorithm fits to mini-
mize the sum of the weights multiplied into the squared residuals. The length of
weights must be the same as the number of observations. The weights must be
nonnegative and it is strongly recommended that they be strictly positive, since
zero weights are ambiguous, compared to use of the subset argument.

subset optional expression saying which subset of the rows of the data should be used
in the fit. This can be a logical vector (which is replicated to have length equal
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to the number of observations), or a numeric vector indicating which observa-
tion numbers are to be included, or a character vector of the row names to be
included. All observations are included by default.

na.action optional function which indicates what should happen when the data contain
NAs. The default is set by the na.action setting of options, and is
na.fail if that is unset. The ‘factory-fresh’ default is na.omit. Another possi-
ble value is NULL, no action. Value na.exclude can be useful.

method optional method to be used; for fitting, currently only method = "qr" is sup-
ported; method = "model.frame" returns the model frame (the same as with
model = TRUE, see below).

model, x, y, qr

optional logicals. If TRUE the corresponding components of the fit (the model
frame, the model matrix, the response, the QR decomposition) are returned.

contrasts an optional list. See the argument contrasts.arg of model.matrix.

warn logical scalar indicating whether to issue a warning (warn=TRUE; the default)
when the value of max.order has been decreased from what the user supplied.
See also the explanation above for the argument max.order.

additional arguments to be passed to the low level regression fitting functions
(see 1m).

Details

A simple and frequently used calibration model is a straight line where the response variable S
denotes the signal of the machine and the predictor variable C denotes the true concentration in the
physical sample. The error term is assumed to follow a normal distribution with mean 0. Note that
the average value of the signal for a blank (C = 0) is the intercept. Other possible calibration models
include higher order polynomial models such as a quadratic or cubic model.

In a typical setup, a small number of samples (e.g., n = 6) with known concentrations are measured
and the signal is recorded. A sample with no chemical in it, called a blank, is also measured. (You
have to be careful to define exactly what you mean by a “blank.” A blank could mean a container
from the lab that has nothing in it but is prepared in a similar fashion to containers with actual
samples in them. Or it could mean a field blank: the container was taken out to the field and
subjected to the same process that all other containers were subjected to, except a physical sample
of soil or water was not placed in the container.) Usually, replicate measures at the same known
concentrations are taken. (The term “replicate” must be well defined to distinguish between for
example the same physical samples that are measured more than once vs. two different physical
samples of the same known concentration.)

The function calibrate initially fits a linear calibration model. If the argument max.order is
greater than 1, calibrate then performs forward stepwise linear regression to determine the “best”
polynomial model.

In the case where replicates are not availble, calibrate uses standard stepwise ANOVA to compare
models (Draper and Smith, 1998, p.335). In this case, if the p-value for the partial F-test to compare
models is greater than or equal to p.crit, then the model with fewer terms is used as the final
model.

In the case where replicates are available, if F.test="1of", then for each model calibrate com-
putes the p-value of the ANOVA for lack-of-fit vs. pure error (Draper and Smith, 1998, Chapters
2; see anovaPE). If the p-value is greater than or equal to p.crit, then this is the final model;
otherwise the next higher-order term is added to the polynomial and the model is re-fit. If, during
the stepwise procedure, the degrees of freedom associated with the residual sums of squares of a
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model to be tested is less than or equal to the number of observations minus the number of unique
observations, calibrate uses the partial F-test instead of the lack-of-fit F-test.

The stepwise algorithm terminates when either the p-value is greater than or equal to p.crit, or
the currently selected model in the algorithm is of order max.order. The algorithm will terminate
earlier than this if the next model to be fit includes singularities so that not all coefficients can be
estimted.

Value

An object of class "calibrate” that inherits from class "1m" and includes a component called x
that stores the model matrix (the values of the predictor variables for the final calibration model).

Note

Almost always the process of determining the concentration of a chemical in a soil, water, or air
sample involves using some kind of machine that produces a signal, and this signal is related to the
concentration of the chemical in the physical sample. The process of relating the machine signal to
the concentration of the chemical is called calibration. Once calibration has been performed, esti-
mated concentrations in physical samples with unknown concentrations are computed using inverse
regression (see inversePredictCalibrate). The uncertainty in the process used to estimate the
concentration may be quantified with decision, detection, and quantitation limits.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

calibrate.object, anovaPE, inversePredictCalibrate, detectionLimitCalibrate, 1m.

Examples

# The data frame EPA.97.cadmium.111.df contains calibration data for

# cadmium at mass 111 (ng/L) that appeared in Gibbons et al. (1997b)
# and were provided to them by the U.S. EPA.

# Display a plot of these data along with the fitted calibration line
# and 99% non-simultaneous prediction limits. See

# Millard and Neerchal (2001, pp.566-569) for more details on this

# example.

Cadmium <- EPA.97.cadmium.111.df$Cadmium
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Spike <- EPA.97.cadmium.111.df$Spike

calibrate.list <- calibrate(Cadmium ~ Spike, data = EPA.97.cadmium.111.df)
newdata <- data.frame(Spike = seq(min(Spike), max(Spike), len = 100))
pred.list <- predict(calibrate.list, newdata = newdata, se.fit = TRUE)

pointwise.list <- pointwise(pred.list, coverage = 0.99, individual = TRUE)

dev.new()
plot(Spike, Cadmium, ylim = c(min(pointwise.list$lower),
max (pointwise.list$upper)), xlab = "True Concentration (ng/L)",

ylab = "Observed Concentration (ng/L)")
abline(calibrate.list, 1lwd = 2)
lines(newdata$Spike, pointwise.list$lower, lty = 8, lwd = 2)
lines(newdata$Spike, pointwise.list$upper, lty = 8, 1lwd = 2)

title(paste(”Calibration Line and 99% Prediction Limits”,
"for US EPA Cadmium 111 Data”, sep = "\n"))

rm(Cadmium, Spike, newdata, calibrate.list, pred.list, pointwise.list)
graphics.off()

calibrate.object S3 Class "calibrate"

Description

Objects of S3 class "calibrate” are returned by the EnvStats function calibrate, which fits a
calibration line or curve based on linear regression.

Details

Objects of class "calibrate” are lists that inherit from class "1m" and include a component called
x that stores the model matrix (the values of the predictor variables for the final calibration model).

Value

See the help file for 1m.

Required Components
Besides the usual components in the list returned by the function 1m, the following components
must be included in a legitimate list of class "calibrate”.

X the model matrix from the linear model fit.
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Methods

Generic functions that have methods for objects of class "calibrate” include:
NONE AT PRESENT.

Note

Since objects of class "calibrate” are lists, you may extract their components with the $ and [[
operators.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

See Also

calibrate, inversePredictCalibrate, detectionLimitCalibrate.

Examples

[l

# Create an object of class "calibrate”, then print it out.

# The data frame EPA.97.cadmium.111.df contains calibration data for

# cadmium at mass 111 (ng/L) that appeared in Gibbons et al. (1997b)

# and were provided to them by the U.S. EPA.

calibrate.list <- calibrate(Cadmium ~ Spike, data = EPA.97.cadmium.111.df)

names(calibrate.list)

calibrate.list

rm(calibrate.list)

CastilloAndHadi1994 Abstract: Castillo and Hadi (1994)

Description

Detailed abstract of the manuscript:

Castillo, E., and A. Hadi. (1994). Parameter and Quantile Estimation for the Generalized Extreme-
Value Distribution. Environmetrics 5, 417-432.
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Details

Abstract

Castillo and Hadi (1994) introduce a new way to estimate the parameters and quantiles of the gen-
eralized extreme value distribution (GEVD) with parameters location=7, scale=6, and shape=x.
The estimator is based on a two-stage procedure using order statistics, denoted here by “TSOE”,
which stands for two-stage order-statistics estimator. Castillo and Hadi (1994) compare the TSOE
to the maximum likelihood estimator (MLE; Jenkinson, 1969; Prescott and Walden, 1983) and
probability-weighted moments estimator (PWME; Hosking et al., 1985).

Castillo and Hadi (1994) note that for some samples the likelihood may not have a local maximum,
and also when « > 1 the likelihood can be made infinite so the MLE does not exist. They also note,
as do Hosking et al., 1985), that when x < —1, the moments and probability-weighed moments
of the GEVD do not exist, hence neither does the PWME. (Hosking et al., however, claim that in
practice the shape parameter usually lies between -1/2 and 1/2.) On the other hand, the TSOE exists
for all values of «.

Based on computer simulations, Castillo and Hadi (1994) found that the performance (bias and
root mean squared error) of the TSOE is comparable to the PWME for values of « in the range
—1/2 < k < 1/2. They also found that the TSOE is superior to the PWME for large values of x.
Their results, however, are based on using the PWME computed using the approximation given in
equation (14) of Hosking et al. (1985, p.253). The true PWME is computed using equation (12)
of Hosking et al. (1985, p.253). Hosking et al. (1985) introduced the approximation as a matter
of computational convenience, and noted that it is valid in the range —1/2 < x < 1/2. If Castillo
and Hadi (1994) had used the true PWME for values of x larger than 1/2, they probably would have
gotten very different results for the PWME. (Note: the function egevd with method="pwme" uses
the exact equation (12) of Hosking et al. (1985), not the approximation (14)).

Castillo and Hadi (1994) suggest using the bootstrap or jackknife to obtain variance estimates and
confidence intervals for the distribution parameters based on the TSOE.

More Details Let x = (z1, 2, ...,x,) be a vector of n observations from a generalized extreme
value distribution with parameters location=r, scale=6, and shape=x with cumulative distribu-
tion function F. Also, let 2:(1),2(2),...,x(n) denote the ordered values of z.

First Stage

Castillo and Hadi (1994) propose as initial estimates of the distribution parameters the solutions to
the following set of simultaneous equations based on just three observations from the total sample
of size n:

F[[L’(l), 7, 91 KJ] =DPin
F[l’(]), m, 03 /i] = pj,n
Fla(n);n, 0, 6] = ppn (1)

where 2 < 5 <n —1, and .

DPin = F[I(Z)a m, 97 ’%]
denotes the ¢’th plotting position for a sample of size n; that is, a nonparametric estimate of the
value of F' at z(4). Typically, plotting positions have the form:
1 —a
n+b

(2)

Pin =

where b > —a > —1. In their simulation studies, Castillo and Hadi (1994) used a=0.35, b=0.

Since j is arbitrary in the above set of equations (1), denote the solutions to these equations by:

77ja9j7"fj
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There are thus n — 2 sets of estimates.

Castillo and Hadi (1994) show that the estimate of the shape parameter, «, is the solution to the
equation:

o) —aln) _1=A5 o

z(1) —z(n) 1-— A%,

where
A =Ci/Cr (4)
C; = —log(pin) (5)
Castillo and Hadi (1994) show how to easily solve equation (3) using the method of bisection.
Once the estimate of the shape parameter is obtained, the other estimates are given by:

j _ Ry[r(1) —2(n)]
%= (Cp)Rs — (Cy)Rs (6

X f;[1 — (C1)™]

i =z(1) = (7)

Kj

Second Stage

Apply a robust function to the n — 2 sets of estimates obtained in the first stage. Castillo and Hadi
(1994) suggest using either the median or the least median of squares (using a column of 1’s as
the predictor variable; see the help file for Imsreg in the package MASS). Using the median, for
example, the final distribution parameter estimates are given by:

ﬁ = Median(ﬁ%ﬁg, ey ﬁnfl)
6 = Median(ég,ég, ol én,l)

k= Median(fa, Rz, ..., Rn_1)
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cdfCompare

Plot Two Cumulative Distribution Functions

Description

For one sample, plots the empirical cumulative distribution function (ecdf) along with a theoretical
cumulative distribution function (cdf). For two samples, plots the two ecdf’s. These plots are used
to graphically assess goodness of fit.

Usage

cdfCompare(x, y = NULL, discrete = FALSE,
prob.method = ifelse(discrete, "emp.probs”, "plot.pos”),
plot.pos.con = NULL, distribution = "norm”, param.list = NULL,

estimate.params = is.null(param.list), est.arg.list = NULL, x.col

nbluen ,

y.or.fitted.col = "black”, x.lwd = 3 x par(”cex"), y.or.fitted.lwd = 3 * par("cex"),
x.1lty = 1, y.or.fitted.1lty = 2, digits = .Options$digits, ...,

type = ifelse(discrete, "s", "1"), main = NULL, xlab = NULL, ylab

nan

NULL,

xlim = NULL, ylim = NULL)

Arguments

X

discrete

prob.method

plot.pos.con

distribution

numeric vector of observations. Missing (NA), undefined (NaN), and infinite (Inf,
-Inf) values are allowed but will be removed.

a numeric vector (not necessarily of the same length as x). Missing (NA), un-
defined (NaN), and infinite (Inf, -Inf) values are allowed but will be removed.
The default value is y=NULL, in which case the empirical cdf of x will be plotted
along with the theoretical cdf specified by the argument distribution.

logical scalar indicating whether the assumed parent distribution of x is discrete
(discrete=TRUE) or continuous (discrete=FALSE; the default).

character string indicating what method to use to compute the plotting positions
(empirical probabilities). Possible values are plot.pos (plotting positions, the
default if discrete=FALSE) and emp. probs (empirical probabilities, the default
if discrete=TRUE). See the help file for ecdfPlot for more explanation.

numeric scalar between 0 and 1 containing the value of the plotting position
constant. When y is supplied, the default value is plot.pos.con=0.375. When
y is not supplied, for the normal, lognormal, three-parameter lognormal, zero-
modified normal, and zero-modified lognormal distributions, the default value
is plot.pos.con=0.375. For the Type I extreme value (Gumbel) distribu-
tion (distribution="evd"), the default value is plot.pos.con=0.44. For all
other distributions, the default value is plot.pos.con=0.4. See the help files
for ecdfPlot and qgPlot for more information. This argument is ignored if
prob.method="emp.probs".

when y is not supplied, a character string denoting the distribution abbreviation.
The default value is distribution="norm". See the help file for Distribution
for a list of possible distribution abbreviations. This argument is ignored if y is
supplied.

.df
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param.list when y is not supplied, a list with values for the parameters of the distribu-
tion. The default value is param.list=1list(mean=0, sd=1). See the help
file for Distribution.df for the names and possible values of the parameters
associated with each distribution. This argument is ignored if y is supplied or
estimate.params=TRUE.

estimate.params
when y is not supplied, a logical scalar indicating whether to compute the cdf for
x based on estimating the distribution parameters (estimate.params=TRUE) or
using the known distribution parameters specified in param.list (estimate.params=FALSE).
The default value is TRUE unless the argument param.list is supplied. The ar-
gument estimate.params is ignored if y is supplied.

est.arg.list  when y is not supplied and estimate.params=TRUE, a list whose components
are optional arguments associated with the function used to estimate the pa-
rameters of the assumed distribution (see the help file Estimating Distribution
Parameters). For example, all functions used to estimate distribution parame-
ters have an optional argument called method that specifies the method to use
to estimate the parameters. (See the help file for Distribution.df for a list of
available estimation methods for each distribution.) To override the default es-
timation method, supply the argument est.arg.list with a component called
method; for example est.arg.list=1ist(method="mle"). The default value
is est.arg.list=NULL so that all default values for the estimating function are
used. This argument is ignored if estimate.params=FALSE or y is supplied.

x.col a numeric scalar or character string determining the color of the empirical cdf
(based on x) line or points. The default value is x.col="blue"”. See the entry
for col in the help file for par for more information.
y.or.fitted.col
a numeric scalar or character string determining the color of the empirical cdf
(based on y) or the theoretical cdf line or points. The default valueisy.or.fitted.col="black".
See the entry for col in the help file for par for more information.

x.lwd a numeric scalar determining the width of the empirical cdf (based on x) line.
The default value is x. lwd=3*par("cex"). See the entry for 1wd in the help file
for par for more information.

y.or.fitted.lwd
a numeric scalar determining the width of the empirical cdf (based on y) or
theoretical cdf line. The default valueisy.or.fitted.lwd=3*par(”cex"). See
the entry for 1wd in the help file for par for more information.

x.1lty a numeric scalar determining the line type of the empirical cdf (based on x) line.
The default value is x.1ty=1. See the entry for 1ty in the help file for par for
more information.

y.or.fitted.lty
a numeric scalar determining the line type of the empirical cdf (based on y) or
theoretical cdf line. The default value is y.or.fitted.1lty=2. See the entry for
1ty in the help file for par for more information.

digits when y is not supplied, a scalar indicating how many significant digits to print
for the distribution parameters. The default value is digits=.0ptions$digits.
type, main, xlab, ylab, xlim, ylim,
additional graphical parameters (see 1ines and par). In particular, the argument
type specifies the kind of line type. By default, the function cdfCompare plots
a step function (type="s") when discrete=TRUE, and plots a straight line be-
tween points (type="1") when discrete=FALSE. The user may override these
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defaults by supplying the graphics parameter type (type="s" for a step func-
tion, type="1" for linear interpolation, type="p" for points only, etc.).

Details

When both x and y are supplied, the function cdfCompare creates the empirical cdf plot of x and y
on the same plot by calling the function ecdfPlot.

When vy is not supplied, the function cdfCompare creates the emprical cdf plot of x (by calling
ecdfPlot) and the theoretical cdf plot (by calling cdfPlot and using the argument distribution)
on the same plot.

Value

When y is supplied, cdfCompare invisibly returns a list with components x.ecdf.list andy.ecdf.list.
Each of these components is itself a list, with the components Order.Statistics and Cumulative.Probabilities,
giving coordinates of the points that have been plotted.

When y is not supplied, cdfCompare invisibly returns a list with components x.ecdf.list and
fitted.cdf.list. The component x.ecdf.list isitself a list with the components Order.Statistics
and Cumulative.Probabilities, giving coordinates of the points that have been plotted for the

x values. The component fitted.cdf.list is itself a list with the components Quantiles and
Cumulative.Probabilities, giving coordinates of the points that have been plotted for the fitted

cdf.

Note

An empirical cumulative distribution function (ecdf) plot is a graphical tool that can be used in
conjunction with other graphical tools such as histograms, strip charts, and boxplots to assess the
characteristics of a set of data. It is easy to determine quartiles and the minimum and maximum
values from such a plot. Also, ecdf plots allow you to assess local density: a higher density of
observations occurs where the slope is steep.

Chambers et al. (1983, pp.11-16) plot the observed order statistics on the y-axis vs. the ecdf on the
z-axis and call this a quantile plot.

Empirical cumulative distribution function (ecdf) plots are often plotted with theoretical cdf plots
(see cdfPlot and cdfCompare) to graphically assess whether a sample of observations comes from
a particular distribution. The Kolmogorov-Smirnov goodness-of-fit test (see gofTest) is the statis-
tical companion of this kind of comparison; it is based on the maximum vertical distance between
the empirical cdf plot and the theoretical cdf plot. More often, however, quantile-quantile (Q-Q)
plots are used instead of ecdf plots to graphically assess departures from an assumed distribution
(see qqPlot).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

cdfPlot, ecdfPlot, qqPlot.

Examples

# Generate 20 observations from a normal (Gaussian) distribution

# with mean=10 and sd=2 and compare the empirical cdf with a

# theoretical normal cdf that is based on estimating the parameters.

# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)

X <= rnorm(20, mean = 10, sd = 2)
dev.new()

cdfCompare(x)

# Generate 30 observations from an exponential distribution with parameter
# rate=0.1 (see the R help file for Exponential) and compare the empirical
# cdf with the empirical cdf of the normal observations generated in the

# previous example:

set.seed(432)

y <- rexp(30, rate = 0.1)
dev.new()

cdfCompare(x, y)

# Generate 20 observations from a Poisson distribution with parameter lambda=10
# (see the R help file for Poisson) and compare the empirical cdf with a

# theoretical Poisson cdf based on estimating the distribution parameters.

# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)

X <- rpois(20, lambda = 10)
dev.new()

cdfCompare(x, dist = "pois")

f==========
# Clean up
# _________
rm(x, y)

graphics.off()

cdfCompareCensored Plot Two Cumulative Distribution Functions Based on Censored Data

Description

For one sample, plots the empirical cumulative distribution function (ecdf) along with a theoretical
cumulative distribution function (cdf). For two samples, plots the two ecdf’s. These plots are used
to graphically assess goodness of fit.
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Usage
cdfCompareCensored(x, censored, censoring.side = "left"”,
y = NULL, y.censored = NULL, y.censoring.side = censoring.side,
discrete = FALSE, prob.method = "michael-schucany”,
plot.pos.con = NULL, distribution = "norm", param.list = NULL,
estimate.params = is.null(param.list), est.arg.list = NULL,
x.col = "blue”, y.or.fitted.col = "black”, x.lwd = 3 * par("cex"),
y.or.fitted.lwd = 3 * par(”"cex"), x.lty =1, y.or.fitted.1lty = 2,
include.x.cen = FALSE, x.cen.pch = ifelse(censoring.side == "left", 6, 2),
x.cen.cex = par("cex"), x.cen.col = "red",
include.y.cen = FALSE, y.cen.pch = ifelse(y.censoring.side == "left”, 6, 2),
y.cen.cex = par("cex"), y.cen.col = "black”, digits = .Options$digits, ...,
type = ifelse(discrete, "s", "1"), main = NULL, xlab = NULL, ylab = NULL,
xlim = NULL, ylim = NULL)
Arguments
X numeric vector of observations. Missing (NA), undefined (NaN), and infinite (Inf,
-Inf) values are allowed but will be removed.
censored numeric or logical vector indicating which values of x are censored. This must

be the same length as x. If the mode of censored is "logical”, TRUE values
correspond to elements of x that are censored, and FALSE values correspond to
elements of x that are not censored. If the mode of censored is "numeric”,
it must contain only 1’s and @’s; 1 corresponds to TRUE and @ corresponds to
FALSE. Missing (NA) values are allowed but will be removed.

censoring.side character string indicating on which side the censoring occurs. The possible
values are "left"” (the default) and "right”.

y a numeric vector (not necessarily of the same length as x). Missing (NA), un-
defined (NaN), and infinite (Inf, -Inf) values are allowed but will be removed.
The default value is y=NULL, in which case the empirical cdf of x will be plotted
along with the theoretical cdf specified by the argument distribution.

y.censored numeric or logical vector indicating which values of y are censored. This must
be the same length as y. If the mode of censored is "logical”, TRUE values
correspond to elements of y that are censored, and FALSE values correspond to
elements of y that are not censored. If the mode of censored is "numeric”,
it must contain only 1’s and @’s; 1 corresponds to TRUE and @ corresponds to
FALSE. Missing (NA) values are allowed but will be removed.

This argument is ignored when y is not supplied. The default value is y . censored=NULL
since the default value of y is y=NULL.
y.censoring.side
character string indicating on which side the censoring occurs for the values of y.
The possible values are "left” (the default) and "right”. This argument is ig-
nored when y is not supplied. The default value is y. censoring.side=censoring.side.

discrete logical scalar indicating whether the assumed parent distribution of x is discrete
(discrete=TRUE) or continuous (discrete=FALSE; the default).

prob.method character string indicating what method to use to compute the plotting posi-
tions (empirical probabilities). Possible values are "kaplan-meier"” (product-
limit method of Kaplan and Meier (1958)), "nelson” (hazard plotting method
of Nelson (1972)), "michael-schucany” (generalization of the product-limit
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method due to Michael and Schucany (1986)), and "hirsch-stedinger” (gen-
eralization of the product-limit method due to Hirsch and Stedinger (1987)). The
default value is prob.method="michael-schucany"”.
The "nelson” method is only available for censoring.side="right". See the
help file for ecdfPlotCensored for more explanation.

plot.pos.con  numeric scalar between 0 and 1 containing the value of the plotting position
constant. When y is supplied, the default value is plot.pos.con=0.375. When
y is not supplied, for the normal, lognormal, three-parameter lognormal, zero-
modified normal, and zero-modified lognormal distributions, the default value
is plot.pos.con=0.375. For the Type I extreme value (Gumbel) distribution
(distribution="evd"), the default value is plot.pos.con=0.44. For all other
distributions, the default value is plot.pos.con=0.4. See the help files for
ecdfPlot and qgPlot for more information. This argument is used only if
prob.method is equal to "michael-schucany” or "hirsch-stedinger".

distribution when y is not supplied, a character string denoting the distribution abbreviation.
The default value is distribution="norm". See the help file for Distribution.df
for a list of possible distribution abbreviations. This argument is ignored if y is
supplied.

param.list when y is not supplied, a list with values for the parameters of the distribu-
tion. The default value is param.list=list(mean=0, sd=1). See the help
file for Distribution.df for the names and possible values of the parameters
associated with each distribution. This argument is ignored if y is supplied or
estimate.params=TRUE.

estimate.params
when y is not supplied, a logical scalar indicating whether to compute the cdf for
x based on estimating the distribution parameters (estimate.params=TRUE) or
using the known distribution parameters specified in param. list (estimate.params=FALSE).
The default value is TRUE unless the argument param. list is supplied. The ar-
gument estimate.params is ignored if y is supplied.

est.arg.list  when y is not supplied and estimate.params=TRUE, a list whose components
are optional arguments associated with the function used to estimate the pa-
rameters of the assumed distribution (see the Section Estimating Distribution
Parameters in the help file Censored Data). For example, all functions used
to estimate distribution parameters have an optional argument called method
that specifies the method to use to estimate the parameters. (See the help file
for Distribution.df for a list of available estimation methods for each dis-
tribution.) To override the default estimation method, supply the argument
est.arg.list with acomponent called method; for example est.arg.list=1ist(method="mle").
The default value is est.arg.list=NULL so that all default values for the esti-
mating function are used. This argument is ignored if estimate.params=FALSE
ory is supplied.
x.col a numeric scalar or character string determining the color of the empirical cdf
(based on x) line or points. The default value is x.col="blue". See the entry
for col in the help file for par for more information.
y.or.fitted.col
a numeric scalar or character string determining the color of the empirical cdf
(based on y) or the theoretical cdf line or points. The default valueisy.or.fitted.col="black".
See the entry for col in the help file for par for more information.

x.lwd a numeric scalar determining the width of the empirical cdf (based on x) line.
The default value is x. lwd=3*par("cex"). See the entry for 1wd in the help file
for par for more information.
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y.or.fitted.1lwd
a numeric scalar determining the width of the empirical cdf (based on y) or
theoretical cdf line. The default valueisy.or.fitted. lwd=3*par(”"cex"). See
the entry for 1wd in the help file for par for more information.

x.1lty a numeric scalar determining the line type of the empirical cdf (based on x) line.
The default value is x.1ty=1. See the entry for 1ty in the help file for par for
more information.

y.or.fitted.lty
a numeric scalar determining the line type of the empirical cdf (based on y) or
theoretical cdf line. The default value is y.or.fitted.1lty=2. See the entry for
1ty in the help file for par for more information.

include.x.cen logical scalar indicating whether to include censored values in x in the plot.
The default value is include. x.cen=FALSE. If include. x.cen=TRUE, censored
values in x are plotted using the plotting character indicated by the argument
x.cen.pch (see below). This argument is ignored if there are no censored values
in x.

x.cen.pch numeric scalar or character string indicating the plotting character to use to plot
censored values in x. The default value is x.cen.pch=2 (hollow triangle point-
ing up) when x.censoring.side="right", and x.cen.pch=6 (hollow trian-
gle pointing down) when x.censoring.side="1eft". See the R help file for
points for an explanation of how plotting symbols are specified. This argument
is ignored if include.x.cen=FALSE.

X.cen.cex numeric scalar that determines the size of the plotting character used to plot
censored values in x. The default value is the current value of the cex graphics
parameter. See the entry for cex in the R help file for par for more information.
This argument is ignored if include.x.cen=FALSE.

x.cen.col numeric scalar or character string that determines the color of the plotting char-
acter used to plot censored values in x. The default value is x.cen.col="red".
See the entry for col in the R help file for par for more information. This
argument is ignored if include.x.cen=FALSE.

include.y.cen logical scalar indicating whether to include censored values in y in the plot.
The default value is include.y.cen=FALSE. If include.y.cen=TRUE, censored
values in y are plotted using the plotting character indicated by the argument
y.cen.pch (see below). This argument is ignored if y is not supplied and/or
there are no censored values in y.

y.cen.pch numeric scalar or character string indicating the plotting character to use to plot
censored values in y. The default value is y.cen.pch=2 (hollow triangle point-
ing up) when y.censoring.side="right", and y.cen.pch=6 (hollow trian-
gle pointing down) when y.censoring.side="1eft". See the R help file for
points for an explanation of how plotting symbols are specified. This argument
is ignored if include.y.cen=FALSE.

y.cen.cex numeric scalar that determines the size of the plotting character used to plot
censored values in y. The default value is the current value of the cex graphics
parameter. See the entry for cex in the R help file for par for more information.
This argument is ignored if include.y.cen=FALSE.

y.cen.col numeric scalar or character string that determines the color of the plotting char-
acter used to plot censored values in y. The default valueis y.cen.col="black".
See the entry for col in the R help file for par for more information. This argu-
ment is ignored if include.y.cen=FALSE.
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digits when y is not supplied, a scalar indicating how many significant digits to print
for the distribution parameters. The default value is digits=.0ptions$digits.

type, main, xlab, ylab, xlim, ylim,
additional graphical parameters (see 1ines and par). In particular, the argument
type specifies the kind of line type. By default, the function cdfCompareCensored
plots a step function (type="s") when discrete=TRUE, and plots a straight
line between points (type="1") when discrete=FALSE. The user may over-
ride these defaults by supplying the graphics parameter type (type="s" for a
step function, type="1" for linear interpolation, type="p" for points only, etc.).

Details

When both x and y are supplied, the function cdfCompareCensored creates the empirical cdf plot
of x and y on the same plot by calling the function ecdfPlotCensored.

When y is not supplied, the function cdfCompareCensored creates the emprical cdf plot of x (by
calling ecdfPlotCensored) and the theoretical cdf plot (by calling cdfPlot and using the argument
distribution) on the same plot.

Value

When vy is supplied, cdfCompareCensored invisibly returns a list with components x.ecdf.list
and y.ecdf.list. Each of these components is itself a list, with the components Order.Statistics
and Cumulative.Probabilities, giving coordinates of the points that have been plotted.

When y is not supplied, cdfCompareCensored invisibly returns a list with components x. ecdf.list

and fitted.cdf.list. The component x.ecdf.list isitself a list with the components Order.Statistics
and Cumulative.Probabilities, giving coordinates of the points that have been plotted for the

x values. The component fitted.cdf.list is itself a list with the components Quantiles and
Cumulative.Probabilities, giving coordinates of the points that have been plotted for the fitted

cdf.

Note

An empirical cumulative distribution function (ecdf) plot is a graphical tool that can be used in
conjunction with other graphical tools such as histograms, strip charts, and boxplots to assess the
characteristics of a set of data. It is easy to determine quartiles and the minimum and maximum
values from such a plot. Also, ecdf plots allow you to assess local density: a higher density of
observations occurs where the slope is steep.

Chambers et al. (1983, pp.11-16) plot the observed order statistics on the y-axis vs. the ecdf on the
z-axis and call this a quantile plot.

Censored observations complicate the procedures used to graphically explore data. Techniques from
survival analysis and life testing have been developed to generalize the procedures for constructing
plotting positions, empirical cdf plots, and g-q plots to data sets with censored observations (see
ppointsCensored).

Empirical cumulative distribution function (ecdf) plots are often plotted with theoretical cdf plots
to graphically assess whether a sample of observations comes from a particular distribution. More
often, however, quantile-quantile (Q-Q) plots are used instead of ecdf plots to graphically assess
departures from an assumed distribution (see qgPlotCensored).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

cdfPlot, ecdfPlotCensored, qgPlotCensored.

Examples

# Generate 20 observations from a normal distribution with mean=20 and sd=5,
# censor all observations less than 18, then compare the empirical cdf with a
# theoretical normal cdf that is based on estimating the parameters.

# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(333)

x <= sort(rnorm(20, mean=20, sd=5))

X

# [1] 9.743551 12.370197 14.375499 15.628482 15.883507 17.080124
# [7] 17.197588 18.097714 18.654182 19.585942 20.219308 20.268505
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#[13] 20.552964 21.388695 21.763587 21.823639 23.168039 26.165269
#[19] 26.843362 29.673405

censored <- x < 18
x[censored] <- 18

sum(censored)
#[11 7

dev.new()
cdfCompareCensored(x, censored)

# Clean up

Example 15-1 of USEPA (2009, page 15-10) gives an example of
computing plotting positions based on censored manganese
concentrations (ppb) in groundwater collected at 5 monitoring
wells. The data for this example are stored in
EPA.09.Ex.15.1.manganese.df. Here we will compare the empirical
cdf based on Kaplan-Meier plotting positions or Michael-Schucany
plotting positions with various assumed distributions

(based on estimating the parameters of these distributions):

1) normal distribution

2) lognormal distribution

3) gamma distribution

P E E E

# First look at the data:

EPA.09.Ex.15.1.manganese.df
# Sample Well Manganese.Orig.ppb Manganese.ppb Censored

#1 1 Well.1 <5 5.0 TRUE
#2 2 Well.1 12.1 12.1 FALSE
#3 3 Well.1 16.9 16.9 FALSE
#4 4 Well.1 21.6 21.6 FALSE
#5 5 Well.1 <2 2.0 TRUE
#...

#21 1 Well.5 17.9 17.9 FALSE
#22 2 Well.5 22.7 22.7 FALSE
#23 3 Well.5 3.3 3.3 FALSE
#24 4 Well.5 8.4 8.4 FALSE
#25 5 Well.5 <2 2.0 TRUE

longToWide(EPA.@9.Ex.15.1.manganese.df,
"Manganese.Orig.ppb"”, "Sample”, "Well”,
paste.row.name = TRUE)

# Well.1 Well.2 Well.3 Well.4 Well.5
#Sample.1 <5 <5 <5 6.3 17.9
#Sample.2 12.1 7.7 5.3 11.9 22.7
#Sample.3 16.9 53.6 12.6 10 3.3
#Sample.4 21.6 9.5 106.3 <2 8.4
#Sample.5 <2 45.9 34.5 77.2 <2

cdfCompareCensored
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# Assume a normal distribution

# Michael-Schucany plotting positions:

dev.new()

with(EPA.@9.Ex.15.1.manganese.df,
cdfCompareCensored(Manganese.ppb, Censored))

# Kaplan-Meier plotting positions:
dev.new()
with(EPA.@9.Ex.15.1.manganese.df,
cdfCompareCensored(Manganese.ppb, Censored,
prob.method = "kaplan-meier"))

# Assume a lognormal distribution

# Michael-Schucany plotting positions:

dev.new()
with(EPA.@9.Ex.15.1.manganese.df,
cdfCompareCensored(Manganese.ppb, Censored, dist = "lnorm"))

# Kaplan-Meier plotting positions:

dev.new()
with(EPA.09.Ex.15.1.manganese.df,
cdfCompareCensored(Manganese.ppb, Censored, dist = "lnorm",

prob.method = "kaplan-meier"))

# Assume a gamma distribution

# Michael-Schucany plotting positions:

dev.new()
with(EPA.09.Ex.15.1.manganese.df,
cdfCompareCensored(Manganese.ppb, Censored, dist = "gamma"))

# Kaplan-Meier plotting positions:

dev.new()
with(EPA.09.Ex.15.1.manganese.df,
cdfCompareCensored(Manganese.ppb, Censored, dist = "gamma”,

prob.method = "kaplan-meier"))

# Clean up

# Compare the distributions of copper and zinc between the Alluvial Fan Zone
# and the Basin-Trough Zone using the data of Millard and Deverel (1988).
# The data are stored in Millard.Deverel.88.df.

Millard.Deverel.88.df

73
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# Cu.orig Cu Cu.censored Zn.orig Zn Zn.censored Zone Location
#1 <1 1 TRUE <10 10 TRUE Alluvial.Fan 1
#2 <11 TRUE 9 9 FALSE Alluvial.Fan 2
#3 3 3 FALSE NA NA FALSE Alluvial.Fan 3
#.

#.

#.

#116 5 5 FALSE 50 50 FALSE Basin.Trough 48
#117 14 14 FALSE 90 90 FALSE Basin.Trough 49
#118 4 4 FALSE 20 20 FALSE Basin.Trough 50

Cu.AF <- with(Millard.Deverel.88.df,
Cu[Zone == "Alluvial.Fan"])

Cu.AF.cen <- with(Millard.Deverel.88.df,
Cu.censored[Zone == "Alluvial.Fan"])

Cu.BT <- with(Millard.Deverel.88.df,
Cu[Zone == "Basin.Trough"])

Cu.BT.cen <- with(Millard.Deverel.88.df,
Cu.censored[Zone == "Basin.Trough"])

Zn.AF <- with(Millard.Deverel.88.df,
Zn[Zone == "Alluvial.Fan"])

Zn.AF.cen <- with(Millard.Deverel.88.df,
Zn.censored[Zone == "Alluvial.Fan"])

Zn.BT <- with(Millard.Deverel.88.df,
Zn[Zone == "Basin.Trough"])

Zn.BT.cen <- with(Millard.Deverel.88.df,
Zn.censored[Zone == "Basin.Trough"])

# First compare the copper concentrations

dev.new()
cdfCompareCensored(x = Cu.AF, censored = Cu.AF.cen,
y = Cu.BT, y.censored = Cu.BT.cen)

# Now compare the zinc concentrations

dev.new()
cdfCompareCensored(x = Zn.AF, censored = Zn.AF.cen,
y = Zn.BT, y.censored = Zn.BT.cen)

# Compare the Zinc concentrations again, but delete
# the one "outlier”.

summaryStats(Zn.AF)
# N Mean SD Median Min Max NA's N.Total
#Zn.AF 67 23.5075 74.4192 10 3 620 1 68
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summaryStats(Zn.BT)
# N Mean SD Median Min Max
#Zn.BT 50 21.94 18.7044 18.5 3 90

which(Zn.AF == 620)
#[1] 38

summaryStats(Zn.AF[-38])

# N Mean SD Median Min Max NA's N.Total
#7n.AF[-38] 66 14.4697 8.1604 10 3 50 1 67
dev.new()

cdfCompareCensored(x = Zn.AF[-38], censored = Zn.AF.cen[-38],
y = Zn.BT, y.censored = Zn.BT.cen)

rm(Cu.AF, Cu.AF.cen, Cu.BT, Cu.BT.cen,
Zn.AF, Zn.AF.cen, Zn.BT, Zn.BT.cen)
graphics.off()

cdfPlot Plot Cumulative Distribution Function

Description

Produce a cumulative distribution function (cdf) plot for a user-specified distribution.

Usage
cdfPlot(distribution = "norm”, param.list = list(mean = @, sd = 1),
left.tail.cutoff = ifelse(is.finite(supp.min), @, 0.001),
right.tail.cutoff = ifelse(is.finite(supp.max), @, 0.001), plot.it = TRUE,
add = FALSE, n.points = 1000, cdf.col = "black”, cdf.lwd = 3 * par("cex"),
cdf.1lty = 1, curve.fill = FALSE, curve.fill.col = "cyan”,
digits = .Options$digits, ..., type = ifelse(discrete, "s", "1"),
main = NULL, xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL)
Arguments

distribution  a character string denoting the distribution abbreviation. The default value is
distribution="norm". See the help file for Distribution.df for a list of
possible distribution abbreviations.

param.list a list with values for the parameters of the distribution. The default value is
param.list=list(mean=0, sd=1). See the help file for Distribution.df
for the names and possible values of the parameters associated with each distri-
bution.
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left.tail.cutoff

a numeric scalar indicating what proportion of the left-tail of the probability
distribution to omit from the plot. For densities with a finite support minimum
(e.g., Lognormal) the default value is 9; for all other densities the default value
is 0.001.

right.tail.cutoff

plot.it

add

n.points

cdf.col

cdf.1lwd

cdf. 1ty

curve.fill

curve.fill.col

digits

a scalar indicating what proportion of the right-tail of the probability distribu-
tion to omit from the plot. For densities with a finite support maximum (e.g.,
Binomial) the default value is 0; for all other densities the default value is 0.001.

a logical scalar indicating whether to create a plot or add to the existing plot (see
add) on the current graphics device. If plot. it=FALSE, no plot is produced, but
a list of (x,y) values is returned (see the section VALUE below). The default
value is plot.it=TRUE.

a logical scalar indicating whether to add the cumulative distribution function
curve to the existing plot (add=TRUE), or to create a new plot (add=FALSE; the
default). This argument is ignored if plot.it=FALSE.

a numeric scalar specifying at how many evenly-spaced points the cumulative
distribution function will be evaluated. The default value is n.points=1000.

a numeric scalar or character string determining the color of the cdf line in the
plot. The default value is pdf.col="black"”. See the entry for col in the help
file for par for more information.

a numeric scalar determining the width of the cdf line in the plot. The default
value is pdf.lwd=3*par(”"cex"). See the entry for 1wd in the help file for par
for more information.

a numeric scalar determining the line type of the cdf line in the plot. The default
value is pdf.1lty=1. See the entry for 1ty in the help file for par for more
information.

a logical value indicating whether to fill in the area below the cumulative distri-
bution function curve with the color specified by curve.fill.col. The default
value is curve.fill=FALSE.

when curve.fill=TRUE, a numeric scalar or character string indicating what
color to use to fill in the area below the cumulative distribution function curve.
The default value is curve.fill.col="cyan". See the entry for col in the help
file for par for more information.

a scalar indicating how many significant digits to print for the distribution pa-
rameters. The default value is digits=.0ptions$digits.

type, main, xlab, ylab, xlim, ylim,

Details

additional graphical parameters (see 1ines and par). In particular, the argument
type specifies the kind of line type. By default, the function cdfPlot plots a step
function (type="s") for discrete distributions, and plots a straight line between
points (type="1") otherwise. The user may override these defaults by supplying
the graphics parameter type (type="s" for a step function, type="1" for linear
interpolation, type="p" for points only, etc.).

The cumulative distribution function (cdf) of a random variable X, usually denoted F', is defined

as:

F(z)=Pr(X <z) (1)
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That is, F(z) is the probability that X is less than or equal to x. This is the probability that the
random variable X takes on a value in the interval (—oo, 2] and is simply the (Lebesgue) integral
of the pdf evaluated between —oo and x. That is,

F(z) = Pr(X <z) = [ " rwa @

where f(t) denotes the probability density function of X evaluated at ¢. For discrete distributions,
Equation (2) translates to summing up the probabilities of all values in this interval:

Fz)=Pr(X<z)= Y ft)= > Pr(X=t (3

te(—o0,x] te(—o0,x]

A cumulative distribution function (cdf) plot plots the values of the cdf against quantiles of the
specified distribution. Theoretical cdf plots are sometimes plotted along with empirical cdf plots to
visually assess whether data have a particular distribution.

Value

cdfPlot invisibly returns a list giving coordinates of the points that have been or would have been
plotted:

Quantiles The quantiles used for the plot.
Cumulative.Probabilities
The values of the cdf associated with the quantiles.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Forbes, C., M. Evans, N. Hastings, and B. Peacock. (2011). Statistical Distributions. Fourth
Edition. John Wiley and Sons, Hoboken, NJ.

Johnson, N. L., S. Kotz, and A.W. Kemp. (1992). Univariate Discrete Distributions, Second Edi-
tion. John Wiley and Sons, New York.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1994). Continuous Univariate Distributions, Volume
1. Second Edition. John Wiley and Sons, New York.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1995). Continuous Univariate Distributions, Volume
2. Second Edition. John Wiley and Sons, New York.

See Also

Distribution.df, ecdfPlot, cdfCompare, pdfPlot.
Examples
# Plot the cdf of the standard normal distribution

dev.new()
cdfPlot()



78

chenTTest

# Plot the cdf of the standard normal distribution
# and a N(2, 2) distribution on the sample plot.

dev.new()

cdfPlot(param.list = list(mean=2, sd=2), main = "")

cdfPlot(add = TRUE, cdf.col = "red")

legend("topleft”, legend = c("N(2,2)", "N(0,1)"),
col = c("black”, "red"), lwd = 3 x par("cex"))

title("CDF Plots for Two Normal Distributions"”)

graphics.off()

chenTTest

Chen’s Modified One-Sided t-test for Skewed Distributions

Description

For a skewed distribution, estimate the mean, standard deviation, and skew; test the null hypothesis
that the mean is equal to a user-specified value vs. a one-sided alternative; and create a one-sided
confidence interval for the mean.

Usage

chenTTest(x,
conf.level

Arguments

X

alternative

mu

paired

NULL, alternative = "greater”, mu = @, paired = !is.null(y),

y =
= 0.95, ci.method = "z")

numeric vector of observations. Missing (NA), undefined (NaN), and infinite (Inf,
-Inf) values are allowed but will be removed.

optional numeric vector of observations that are paired with the observations in
x. The length of y must be the same as the length of x. Missing (NA), undefined
(NaN), and infinite (Inf, -Inf) values are allowed but will be removed. This
argument is ignored if paired=FALSE, and must be supplied if paired=TRUE.
The default value is y=NULL.

character string indicating the kind of alternative hypothesis. The possible val-
ues are "greater” (the default) and "less”. The value "greater” should be
used for positively-skewed distributions, and the value "less” should be used
for negatively-skewed distributions.

numeric scalar indicating the hypothesized value of the mean. The default value
is mu=0.

character string indicating whether to perform a paired or one-sample t-test. The
possible values are paired=FALSE (the default; indicates a one-sample t-test)
and paired=TRUE.
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conf.level numeric scalar between 0 and 1 indicating the confidence level associated with
the confidence interval for the population mean. The default value is conf. level=0. 95.

ci.method character string indicating which critical value to use to construct the confi-
dence interval for the mean. The possible values are "z" (the default), "t", and
"Avg. of z and t". See the DETAILS section below for more information.

Details

One-Sample Case (paired=FALSE)
Let z = (x1,9,...,%,) be a vector of n independent and identically distributed (i.i.d.) observa-
tions from some distribution with mean p and standard deviation o.

Background: The Conventional Student’s t-Test
Assume that the n observations come from a normal (Gaussian) distribution, and consider the test
of the null hypothesis:

Ho:p=po (1)

The three possible alternative hypotheses are the upper one-sided alternative (alternative="greater"):
Hy:p>po  (2)

the lower one-sided alternative (alternative="1less"):
H,:p<p (3)

and the two-sided alternative:
Hy:p#po  (4)

The test of the null hypothesis (1) versus any of the three alternatives (2)-(4) is usually based on the
Student t-statistic:

_ T~ [o

t= s/vn (5)
where

1L

I_E;ml (6)

(see the R help file for t.test). Under the null hypothesis (1), the t-statistic in (5) follows a Stu-
dent’s t-distribution with n — 1 degrees of freedom (Zar, 2010, p.99; Johnson et al., 1995, pp.362-
363). The t-statistic is fairly robust to departures from normality in terms of maintaining Type I
error and power, provided that the sample size is sufficiently large.

Chen’s Modified t-Test for Skewed Distributions

In the case when the underlying distribution of the n observations is positively skewed and the
sample size is small, the sampling distribution of the t-statistic under the null hypothesis (1) does
not follow a Student’s t-distribution, but is instead negatively skewed. For the test against the upper
alternative in (2) above, this leads to a Type I error smaller than the one assumed and a loss of power
(Chen, 1995b, p.767).

Similarly, in the case when the underlying distribution of the n observations is negatively skewed
and the sample size is small, the sampling distribution of the t-statistic is positively skewed. For the
test against the lower alternative in (3) above, this also leads to a Type I error smaller than the one
assumed and a loss of power.



80

chenTTest

In order to overcome these problems, Chen (1995b) proposed the following modified t-statistic that
takes into account the skew of the underlying distribution:

ty =t +a(l+2t%) +4a®(t +2t3)  (8)

where
B
= ~6n 9)
h=5 (0

o= g 2 (Y

6’3 — 33 _ [ 1 Z(fﬂz - j‘)2]3/2 (12)

n—14%
=1

Note that the quantity 1/ Bl in (9) is an estimate of the skew of the underlying distribution and is
based on unbiased estimators of central moments (see the help file for skewness).

For a positively-skewed distribution, Chen’s modified t-test rejects the null hypothesis (1) in favor
of the upper one-sided alternative (2) if the t-statistic in (8) is too large. For a negatively-skewed
distribution, Chen’s modified t-test rejects the null hypothesis (1) in favor of the lower one-sided
alternative (3) if the t-statistic in (8) is too small.

Chen’s modified t-test is not applicable to testing the two-sided alternative (4). It should also not
be used to test the upper one-sided alternative (2) based on negatively-skewed data, nor should it be
used to test the lower one-sided alternative (3) based on positively-skewed data.

Determination of Critical Values and p-Values

Chen (1995b) performed a simulation study in which the modified t-statistic in (8) was compared
to a critical value based on the normal distribution (z-value), a critical value based on Student’s
t-distribution (t-value), and the average of the critical z-value and t-value. Based on the simulation
study, Chen (1995b) suggests using either the z-value or average of the z-value and t-value when n
(the sample size) is small (e.g., n < 10) or « (the Type I error) is small (e.g. a < 0.01), and using
either the t-value or the average of the z-value and t-value when n > 20 or o > 0.05.

The function chenTTest returns three different p-values: one based on the normal distribution, one
based on Student’s t-distribution, and one based on the average of these two p-values. This last
p-value should roughly correspond to a p-value based on the distribution of the average of a normal
and Student’s t random variable.

Computing Confidence Intervals

The function chenTTest computes a one-sided confidence interval for the true mean g based on
finding all possible values of ;1 for which the null hypothesis (1) will not be rejected, with the
confidence level determined by the argument conf.level. The argument ci.method determines
which p-value is used in the algorithm to determine the bounds on p. When ci.method="z", the
p-value is based on the normal distribution, when ci.method="t", the p-value is based on Student’s
t-distribution, and when ci.method="Avg. of z and t" the p-value is based on the average of
the p-values based on the normal and Student’s t-distribution.

Paired-Sample Case (paired=TRUE)
When the argument paired=TRUE, the arguments x and y are assumed to have the same length, and
the n differences

d,’ = T; — Y, 1= 1,2,...,n
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are assumed to be i.i.d. observations from some distribution with mean 4 and standard deviation o.
Chen’s modified t-test can then be applied to the differences.

Value

alist of class "htest” containing the results of the hypothesis test. See the help file for htest.object
for details.

Note

The presentation of Chen’s (1995b) method in USEPA (2002d) and Singh et al. (2010b, p. 52) is
incorrect for two reasons: it is based on an intermediate formula instead of the actual statistic that
Chen proposes, and it uses the intermediate formula to compute an upper confidence limit for the
mean when the sample data are positively skewed. As explained above, for the case of positively
skewed data, Chen’s method is appropriate to test the upper one-sided alternative hypothesis that the
population mean is greater than some specified value, and a one-sided upper alternative corresponds
to creating a one-sided lower confidence limit, not an upper confidence limit (see, for example,
Millard and Neerchal, 2001, p. 371).

A frequent question in environmental statistics is “Is the concentration of chemical X greater than
Y units?” For example, in groundwater assessment (compliance) monitoring at hazardous and solid
waste sites, the concentration of a chemical in the groundwater at a downgradient may be compared
to a groundwater protection standard (GWPS). If the concentration is “above” the GWPS, then the
site enters corrective action monitoring. As another example, soil screening at a Superfund site
involves comparing the concentration of a chemical in the soil with a pre-determined soil screening
level (SSL). If the concentration is “above” the SSL, then further investigation and possible remedial
action is required. Determining what it means for the chemical concentration to be “above” a GWPS
or an SSL is a policy decision: the average of the distribution of the chemical concentration must
be above the GWPS or SSL, or the median must be above the GWPS or SSL, or the 95’th percentile
must be above the GWPS or SSL, or something else. Often, the first interpretation is used.

The regulatory guidance document Soil Screening Guidance: Technical Background Document
(USEPA, 1996c¢, Part 4) recommends using Chen’s t-test as one possible method to compare chem-
ical concentrations in soil samples to a soil screening level (SSL). The document notes that the
distribution of chemical concentrations will almost always be positively-skewed, but not necessar-
ily fit a lognormal distribution well (USEPA, 1996c, pp.107, 117-119). It also notes that using a
confidence interval based on Land’s (1971) method is extremely sensitive to the assumption of a
lognormal distribution, while Chen’s test is robust with respect to maintaining Type I and Type II
errors for a variety of positively-skewed distributions (USEPA, 1996¢, pp.99, 117-119, 123-125).

Hypothesis tests you can use to perform tests of location include: Student’s t-test, Fisher’s random-
ization test, the Wilcoxon signed rank test, Chen’s modified t-test, the sign test, and a test based
on a bootstrap confidence interval. For a discussion comparing the performance of these tests, see
Millard and Neerchal (2001, pp.408—409).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Chen, L. (1995b). Testing the Mean of Skewed Distributions. Journal of the American Statistical
Association 90(430), 767-772.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1995). Continuous Univariate Distributions, Volume
2. Second Edition. John Wiley and Sons, New York, Chapters 28, 31.
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Land, C.E. (1971). Confidence Intervals for Linear Functions of the Normal Mean and Variance.
The Annals of Mathematical Statistics 42(4), 1187-1205.

Millard, S.P., and N.K. Neerchal. (2001). Environmental Statistics with S-PLUS. CRC Press, Boca
Raton, FL, pp.402—-404.

Singh, A., N. Armbya, and A. Singh. (2010b). ProUCL Version 4.1.00 Technical Guide (Draft).
EPA/600/R-07/041, May 2010. Office of Research and Development, U.S. Environmental Protec-
tion Agency, Washington, D.C.

USEPA. (1996c¢). Soil Screening Guidance: Technical Background Document. EPA/540/R-95/128,
PB96963502. Office of Emergency and Remedial Response, U.S. Environmental Protection Agency,
Washington, D.C., May, 1996.

USEPA. (2002d). Estimation of the Exposure Point Concentration Term Using a Gamma Distri-
bution. EPA/600/R-02/084. October 2002. Technology Support Center for Monitoring and Site
Characterization, Office of Research and Development, Office of Solid Waste and Emergency Re-
sponse, U.S. Environmental Protection Agency, Washington, D.C.

Zar, J.H. (2010). Biostatistical Analysis. Fifth Edition. Prentice-Hall, Upper Saddle River, NJ.

See Also

t.test, elnorm, elnormAlt.

Examples

# The guidance document "Calculating Upper Confidence Limits for

Exposure Point Concentrations at Hazardous Waste Sites”

(USEPA, 2002d, Exhibit 9, p. 16) contains an example of 60 observations
from an exposure unit. Here we will use Chen's modified t-test to test
the null hypothesis that the average concentration is less than 30 mg/L
versus the alternative that it is greater than 30 mg/L.

In EnvStats these data are stored in the vector EPA.02d.Ex.9.mg.per.L.vec.

T R R

sort(EPA.02d.Ex.9.mg.per.L.vec)

# [1] 16 17 17 17 18 18 20 20 20 21 21 21 21 21 21 22
#[17]1 22 22 23 23 23 23 24 24 24 25 25 25 25 25 25 26
#[33] 26 26 26 27 27 28 28 28 28 29 29 30 30 31 32 32
#[49] 32 33 33 35 35 97 98 105 107 111 117 119

dev.new()
hist(EPA.02d.Ex.9.mg.per.L.vec, col = "cyan”, xlab = "Concentration (mg/L)")

# The Shapiro-Wilk goodness-of-fit test rejects the null hypothesis of a
# normal, lognormal, and gamma distribution:

gofTest(EPA.02d.Ex.9.mg.per.L.vec)$p.value
#[1] 2.496781e-12

gofTest(EPA.Q2d.Ex.9.mg.per.L.vec, dist = "lnorm")$p.value
#[1] 3.349035e-09

gofTest(EPA.Q2d.Ex.9.mg.per.L.vec, dist = "gamma")$p.value
#[1] 1.564341e-10

# Use Chen's modified t-test to test the null hypothesis that
# the average concentration is less than 30 mg/L versus the
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# alternative that it is greater than 30 mg/L.

chenTTest(EPA.02d.Ex.9.mg.per.L.vec, mu = 30)

#Results of Hypothesis Test

#Null Hypothesis:

#

#Alternative Hypothesis:
#

#Test Name:

#

#

#

#

#Estimated Parameter(s):
#

#

#

#Data:

#

#Sample Size:

#

#Test Statistic:

#

#Test Statistic Parameter:
#

#P-values:

#

#

#

#Confidence Interval for:
#

#Confidence Interval Method:

#

#Confidence Interval Type:
#

#Confidence Level:

#

#Confidence Interval:

#

mean = 30
True mean is greater than 30

One-sample t-Test

Modified for

Positively-Skewed Distributions
(Chen, 1995)

mean = 34.566667
sd 27.330598
skew = 2.365778

EPA.02d.Ex.9.mg.per.L.vec

60

t = 1.574075

df = 59

z = 0.05773508
t = 0.06040889

Avg. of z and t = 0.05907199
mean

Based on z

Lower

95%

LCL = 29.82
UCL = Inf

83

# The estimated mean, standard deviation, and skew are 35, 27, and 2.4,

# respectively. The p-value is 0.06, and the lower 95% confidence interval
# is [29.8, Inf). Depending on what you use for your Type I error rate, you
# may or may not want to reject the null hypothesis.

Chi The Chi Distribution

Description

Density, distribution function, quantile function, and random generation for the chi distribution.
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Usage
dchi(x, df)
pchi(qg, df)
achi(p, df)
rchi(n, df)
Arguments
X vector of (positive) quantiles.
q vector of (positive) quantiles.
p vector of probabilities between 0 and 1.
n sample size. If length(n) is larger than 1, then length(n) random values are
returned.
df vector of (positive) degrees of freedom (> 0). Non-integer values are allowed.
Details

Elements of x, g, p, or df that are missing will cause the corresponding elements of the result to be
missing.

The chi distribution with n degrees of freedom is the distribution of the positive square root of a
random variable having a chi-squared distribution with n degrees of freedom.

The chi density function is given by:
f(z,v) = g(z* v)2z,2 >0

where g(z, ) denotes the density function of a chi-square random variable with n degrees of free-
dom.

Value

density (dchi), probability (pchi), quantile (qchi), or random sample (rchi) for the chi distribution
with df degrees of freedom.

Note

The chi distribution takes on positive real values. It is important because for a sample of n obser-
vations from a normal distribution, the sample standard deviation multiplied by the square root of
the degrees of freedom v and divided by the true standard deviation follows a chi distribution with
v degrees of freedom. The chi distribution is also used in computing exact prediction intervals for
the next k observations from a normal distribution (see predIntNorm).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Forbes, C., M. Evans, N. Hastings, and B. Peacock. (2011). Statistical Distributions. Fourth
Edition. John Wiley and Sons, Hoboken, NJ.

Johnson, N. L., S. Kotz, and N. Balakrishnan. (1995). Continuous Univariate Distributions, Volume
1. Second Edition. John Wiley and Sons, New York.
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See Also

Chisquare, Normal, predIntNorm, Probability Distributions and Random Numbers.

Examples

# Density of a chi distribution with 4 degrees of freedom, evaluated at 3:

dchi(3, 4)
#[1] ©.1499715

# The 95'th percentile of a chi distribution with 10 degrees of freedom:

qchi(.95, 10)
#[1] 4.278672

# The cumulative distribution function of a chi distribution with
# 5 degrees of freedom evaluated at 3:

pchi(3, 5)
#[1] 0.8909358

# A random sample of 2 numbers from a chi distribution with 7 degrees of freedom.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(20)
rchi(2, 7)
#[1] 3.271632 2.035179

ciBinomHalfWidth Half-Width of Confidence Interval for Binomial Proportion or Differ-
ence Between Two Proportions

Description

Compute the half-width of a confidence interval for a binomial proportion or the difference between
two proportions, given the sample size(s), estimated proportion(s), and confidence level.

Usage

ciBinomHalfWidth(n.or.n1, p.hat.or.pl.hat = 0.5,
n2 = n.or.n1, p2.hat = 0.4, conf.level = 0.95,
sample.type = "one.sample”, ci.method = "score”,
correct = TRUE, warn = TRUE)
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Arguments

n.or.nl

p.hat.or.pl.hat

n2

p2.hat

conf.level

sample. type

ci.method

correct

warn

Details

ciBinomHalfWidth

numeric vector of sample sizes.

When sample. type="one.sample”, n.or.n1 denotes n, the number of obser-
vations in the single sample.

When sample. type="two.sample”, n.or.n1 denotes n, the number of obser-
vations from group 1.

Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values are not allowed.

numeric vector of estimated proportions.

When sample. type="one.sample”, p.hat.or.p1.hat denotes the estimated
value of p, the probability of “success”.

When sample. type="two.sample”, p.hat.or.p1.hat denotes the estimated
value of p1, the probability of “success” in group 1.

Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values are not allowed.

numeric vector of sample sizes for group 2. The default value is the value of
n.or.nl. This argument is ignored when sample. type="one.sample”. Miss-
ing (NA), undefined (NaN), and infinite (Inf, -Inf) values are not allowed.

numeric vector of estimated proportions for group 2. This argument is ignored
when sample. type="one.sample". Missing (NA), undefined (NaN), and infinite
(Inf, -Inf) values are not allowed.

numeric vector of numbers between 0 and 1 indicating the confidence level as-
sociated with the confidence interval(s). The default value is conf.level=0.95.

character string indicating whether this is a one-sample or two-sample confi-
dence interval. When sample.type="one.sample"”, the computed half-width
is based on a confidence interval for a single proportion. When

sample.type="two.sample"”, the computed half-width is based on a confi-
dence interval for the difference between two proportions. The default value
is sample. type="one.sample” unless the argument n2 or p2.hat is supplied.

character string indicating which method to use to construct the confidence in-
terval. Possible values are "score"” (the default), "exact”,
"adjusted Wald"”, and "Wald” (the "Wald" method is never recommended but
is included for historical purposes). The exact method is only available for the
one-sample case, i.e., when sample. type="one.sample”.

logical scalar indicating whether to use the continuity correction when
ci.method="score"” or ci.method="Wald".
The default value is correct=TRUE.

logical scalar indicating whether to issue a warning when
ci.method="Wald"” for cases when the normal approximation to the binomial
distribution probably is not accurate. The default value is warn=TRUE.

If the arguments n.or.n1, p.hat.or.p1.hat, n2, p2.hat, and conf.level are not all the same
length, they are replicated to be the same length as the length of the longest argument.

The values of p.hat.or.p1.hat and p2.hat are automatically adjusted to the closest legitimate
values, given the user-supplied values of n.or.n1 and n2. For example, if n.or.n1=5, legiti-
mate values for p.hat.or.pl1.hat are 0, 0.2, 0.4, 0.6, 0.8 and 1. In this case, if the user supplies
p.hat.or.pl1.hat=0.45, then p.hat.or.p1.hat is reset to

p.hat.or.p1.hat=0.4, and if the user supplies p.hat.or.p1.hat=0.55,
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then p.hat.or.p1.hat is reset to p.hat.or.p1.hat=0.6. In cases where the two closest legiti-
mate values are equal distance from the user-suppled value of p.hat.or.p1.hat or p2.hat, the
value closest to 0.5 is chosen since that will tend to yield the wider confidence interval.

One-Sample Case (sample.type="one.sample").

ci.method="score” The confidence interval for p based on the score method was developed by
Wilson (1927) and is discussed by Newcombe (1998a), Agresti and Coull (1998), and Agresti
and Caffo (2000). When ci=TRUE and ci.method="score", the function ebinom calls the
R function prop.test to compute the confidence interval. This method has been shown to
provide the best performance (in terms of actual coverage matching assumed coverage) of all
the methods provided here, although unlike the exact method, the actual coverage can fall
below the assumed coverage.

ci.method="exact” The confidence interval for p based on the exact (Clopper-Pearson) method is
discussed by Newcombe (1998a), Agresti and Coull (1998), and Zar (2010, pp.543-547). This
is the method used in the R function binom. test. This method ensures the actual coverage is
greater than or equal to the assumed coverage.

ci.method="Wald" The confidence interval for p based on the Wald method (with or without a
correction for continuity) is the usual “normal approximation” method and is discussed by
Newcombe (1998a), Agresti and Coull (1998), Agresti and Caffo (2000), and Zar (2010,
pp-543-547). This method is never recommended but is included for historical purposes.

ci.method="adjusted Wald” The confidence interval for p based on the adjusted Wald method is
discussed by Agresti and Coull (1998), Agresti and Caffo (2000), and Zar (2010, pp.543-547).
This is a simple modification of the Wald method and performs surpringly well.

Two-Sample Case (sample.type="two.sample").

ci.method="score” This method is presented in Newcombe (1998b) and is based on the score
method developed by Wilson (1927) for the one-sample case. This is the method used by
the R function prop.test. In a comparison of 11 methods, Newcombe (1998b) showed this
method performs remarkably well.

ci.method="Wald"” The confidence interval for the difference between two proportions based on
the Wald method (with or without a correction for continuity) is the usual “normal approxi-
mation” method and is discussed by Newcombe (1998b), Agresti and Caffo (2000), and Zar
(2010, pp.549-552). This method is not recommended but is included for historical purposes.

ci.method="adjusted Wald” This method is discussed by Agresti and Caffo (2000), and Zar
(2010, pp.549-552). This is a simple modification of the Wald method and performs surpringly
well.

Value

a list with information about the half-widths, sample sizes, and estimated proportions.

One-Sample Case (sample. type="one.sample").
When sample. type="one.sample”, the function ciBinomHalfWidth returns a list with these com-

ponents:

half.width the half-width(s) of the confidence interval(s)

n the sample size(s) associated with the confidence interval(s)
p.hat the estimated proportion(s)

method the method used to construct the confidence interval(s)
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Two-Sample Case (sample.type="two.sample").
When sample. type="two.sample”, the function ciBinomHalfWidth returns a list with these com-

ponents:
half.width the half-width(s) of the confidence interval(s)
ni the sample size(s) for group 1 associated with the confidence interval(s)
pl.hat the estimated proportion(s) for group 1
n2 the sample size(s) for group 2 associated with the confidence interval(s)
p2.hat the estimated proportion(s) for group 2
method the method used to construct the confidence interval(s)
Note

The binomial distribution is used to model processes with binary (Yes-No, Success-Failure, Heads-
Tails, etc.) outcomes. It is assumed that the outcome of any one trial is independent of any other
trial, and that the probability of “success”, p, is the same on each trial. A binomial discrete random
variable X is the number of “successes” in n independent trials. A special case of the binomial
distribution occurs when n = 1, in which case X is also called a Bernoulli random variable.

In the context of environmental statistics, the binomial distribution is sometimes used to model the
proportion of times a chemical concentration exceeds a set standard in a given period of time (e.g.,
Gilbert, 1987, p.143), or to compare the proportion of detects in a compliance well vs. a background
well (e.g., USEPA, 1989b, Chapter 8, p.3-7). (However, USEPA 2009, p.8-27 recommends using
the Wilcoxon rank sum test (wilcox. test) instead of comparing proportions.)

In the course of designing a sampling program, an environmental scientist may wish to determine
the relationship between sample size, confidence level, and half-width if one of the objectives of the
sampling program is to produce confidence intervals. The functions ciBinomHalfWidth, ciBinomN,
and plotCiBinomDesign can be used to investigate these relationships for the case of binomial
proportions.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References
Agresti, A., and B.A. Coull. (1998). Approximate is Better than "Exact" for Interval Estimation of
Binomial Proportions. The American Statistician, 52(2), 119-126.

Agresti, A., and B. Caffo. (2000). Simple and Effective Confidence Intervals for Proportions and
Differences of Proportions Result from Adding Two Successes and Two Failures. The American
Statistician, 54(4), 280-288.

Berthouex, PM., and L.C. Brown. (1994). Statistics for Environmental Engineers. Lewis Publish-
ers, Boca Raton, FL, Chapters 2 and 15.

Cochran, W.G. (1977). Sampling Techniques. John Wiley and Sons, New York, Chapter 3.

Fisher, R.A., and F. Yates. (1963). Statistical Tables for Biological, Agricultural, and Medical
Research. 6th edition. Hafner, New York, 146pp.

Fleiss, J. L. (1981). Statistical Methods for Rates and Proportions. Second Edition. John Wiley
and Sons, New York, Chapters 1-2.

Gilbert, R.O. (1987). Statistical Methods for Environmental Pollution Monitoring. Van Nostrand
Reinhold, New York, NY, Chapter 11.
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Millard, S.P., and Neerchal, N.K. (2001). Environmental Statistics with S-PLUS. CRC Press, Boca
Raton, Florida.

Newcombe, R.G. (1998a). Two-Sided Confidence Intervals for the Single Proportion: Comparison
of Seven Methods. Statistics in Medicine, 17, 857-872.

Newcombe, R.G. (1998b). Interval Estimation for the Difference Between Independent Propor-
tions: Comparison of Eleven Methods. Statistics in Medicine, 17, 873-890.

Ott, W.R. (1995). Environmental Statistics and Data Analysis. Lewis Publishers, Boca Raton, FL,
Chapter 4.

USEPA. (1989b). Statistical Analysis of Ground-Water Monitoring Data at RCRA Facilities, In-
terim Final Guidance. EPA/530-SW-89-026. Office of Solid Waste, U.S. Environmental Protection
Agency, Washington, D.C.

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.6-38.

Zar, J.H. (2010). Biostatistical Analysis. Fifth Edition. Prentice-Hall, Upper Saddle River, NJ,
Chapter 24.

See Also

ciBinomN, plotCiBinomDesign, ebinom, binom. test, prop. test.

Examples

# Look at how the half-width of a one-sample confidence interval
# decreases with sample size:

ciBinomHalfWidth(n.or.n1 = c(10, 50, 100, 500))
#$half.width

#[1] 0.26340691 0.13355486 0.09616847 0.04365873
#

#$n

#[1] 10 50 100 500

#

#$p.hat

#[1] 0.5 0.5 0.5 0.5

#

#$method

#[1] "Score normal approximation, with continuity correction”

# Look at how the half-width of a one-sample confidence interval
# tends to decrease as the estimated value of p decreases below
# 0.5 or increases above 0.5:

seq(@0.2, 0.8, by

=0.1)
#[1]1 0.2 0.3 0.4 0.

0.1

50.6 0.7 0.8

ciBinomHalfWidth(n.or.n1 = 30, p.hat = seq(0.2, 0.8, by = 0.1))
#$half.width

#[1] 0.1536299 0.1707256 0.1801322 0.1684587 0.1801322 0.1707256
#[7] 0.1536299
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#

#$n

#[1] 30 30 30 30 30 30 30

#

#$p.hat

#[1] 0.2 0.3 0.4 0.5 0.6 0.7 0.8
#

#$method

#[1] "Score normal approximation, with continuity correction”

# Look at how the half-width of a one-sample confidence interval
# increases with increasing confidence level:

ciBinomHalfWidth(n.or.n1 = 20, conf.level = c(0.8, 0.9, 0.95, 0.99))
#$half.width
#[1] ©.1377380 0.1725962 0.2007020 0.2495523

#

#$n

#[1] 20 20 20 20

#

#$p.hat

#[1] 0.5 0.5 0.5 0.5
#

#$method

#[1] "Score normal approximation, with continuity correction”

# Compare the half-widths for a one-sample
# confidence interval based on the different methods:

ciBinomHalfWidth(n.or.n1 = 30, ci.method = "score")$half.width
#[1] 0.1684587

ciBinomHalfWidth(n.or.n1 = 30, ci.method = "exact”")$half.width
#[1] 0.1870297

ciBinomHalfWidth

ciBinomHalfWidth(n.or.n1 = 30, ci.method = "adjusted Wald"”)$half.width

#[1] 0.1684587

ciBinomHalfWidth(n.or.n1 = 30, ci.method
#[1] 0.1955861

"Wald”)$half.width

# Look at how the half-width of a two-sample
# confidence interval decreases with increasing
# sample sizes:

ciBinomHalfWidth(n.or.n1 = c(10, 50, 100, 500), sample.type = "two")
#$half.width

#[1] 0.53385652 0.21402654 0.14719748 0.06335658

#

#$n1

#[1] 10 50 100 500
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#
#$p1.hat

#[1] 0.5 0.5 0.

#
#$n2

91

50.5

#[1] 10 50 100 500

#
#$p2.hat

#[1] 0.4 0.4 0.

#
#$method

4 0.4

#[1] "Score normal approximation, with continuity correction”

ciBinomN

Sample Size for Specified Half-Width of Confidence Interval for Bino-
mial Proportion or Difference Between Two Proportions

Description

Compute the sample size necessary to achieve a specified half-width of a confidence interval for a
binomial proportion or the difference between two proportions, given the estimated proportion(s),
and confidence level.

Usage

ciBinomN(half.width, p.hat.or.pl.hat = 0.5, p2.hat = 0.4,

conf.level

ci.method =

n.or.nl.min

= 0.95, sample.type = "one.sample”, ratio =1,

"score"”, correct = TRUE, warn = TRUE,
= 2, n.or.nl.max = 10000,

tol.half.width = 5e-04, tol.p.hat = 5e-04,

tol = le-7,

Arguments

half.width

p.hat.or.pl.hat

p2.hat

conf.level

sample. type

maxiter = 1000)

numeric vector of (positive) half-widths. Missing (NA), undefined (NaN), and
infinite (Inf, -Inf) values are not allowed.

numeric vector of estimated proportions.

When sample.type="one.sample”, p.hat.or.p1.hat denotes the estimated
value of p, the probability of “success”.

When sample. type="two.sample”, p.hat.or.p1.hat denotes the estimated
value of py, the probability of “success” in group 1.

Missing (NA), undefined (NaN), and infinite (Inf, -Inf) values are not allowed.

numeric vector of estimated proportions for group 2. This argument is ignored
when sample. type="one.sample”. Missing (NA), undefined (NaN), and infinite
(Inf, -Inf) values are not allowed.

numeric vector of numbers between 0 and 1 indicating the confidence level as-
sociated with the confidence interval(s). The default value is conf.level=0.95.

character string indicating whether this is a one-sample or two-sample confi-
dence interval.
When sample.type="one.sample”, the computed half-width is based on a
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ratio

ci.method

correct

warn

n.or.nl.min

n.or.nl.max

tol.half.width

tol.p.hat

tol

maxiter

ciBinomN

confidence interval for a single proportion.

When sample.type="two.sample”, the computed half-width is based on a
confidence interval for the difference between two proportions.

The default value is sample. type="one.sample"” unless the argument p2.hat
or ratio is supplied.

numeric vector indicating the ratio of sample size in group 2 to sample size in
group 1 (na/ny). The default value is ratio=1. All values of ratio must be
greater than or equal to 1. This argument is ignored if

sample. type="one.sample”.

character string indicating which method to use to construct the confidence in-
terval. Possible values are:

e "score"” (the default),

e "exact"”,

e "adjusted Wald" and,

e "Wald"” (the "Wald" method is never recommended but is included for his-
torical purposes).

The exact method is only available for the one-sample case, i.e., when
sample.type="one.sample”.

logical scalar indicating whether to use the continuity correction when
ci.method="score"” or ci.method="Wald". The default value is
correct=TRUE.

logical scalar indicating whether to issue a warning when ci.method="Wald"
for cases when the normal approximation to the binomial distribution probably
is not accurate. The default value is warn=TRUE.

integer indicating the minimum allowed value for
n (sample.type="one.sample") or

n1 (sample.type="two.sample").

The default value is n.or.n1.min=2.

integer indicating the maximum allowed value for
n (sample. type="one.sample") or

ny (sample.type="two.sample”).

The default value is n.or.n1.max=10000.

numeric scalar indicating the tolerance to use for the half width for the search
algorithm. The sample sizes are computed so that the actual half width is
less than or equal to half.width + tol.half.width. The default value is
tol.half.width=5e-04.

numeric scalar indicating the tolerance to use for the estimated proportion(s)
for the search algorithm. For the one-sample case, the sample sizes are com-
puted so that the absolute value of the difference between the user supplied
value of p.hat.or.p1.hat and the actual estimated proportion is less than or
equal to tol.p.hat. For the two-sample case, the sample sizes are computed
so that the absolute value of the difference between the user supplied value of
p.hat.or.pl1.hat and the actual estimated proportion for group 1 is less than
or equal to tol.p.hat, and the absolute value of the difference between the user
supplied value of p2.hat and the actual estimated proportion for group 2 is less
than or equal to tol.p.hat. The default value is tol.p.hat=0.005.

positive scalar indicating the tolerance to use for the search algorithm (passed to
uniroot). The default value is tol=1e-7.

integer indicating the maximum number of iterations to use for the search algo-
rithm (passed to uniroot). The default value is maxiter=1000.
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Details

If the arguments half.width, p.hat.or.pl1.hat, p2.hat, conf.level and ratio are not all the
same length, they are replicated to be the same length as the length of the longest argument.

For the one-sample case, the arguments p.hat.or.p1.hat, tol.p.hat, half.width, and tol.half.width
must satisfy:

(p.hat.or.pl.hat + tol.p.hat + half.width + tol.half.width) <= 1,

and

(p.hat.or.pl.hat - tol.p.hat - half.width - tol.half.width) >= 0.

For the two-sample case, the arguments p.hat.or.p1.hat, p2.hat, tol.p.hat,

half.width, and tol.half.width must satisfy:

((p.hat.or.p1.hat + tol.p.hat) - (p2.hat - tol.p.hat) + half.width + tol.half.width) <=
and

((p.hat.or.pl.hat - tol.p.hat) - (p2.hat + tol.p.hat) - half.width - tol.half.width) >=

The function ciBinomN uses the search algorithm in the function uniroot to call the function
ciBinomHalfWidth to find the values of n (sample.type="one.sample"”) or ny and n»

(sample. type="two.sample") that satisfy the requirements for the half-width, estimated propor-
tions, and confidence level. See the Details section of the help file for ciBinomHalfWidth for more
information.

Value

a list with information about the sample sizes, estimated proportions, and half-widths.

One-Sample Case (sample. type="one.sample").
When sample. type="one.sample”, the function ciBinomN returns a list with these components:

n the sample size(s) associated with the confidence interval(s)
p.hat the estimated proportion(s)

half.width the half-width(s) of the confidence interval(s)

method the method used to construct the confidence interval(s)

Two-Sample Case (sample.type="two.sample").
When sample. type="two.sample”, the function ciBinomN returns a list with these components:

ni the sample size(s) for group 1 associated with the confidence interval(s)
n2 the sample size(s) for group 2 associated with the confidence interval(s)
p1.hat the estimated proportion(s) for group 1
p2.hat the estimated proportion(s) for group 2
half.width the half-width(s) of the confidence interval(s)
method the method used to construct the confidence interval(s)

Note

The binomial distribution is used to model processes with binary (Yes-No, Success-Failure, Heads-
Tails, etc.) outcomes. It is assumed that the outcome of any one trial is independent of any other
trial, and that the probability of “success”, p, is the same on each trial. A binomial discrete random
variable X is the number of “successes” in n independent trials. A special case of the binomial
distribution occurs when n = 1, in which case X is also called a Bernoulli random variable.

In the context of environmental statistics, the binomial distribution is sometimes used to model the
proportion of times a chemical concentration exceeds a set standard in a given period of time (e.g.,

—_
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Gilbert, 1987, p.143), or to compare the proportion of detects in a compliance well vs. a background
well (e.g., USEPA, 1989b, Chapter 8, p.3-7). (However, USEPA 2009, p.8-27 recommends using
the Wilcoxon rank sum test (wilcox. test) instead of comparing proportions.)

In the course of designing a sampling program, an environmental scientist may wish to determine
the relationship between sample size, confidence level, and half-width if one of the objectives of the
sampling program is to produce confidence intervals. The functions ciBinomHalfWidth, ciBinomN,
and plotCiBinomDesign can be used to investigate these relationships for the case of binomial
proportions.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

ciBinomHalfWidth, uniroot, plotCiBinomDesign, ebinom,
binom. test, prop.test

Examples

# Look at how the required sample size of a one-sample
# confidence interval increases with decreasing
# required half-width:

ciBinomN(half.width = c(@0.1, 0.05, 0.03))
#3$n

#[1] 92 374 1030

#

#$p.hat

#[1] 0.5 0.5 0.5

#

#$half.width

#[1] 0.10010168 0.05041541 0.03047833

#

#$method

#[1] "Score normal approximation, with continuity correction”

# Note that the required sample size decreases if we are less
# stringent about how much the confidence interval width can
# deviate from the supplied value of the 'half.width' argument:

ciBinomN(half.width = c(0.1, 0.05, 0.03), tol.half.width = 0.005)
#$n

#[1] 84 314 782

#

#%$p.hat

#[1] 0.5 0.5 0.5

#

#$half.width

#[1] 0.10456066 0.05496837 0.03495833

#

#$method

#[1] "Score normal approximation, with continuity correction”

# Look at how the required sample size for a one-sample
# confidence interval tends to decrease as the estimated
# value of p decreases below 0.5 or increases above 0.5:

seq(0.2, 0.8, by

=0.1)
#[1] 0.2 0.3 0.4 0.

0.1

50.6 0.7 0.8

ciBinomN(half.width = 0.1, p.hat = seq(0.2, 0.8, by = 0.1))
#$n

#[1] 70 90 100 92 100 90 70

#

#$p.hat
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#[1] 0.2 0.3 0.4 0.5 0.6 0.7 0.8

#

#$half.width

#[1] 0.09931015 0.09839843 0.09910818 0.10010168 0.09910818 0.09839843
#[7] 0.09931015

#

#$method

#[1] "Score normal approximation, with continuity correction”

# Look at how the required sample size for a one-sample
# confidence interval increases with increasing confidence level:

ciBinomN(half.width = .05, conf.level = c(0.8, 0.9, 0.95, 0.99))
#$n
#[1] 160 264 374 644

#

#$p.hat

#[1] 0.5 0.5 0.5 9.5
#

#$half.width

#[1] 0.05039976 0.05035948 0.05041541 0.05049152

#

#$method

#[1] "Score normal approximation, with continuity correction”

I

# Compare required sample size for a one-sample
# confidence interval based on the different methods:

ciBinomN(half.width = .05, ci.method = "score")

#$n

#[1] 374
#
#$p.hat
#[1] 0.5
#

#$half.width

#[1] 0.05041541

#

#$method

#[1] "Score normal approximation, with continuity correction”

I

ciBinomN(half.width = .05, ci.method = "exact"”)

#$n

#[1] 394
#
#$p.hat
#[1] 0.5
#

#$half.width
#[1] 0.05047916
#

#$method

#[1] "Exact”
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ciBinomN(half.width = .05, ci.method = "adjusted Wald")

#3n

#[1] 374
#
#$p.hat
#[1] 0.5
#

#$half.width

#[1] 0.05041541

#

#$method

#[1] "Adjusted Wald normal approximation”

ciBinomN(half.width = .05, ci.method = "Wald")

#$n

#[1] 398
#
#$p.hat
#[1] 0.5
#

#$half.width

#[1] 0.05037834

#

#$method

#[1] "Wald normal approximation, with continuity correction”

## Not run:

# Look at how the required sample size of a two-sample
# confidence interval increases with decreasing

# required half-width:

ciBinomN(half.width = c(@0.1, 0.05, 0.03), sample.type = "two")

#3n1

#[1]1 210 778 2089

#

#$n2

#[1]1 210 778 2089

#

#3$p1.hat

#[1] 0.5000000 0.5000000 0.4997607
#

#$p2.hat

#[1] 0.4000000 ©.3997429 0.4001915
#

#$half.width

#[1] 0.09943716 0.05047044 0.03049753

#

#$method

#[1] "Score normal approximation, with continuity correction”

## End(Not run)
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ciNormHalfWidth Half-Width of Confidence Interval for Normal Distribution Mean or
Difference Between Two Means

Description

Compute the half-width of a confidence interval for the mean of a normal distribution or the dif-
ference between two means, given the sample size(s), estimated standard deviation, and confidence
level.

Usage

ciNormHalfWidth(n.or.n1, n2 = n.or.nl,
sigma.hat = 1, conf.level = 0.95,

sample.type = ifelse(missing(n2), "one.sample”, "two.sample"))
Arguments
n.or.nl numeric vector of sample sizes. When sample. type="one.sample”, this ar-

gument denotes n, the number of observations in the single sample. When
sample.type="two.sample", this argument denotes n;, the number of obser-
vations from group 1. Missing (NA), undefined (NaN), and infinite (Inf, -Inf)
values are not allowed.

n2 numeric vector of sample sizes for group 2. The default value is the value of
n.or.n1. This argument is ignored when sample. type="one.sample”. Miss-
ing (NA), undefined (NaN), and infinite (Inf, -Inf) values are not allowed.

sigma.hat numeric vector specifying the value(s) of the estimated standard deviation(s).

conf.level numeric vector of numbers between 0 and 1 indicating the confidence level as-
sociated with the confidence interval(s). The default value is conf.level=0.95.

sample. type character string indicating whether this is a one-sample
(sample.type="one.sample") or two-sample
(sample.type="two.sample") confidence interval.
When sample.type="one.sample"”, the computed half-width is based on a
confidence interval for a single mean.
When sample.type="two.sample”, the computed half-width is based on a
confidence interval for the difference between two means.
The default value is sample.type="one.sample” unless the argument n2 is
supplied.

Details

If the arguments n.or.n1, n2, sigma.hat, and conf.level are not all the same length, they are
replicated to be the same length as the length of the longest argument.

One-Sample Case (sample.type="one.sample")
Let x = x1,x9,...,x, denote a vector of n observations from a normal distribution with mean y
and standard deviation o. A two-sided (1 — «)100% confidence interval for y is given by:

6

[ —tn—1,1-a/2) \/ﬁ] (1)

%,ﬂ—l—t(n—l,l—aﬂ)
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where

and t(v, p) is the p’th quantile of Student’s t-distribution with v degrees of freedom (Zar, 2010;
Gilbert, 1987; Ott, 1995; Helsel and Hirsch, 1992). Thus, the half-width of this confidence interval

is given by:

HW =t(n—1,1-a/2) (4)

I

vn
Two-Sample Case (sample. type="two.sample")
Let z; = z11,%12,...,%1,, denote a vector of n; observations from a normal distribution with
mean j; and standard deviation o, and let £, = %21, %22, . . ., T2n, denote a vector of ng observa-
tions from a normal distribution with mean p5 and standard deviation o. A two-sided (1 — «)100%
confidence interval for p1; — s is given by:

P Rt | 1 1
[(f1—f2)—t(m1+n2=2,1-0/2)61 | — + —, (ln—fiz) +t(m+n2=2,1-0/2)6 [ — + —]  (5)
1 2

ni n2

where

=
=
Il
I
i
Il
—
1]
8
=
=

1
flo = Tg = me‘ (7

) 2 (n1 — 1)5% + (n2 — 1)3%

= g = 8
7 Sp ni —+ Ng — 2 ( )
ni
5T = . > (@i—3)* (9
ny — 1 =1
na
Sg = 1 Z(ZL'Q,L — 52)2 (10)
nz — 14

(Zar, 2010, p.142; Helsel and Hirsch, 1992, p.135, Berthouex and Brown, 2002, pp.157-158). Thus,
the half-width of this confidence interval is given by:

1 1
HWZt(’I’Ll-‘rnz—Q,l—Ol/Q)a' — + — (11)
ny U»)

Note that for the two-sample case, the function ciNormHalfWidth assumes the two populations
have the same standard deviation.

Value

a numeric vector of half-widths.
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Note

The normal distribution and lognormal distribution are probably the two most frequently used dis-
tributions to model environmental data. In order to make any kind of probability statement about a
normally-distributed population (of chemical concentrations for example), you have to first estimate
the mean and standard deviation (the population parameters) of the distribution. Once you estimate
these parameters, it is often useful to characterize the uncertainty in the estimate of the mean. This
is done with confidence intervals.

In the course of designing a sampling program, an environmental scientist may wish to determine
the relationship between sample size, confidence level, and half-width if one of the objectives of the
sampling program is to produce confidence intervals. The functions ciNormHalfWidth, ciNormN,
and plotCiNormDesign can be used to investigate these relationships for the case of normally-
distributed observations.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Berthouex, P.M., and L.C. Brown. (2002). Statistics for Environmental Engineers. Second Edition.
Lewis Publishers, Boca Raton, FL.

Gilbert, R.O. (1987). Statistical Methods for Environmental Pollution Monitoring. Van Nostrand
Reinhold, New York, NY.

Helsel, D.R., and R.M. Hirsch. (1992). Statistical Methods in Water Resources Research. Elsevier,
New York, NY, Chapter 7.

Millard, S.P., and N. Neerchal. (2001). Environmental Statistics with S-PLUS. CRC Press, Boca
Raton, FL.

Ott, W.R. (1995). Environmental Statistics and Data Analysis. Lewis Publishers, Boca Raton, FL.

USEPA. (2009). Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Uni-
fied Guidance. EPA 530/R-09-007, March 2009. Office of Resource Conservation and Recovery
Program Implementation and Information Division. U.S. Environmental Protection Agency, Wash-
ington, D.C. p.21-3.

Zar, J.H. (2010). Biostatistical Analysis. Fifth Edition. Prentice-Hall, Upper Saddle River, NJ,
Chapters 7 and 8.

See Also

ciNormN, plotCiNormDesign, Normal, enorm, t.test
Estimating Distribution Parameters.

Examples

# Look at how the half-width of a one-sample confidence interval
# decreases with increasing sample size:

seq(5, 30, by = 5)
#[1]1 5 10 15 20 25 30

hw <- ciNormHalfWidth(n.or.n1 = seq(5, 30, by = 5))

round(hw, 2)
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#[1] 1.24 0.72 0.55 0.47 0.41 0.37

# Look at how the half-width of a one-sample confidence interval

# increases with increasing estimated standard deviation:

seq(@.5, 2, by
#[1]1 0.5 1.0 1

hw <- ciNormHalfWidth(n.or.n1 = 20, sigma.hat = seq(@.5, 2, by = 0.5))

= 0.5)
.5 2.0

roundChw, 2)
#[1] 0.23 0.47 0.70 0.94

# Look at how the half-width of a one-sample confidence interval

# increases with increasing confidence level:

seq(0.5, 0.9, by = 0.
#[1] 0.5 0.6 0.7 0.8

hw <- ciNormHalfWidth(n.or.n1 = 20, conf.level = seq(@.5, 0.9, by = 0.1))

D)
0.9

round(hw, 2)
#[1] .15 0.19 0.24 0.30 0.39

#
#
#
#
#
#
#
#
#
#
#

EPA.09.Ex
# Month

#1
#2
#3
#4
#...

1

2
3
4

mu.hat <-
mean(Aldicarb.ppb[Well=="Well.1"]))

mu. hat

#[1] 23.1

Modifying the example on pages 21-4 to 21-5 of USEPA (2009),
determine how adding another four months of observations to
increase the sample size from 4 to 8 will affect the half-width
of a two-sided 95% confidence interval for the Aldicarb level at
the first compliance well.

Use the estimated standard deviation from the first four months
of data. (The data are stored in EPA.09.Ex.21.1.aldicarb.df.)
Note that the half-width changes from 34% of the observed mean to
18% of the observed mean by increasing the sample size from
4 to 8.

.21.17.aldicarb.df
Well Aldicarb.ppb
Well.1 19.9
Well.1 29.6
Well.1 18.7
Well.1 24.2
with(EPA.09.Ex.21.1.aldicarb.df,

sigma.hat <- with(EPA.@9.Ex.21.1.aldicarb.df,
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sd(Aldicarb.ppb[Well=="Well.1"1))
sigma.hat
#[1] 4.93491
hw.4 <- ciNormHalfWidth(n.or.n1 = 4, sigma.hat = sigma.hat)
hw. 4
#[1] 7.852543
hw.8 <- ciNormHalfWidth(n.or.n1 = 8, sigma.hat = sigma.hat)
hw.8
#[1] 4.125688
100 * hw.4/mu.hat
#[1] 33.99369
100 * hw.8/mu.hat
#[1] 17.86012
f#==========
# Clean up
# _________
rm(hw, mu.hat, sigma.hat, hw.4, hw.8)
ciNormN Sample Size for Specified Half-Width of Confidence Interval for Nor-
mal Distribution Mean or Difference Between Two Means
Description

Compute the sample size necessary to achieve a specified half-width of a confidence interval for the
mean of a normal distribution or the difference between two means, given the estimated standard
deviation and confidence level.

Usage

ciNormN(half.width, sigma.hat = 1, conf.level = 0.95,

sample. type

= ifelse(is.null(n2), "one.sample”, "two.sample"”),

n2 = NULL, round.up = TRUE, n.max = 5000, tol = 1e-07, maxiter = 1000)

Arguments

half.width

sigma.hat

conf.level

numeric vector of (positive) half-widths. Missing (NA), undefined (NaN), and
infinite (Inf, -Inf) values are not allowed.

numeric vector specifying the value(s) of the estimated standard deviation(s).

numeric vector of numbers between 0 and 1 indicating the confidence level as-
sociated with the confidence interval(s). The default value is conf. level=0.95.
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sample.type character string indicating whether this is a one-sample
(sample.type="one.sample”) or two-sample
(sample.type="two.sample") confidence interval.
When sample.type="one.sample”, the computed sample size is based on a
confidence interval for a single mean.
When sample. type="two.sample”, the computed sample size is based on a
confidence interval for the difference between two means.
The default value is sample.type="one.sample” unless the argument n2 is
supplied.

n2 numeric vector of sample sizes for group 2. The default value is NULL, in which
case it is assumed that the sample sizes for groups 1 and 2 are equal. This argu-
ment is ignored when sample.type="one.sample”. Missing (NA), undefined
(NaN), and infinite (Inf, -Inf) values are not allowed.

round.up logical scalar indicating whether to round up the values of the computed sample
size(s) to the next smallest integer. The default value is round. up=TRUE.

n.max positive integer greater than 1 specifying the maximum sample size for the single
group when sample. type="one.sample" or for group 1 when sample. type="two.sample".
The default value is n.max=5000.

tol numeric scalar indicating the tolerance to use in the uniroot search algorithm.
The default value is tol=1e-7.

maxiter positive integer indicating the maximum number of iterations to use in the uniroot
search algorithm. The default value is maxiter=1000.

Details

If the arguments half.width, n2, sigma.hat, and conf.level are not all the same length, they
are replicated to be the same length as the length of the longest argument.

The function ciNormN uses the formulas given in the help file for ciNormHalfWidth for the half-
width of the confidence interval to iteratively solve for the sample size. For the two-sample case,
the default is to assume equal sample sizes for each group unless the argument n2 is supplied.

Value

When sample. type="one.sample”, or sample.type="two.sample” and n2 is not supplied (so
equal sample sizes for each group is assumed), the function ciNormN returns a numeric vector of
sample sizes. When sample. type="two.sample” and n2 is supplied, the function ciNormN returns
a list with two components called n1 and n2, specifying the sample sizes for each group.

Note

The normal distribution and lognormal distribution are probably the two most frequently used dis-
tributions to model environmental data. In order to make any kind of probability statement about a
normally-distributed population (of chemical concentrations for example), you have to first estimate
the mean and standard deviation (the population parameters) of the distribution. Once you estimate
these parameters, it is often useful to characterize the uncertainty in the estimate of the mean. This
is done with confidence intervals.

In the course of designing a sampling program, an environmental scientist may wish to determine
the relationship between sample size, confidence level, and half-width if one of the objectives of the
sampling program is to produce confidence intervals. The functions ciNormHalfWidth, ciNormN,
and plotCiNormDesign can be used to investigate these relationships for the case of normally-
distributed observations.
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Author(s)
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See Also

ciNormHalfWidth, plotCiNormDesign, Normal, enorm, t. test,
Estimating Distribution Parameters.

Examples

# Look at how the required sample size for a one-sample
# confidence interval decreases with increasing half-width:

seq(@.25, 1, by = 0.25)
#[1] 0.25 0.50 0.75 1.00

ciNormN(half.width = seq(@.25, 1, by = 0.25))
#[1] 64 18 10 7

ciNormN(seq(@.25, 1, by=0.25), round = FALSE)
#[1] 63.897899 17.832337 9.325967 6.352717

# Look at how the required sample size for a one-sample

# confidence interval increases with increasing estimated
# standard deviation for a fixed half-width:

seq(@.5, 2, by = 0.5)

#[1] 0.5 1.0 1.5 2.0

ciNormN(half.width = 0.5, sigma.hat = seq(@.5, 2, by = 0.5))
#[1]1 7 18 38 64
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# Look at how the required sample size for a one-sample
# confidence interval increases with increasing confidence
# level for a fixed half-width:

seq(0.5, 0.9, by = 0.1)
#[1] 0.5 0.6 0.7 9.8 0.9

ciNormN(half.width

0.25, conf.level = seq(@0.5, 0.9, by = 0.1))

#[11 9 13 19 28 46

#

#

#

#

#

#

#

#

#

#
EPA.09.Ex
# Month
#1 1
#2 2
#3 3
#4 4
#...
mu.hat <-

Modifying the example on pages 21-4 to 21-5 of USEPA (2009),
determine the required sample size in order to achieve a
half-width that is 10% of the observed mean (based on the first
four months of observations) for the Aldicarb level at the first
compliance well. Assume a 95% confidence level and use the
estimated standard deviation from the first four months of data.
(The data are stored in EPA.09.Ex.21.1.aldicarb.df.)

The required sample size is 20, so almost two years of data are
required assuming observations are taken once per month.

.21.17.aldicarb.df
Well Aldicarb.ppb
Well.1 19.9
Well.1 29.6
Well.1 18.7
Well.1 24.2
with(EPA.@9.Ex.21.1.aldicarb.df,

mean(Aldicarb.ppb[Well=="Well.1"]))

mu. hat

#[11 23.

1

sigma.hat <- with(EPA.09.Ex.21.1.aldicarb.df,
sd(Aldicarb.ppb[Well=="Well.1"1))

sigma.hat
#[1] 4.93491

ciNormN(half.width = ©.1 * mu.hat, sigma.hat = sigma.hat)

#[1] 20

# Clean up
rm(mu.hat, sigma.hat)

ciNparConflLevel Compute Confidence Level Associated with a Nonparametric Confi-

dence Interval for a Quantile
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Description

Compute the confidence level associated with a nonparametric confidence interval for a quantile,
given the sample size and order statistics associated with the lower and upper bounds.

Usage
ciNparConflLevel(n, p = 0.5, 1lcl.rank = ifelse(ci.type == "upper”, 0, 1),
n.plus.one.minus.ucl.rank = ifelse(ci.type == "lower”, 0, 1),
ci.type = "two.sided")
Arguments
n numeric vector of sample sizes. Missing (NA), undefined (NaN), and infinite (Inf,
-Inf) values are not allowed.
p numeric vector of probabilities specifying which quantiles to consider for the

sample size calculation. All values of p must be between 0 and 1. The default
value is p=0. 5.

lcl.rank, n.plus.one.minus.ucl.rank
numeric vectors of non-negative integers indicating the ranks of the order statis-
tics that are used for the lower and upper bounds of the confidence interval for
the specified quantile(s). When 1cl.rank=1 that means use the smallest value as
the lower bound, when 1cl. rank=2 that means use the second to smallest value
as the lower bound, etc. When n.plus.one.minus.ucl.rank=1 that means use
the largest value as the upper bound, when n.plus.one.minus.ucl.rank=2
that means use the second to largest value as the upper bound, etc. A value
of @ for 1cl.rank indicates no lower bound (i.e., -Inf) and a value of @ for
n.plus.one.minus.ucl. rank indicates no upper bound (i.e., Inf). When ci. type="upper"”
then 1cl.rank is set to @ by default, otherwise it is set to 1 by default. When
ci.type="lower" then n.plus.one.minus.ucl.rank is set to @ by default,
otherwise it is set to 1 by default.

ci.type character string indicating what kind of confidence interval to compute. The
possible values are "two-sided” (the default), "lower”, and "upper”.
Details

If the arguments n, p, 1cl.rank, and n.plus.one.minus.ucl.rank are not all the same length,
they are replicated to be the same length as the length of the longest argument.

The help file for eqnpar explains how nonparametric confidence intervals for quantiles are con-
structed and how the confidence level associated with the confidence interval is computed based on
specified values for the sample size and the ranks of the order statistics used for the bounds of the
confidence interval.

Value

A numeric vector of confidence levels.

Note

See the help file for egnpar.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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References

See the help file for eqgnpar.

See Also

egnpar, ciNparN, plotCiNparDesign

Examples

# Look at how the confidence level of a nonparametric confidence interval
# increases with increasing sample size for a fixed quantile:

seq(5, 25, by = 5)
#[1] 5 10 15 20 25

round(ciNparConfLevel(n = seq(5, 25, by = 5), p = 0.9), 2)
#[1] 0.41 0.65 0.79 0.88 0.93

# Look at how the confidence level of a nonparametric confidence interval
# decreases as the quantile moves away from 0.5:

)

seq(0.5, 0.9, by 1
7 0.9

= 0.
#[1] 0.5 0.6 0.7 0.8
round(ciNparConfLevel(n = 10, p = seq(@.5, 0.9, by = 0.1)), 2)
#[1] 1.00 0.99 0.97 0.89 0.65

Reproduce Example 21-6 on pages 21-21 to 21-22 of USEPA (2009).

Use 12 measurements of nitrate (mg/L) at a well used for drinking water
to determine with 95% confidence whether or not the infant-based, acute
risk standard of 10 mg/L has been violated. Assume that the risk
standard represents an upper 95'th percentile limit on nitrate
concentrations. So what we need to do is construct a one-sided

lower nonparametric confidence interval for the 95'th percentile

that has associated confidence level of no more than 95%, and we will
compare the lower confidence limit with the MCL of 10 mg/L.

H oH H HF ¥ HHF ¥ H HFH

The data for this example are stored in EPA.09.Ex.21.6.nitrate.df.

# Look at the data:

EPA.09.Ex.21.6.nitrate.df

# Sampling.Date Date Nitrate.mg.per.l.orig Nitrate.mg.per.l Censored
#1 7/28/1999 1999-07-28 <5.9 5.0 TRUE
#2 9/3/1999 1999-09-03 12.3 12.3 FALSE
#3 11/24/1999 1999-11-24 <5.9 5.0 TRUE
#4 5/3/2000 2000-05-03 <5.0 5.0 TRUE
#5 7/14/2000 2000-07-14 8.1 8.1 FALSE
#6 10/31/2000 2000-10-31 <5.9 5.0 TRUE
#7 12/14/2000 2000-12-14 11 11.0 FALSE
#8 3/27/2001 2001-03-27 35.1 35.1 FALSE
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#9 6/13/2001 2001-06-13 <5.0 5.0 TRUE
#10 9/16/2001 2001-09-16 <5.0 5.0 TRUE
#11 11/26/2001 2001-11-26 9.3 9.3 FALSE
#12 3/2/2002 2002-03-02 10.3 10.3 FALSE

# Determine what order statistic to use for the lower confidence limit
# in order to achieve no more than 95% confidence.

conf.levels <- ciNparConflLevel(n = 12, p = 0.95, 1lcl.rank = 1:12,
ci.type = "lower")
names(conf.levels) <- 1:12

round(conf.levels, 2)
# 1 2 3 4 5 6 7 8 9 10 11 12
#1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.88 0.54

Using the 11'th largest observation for the lower confidence limit
yields a confidence level of 88%. Using the 10'th largest
observation yields a confidence level of 98%. The example in
USEPA (2009) uses the 10'th largest observation.

The 10'th largest observation is 11 mg/L which exceeds the
MCL of 1@ mg/L, so there is evidence of contamination.

H o B ¥ H HH

with(EPA.99.Ex.21.6.nitrate.df,
egnpar(Nitrate.mg.per.1l, p = 0.95, ci = TRUE,
ci.type = "lower”, lcl.rank = 10))

#Results of Distribution Parameter Estimation

# ____________________________________________
#

#Assumed Distribution: None

#

#Estimated Quantile(s): 95'th %ile = 22.56
#

#Quantile Estimation Method: Nonparametric
#

#Data: Nitrate.mg.per.1l
#

#Sample Size: 12

#

#Confidence Interval for: 95'th %ile

#

#Confidence Interval Method: exact

#

#Confidence Interval Type: lower

#

#Confidence Level: 98.04317%

#

#Confidence Limit Rank(s): 10

#

#Confidence Interval: LCL = 11

# UCL = Inf
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# Clean up

rm(conf.levels)

ciNparN Sample Size for Nonparametric Confidence Interval for a Quantile

Description

Compute the sample size necessary to achieve a specified confidence level for a nonparametric
confidence interval for a quantile.

Usage
ciNparN(p = 0.5, lcl.rank = ifelse(ci.type == "upper”, 0, 1),
n.plus.one.minus.ucl.rank = ifelse(ci.type == "lower”, 0, 1),
ci.type = "two.sided”, conf.level = 0.95)
Arguments
p numeric vector of probabilities specifying the quantiles. All values of p must be

between 0 and 1. The default value is p=0.5.

lcl.rank, n.plus.one.minus.ucl.rank
numeric vectors of non-negative integers indicating the ranks of the order statis-
tics that are used for the lower and upper bounds of the confidence interval for
the specified quantile(s). When 1cl. rank=1 that means use the smallest value as
the lower bound, when 1cl.rank=2 that means use the second to smallest value
as the lower bound, etc. When n.plus.one.minus.ucl.rank=1 that means use
the largest value as the upper bound, when n.plus.one.minus.ucl.rank=2
that means use the second to largest value as the upper bound, etc. A value
of @ for 1cl.rank indicates no lower bound (i.e., -Inf) and a value of @ for
n.plus.one.minus.ucl.rank indicates no upper bound (i.e., Inf). When ci. type="upper"”
then 1cl.rank is set to @ by default, otherwise it is set to 1 by default. When
ci.type="lower"” then n.plus.one.minus.ucl.rank is set to @ by default,
otherwise it is set to 1 by default.

ci.type character string indicating what kind of confidence interval to compute. The
possible values are "two-sided” (the default), "lower", and "upper”.

conf.level numeric vector of numbers between 0 and 1 indicating the confidence level as-
sociated with the confidence interval(s). The default value is conf=0.95.

Details

If the arguments p, 1cl.rank, n.plus.one.minus.ucl.rank and conf.level are not all the same
length, they are replicated to be the same length as the length of the longest argument.

The help file for eqnpar explains how nonparametric confidence intervals for quantiles are con-
structed and how the confidence level associated with the confidence interval is computed based on
specified values for the sample size and the ranks of the order statistics used for the bounds of the
confidence interval.

The function ciNparN determines the required the sample size via a nonlinear optimization.
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Value

numeric vector of sample sizes.

Note

See the help file for eqnpar.

Author(s)
Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

See the help file for eqgnpar.

See Also

egnpar, ciNparConflLevel, plotCiNparDesign.

Examples

# Look at how the required sample size for a confidence interval
# increases with increasing confidence level for a fixed quantile:

seq(0.5, 0.9, by = 0.1)
#[1] 0.5 0.6 0.7 9.8 0.9
ciNparN(p = 0.9, conf.level=seq(@.5, 0.9, by = 0.1))
#[11 7 9 12 16 22

# Look at how the required sample size for a confidence interval increases
# as the quantile moves away from 0.5:

ciNparN(p = seq(@.5, 0.9, by = 0.1))
#[1] 6 7 9 14 29

ciTableMean Table of Confidence Intervals for Mean or Difference Between Two
Means

Description

Create a table of confidence intervals for the mean of a normal distribution or the difference be-
tween two means following Bacchetti (2010), by varying the estimated standard deviation and the
estimated mean or differene between the two estimated means given the sample size(s).

Usage

ciTableMean(n1 = 10, n2 = n1, diff.or.mean = 2:0, SD = 1:3,
sample.type = "two.sample”, ci.type = "two.sided"”, conf.level = 0.95,
digits = 1)
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Arguments
ni positive integer greater than 1 specifying the sample size when sample.type="one.sample”
or the sample size for group 1 when sample. type="two.sample”. The default
value is n1=10.
n2 positive integer greater than 1 specifying the sample size for group 2 when

sample.type="two.sample"”. The default value is n2=n1, i.e., equal sample
sizes. This argument is ignored when sample. type="one.sample”.

diff.or.mean  numeric vector indicating either the assumed difference between the two sam-
ple means when sample.type="two.sample"” or the value of the sample mean
when sample.type="one.sample". The default value is diff.or.mean=2:0.
Missing (NA), undefined (NaN), an infinite (-Inf, Inf) values are not allowed.

SD numeric vector of positive values specifying the assumed estimated standard de-
viation. The default value is SD=1: 3. Missing (NA), undefined (NaN), an infinite
(=Inf, Inf) values are not allowed.

sample. type character string specifying whether to create confidence intervals for the differ-
ence between two means (sample.type="two.sample”; the default) or confi-
dence intervals for a single mean (sample. type="one.sample").

ci.type character string indicating what kind of confidence interval to compute. The
possible values are "two-sided” (the default), "lower", and "upper”.

conf.level a scalar between 0 and 1 indicating the confidence level of the confidence inter-
val. The default value is conf.level=0.95.

digits positive integer indicating how many decimal places to display in the table. The
default value is digits=1.

Details

Following Bacchetti (2010) (see NOTE below), the function ciTableMean allows you to perform
sensitivity analyses while planning future studies by producing a table of confidence intervals for
the mean or the difference between two means by varying the estimated standard deviation and the
estimated mean or differene between the two estimated means given the sample size(s).

One Sample Case (sample.type="one.sample")
Letx = (x1,2,...,Z,) be a vector of n observations from an normal (Gaussian) distribution with
parameters mean=p and sd=c.

The usual confidence interval for p is constructed as follows. If ci.type="two-sided”, the (1 —
«)100% confidence interval for y is given by:

[ﬂ—t(n—l,l—a/2)%7ﬂ+t(n—1,1—a/2)%] (1)

where

and t(v, p) is the p’th quantile of Student’s t-distribution with v degrees of freedom (Zar, 2010;
Gilbert, 1987; Ott, 1995; Helsel and Hirsch, 1992).

If ci.type="lower”, the (1 — &)100% confidence interval for x is given by:

[i—=tn =11 —a)—=, o] (4)
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and if ci.type="upper”, the confidence interval is given by:
o
Vn

For the one-sample case, the argument n1 corresponds to n in Equation (1), the argument diff.or.mean
corresponds to ft = T in Equation (2), and the argument SD corresponds to & = s in Equation (3).

[—oo, i +t(n—1,1—a/2)—] (5)

Two Sample Case (sample.type="two.sample”)

Let z; = (x11,%21,-..,Zn,1) be a vector of ny observations from an normal (Gaussian) distri-
bution with parameters mean=y; and sd=o, and let x, = (212, %22,...,%Tn,2) be a vector of ny
observations from an normal (Gaussian) distribution with parameters mean=p9 and sd=o.

The usual confidence interval for the difference between the two population means p; — po is
constructed as follows. If ci. type="two-sided", the (1 — «)100% confidence interval for 111 — o
is given by:

1

P . /1 1 . /1
[(1—f2)—t(n1+ne=2,1-/2)6\ [ — + —, (fu—f2)+t(ni+ne—2,1-a/2)64/ — + —]  (6)
ny no nq n2

where

. _ 1
flo = T2 = Zl‘iz (8)

62 = 2 — (1 —1)sT + (ng — 1)s3 9)
ny + ng — 2

57 = ! Zl:(xz‘l—fl)Q (10)

ny —1
1 i=1

n2

G=—— @) (1)

i=1
and t(v, p) is the p’th quantile of Student’s t-distribution with v degrees of freedom (Zar, 2010;
Gilbert, 1987; Ott, 1995; Helsel and Hirsch, 1992).

If ci.type="1lower", the (1 — «)100% confidence interval for 117 — po is given by:

[(ﬂl—ﬂz)—t(n1+n2—2,1—a)6g/nil+ni2, OO] (].2)

and if ci.type="upper”, the confidence interval is given by:

. N L1 1
[—oo, (fi1 — fi2) —t(ny +ng — 2,1 —a)dy/— +—]  (13)
ni na
For the two-sample case, the arguments n1 and n2 correspond to n; and ns in Equation (6), the
argument diff.or.mean corresponds to (i; — tis = 1 — Z2 in Equations (7) and (8), and the
argument SD corresponds to & = s, in Equation (9).

Value

a data frame with the rows varying the standard deviation and the columns varying the estimated
mean or difference between the means. Elements of the data frame are character strings indicating
the confidence intervals.
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Note

Bacchetti (2010) presents strong arguments against the current convention in scientific research for
computing sample size that is based on formulas that use a fixed Type I error (usually 5%) and a
fixed minimal power (often 80%) without regard to costs. He notes that a key input to these formulas
is a measure of variability (usually a standard deviation) that is difficult to measure accurately
"unless there is so much preliminary data that the study isn’t really needed." Also, study designers
often avoid defining what a scientifically meaningful difference is by presenting sample size results
in terms of the effect size (i.e., the difference of interest divided by the elusive standard deviation).
Bacchetti (2010) encourages study designers to use simple tables in a sensitivity analysis to see
what results of a study may look like for low, moderate, and high rates of variability and large,
intermediate, and no underlying differences in the populations or processes being studied.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Bacchetti, P. (2010). Current sample size conventions: Flaws, Harms, and Alternatives. BMC
Medicine 8, 17-23.

Berthouex, P.M., and L.C. Brown. (2002). Statistics for Environmental Engineers. Second Edition.
Lewis Publishers, Boca Raton, FL.

Gilbert, R.O. (1987). Statistical Methods for Environmental Pollution Monitoring. Van Nostrand
Reinhold, New York, NY.

Helsel, D.R., and R.M. Hirsch. (1992). Statistical Methods in Water Resources Research. Elsevier,
New York, NY.

Millard, S.P., and N.K. Neerchal. (2001). Environmental Statistics with S-PLUS. CRC Press, Boca
Raton, FL.

Ott, W.R. (1995). Environmental Statistics and Data Analysis. Lewis Publishers, Boca Raton, FL.
Zar, J.H. (2010). Biostatistical Analysis. Fifth Edition. Prentice-Hall, Upper Saddle River, NJ.

See Also

enorm, t.test, ciTableProp, ciNormHalfWidth, ciNormN, plotCiNormDesign.

Examples

# Show how potential confidence intervals for the difference between two means
# will look assuming standard deviations of 1, 2, or 3, differences between
# the two means of 2, 1, or @, and a sample size of 10 in each group.

ciTableMean()

# Diff=2 Diff=1 Diff=0
#SD=1 [ 1.1, 2.91 [ 0.1, 1.9] [-0.9, 0.9]
#SD=2 [ 0.1, 3.9] [-0.9, 2.9] [-1.9, 1.9]
#sD=3 [-0.8, 4.8] [-1.8, 3.8] [-2.8, 2.8]
f==========

# Show how a potential confidence interval for a mean will look assuming
# standard deviations of 1, 2, or 5, a sample mean of 5, 3, or 1, and
# a sample size of 15.
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ciTableMean(nl = 15, diff.or.mean = c(5, 3, 1), SD = c(1, 2, 5), sample.type = "one")
Mean=1

+*
=<
)
QL
i

The data frame EPA.@9.Ex.16.1.sulfate.df contains sulfate concentrations
(ppm) at one background and one downgradient well. The estimated

mean and standard deviation for the background well are 536 and 27 ppm,
respectively, based on a sample size of n = 8 quarterly samples taken over
2 years. A two-sided 95% confidence interval for this mean is [514, 5597,
which has a half-width of 23 ppm.

The estimated mean and standard deviation for the downgradient well are
608 and 18 ppm, respectively, based on a sample size of n = 6 quarterly
samples. A two-sided 95% confidence interval for the difference between
this mean and the background mean is [44, 100] ppm.

Suppose we want to design a future sampling program and are interested in
the size of the confidence interval for the difference between the two means.
We will use ciTableMean to generate a table of possible confidence intervals
by varying the assumed standard deviation and assumed differences between
the means.

N E E E E E E E E

# Look at the data

EPA.09.Ex.16.1.sulfate.df
# Month Year Well.type Sulfate.ppm

#1 Jan 1995 Background 560
#2 Apr 1995  Background 530
#3 Jul 1995 Background 570
#4 Oct 1995 Background 490
#5 Jan 1996  Background 510
#6 Apr 1996  Background 550
#7 Jul 1996  Background 550
#8 Oct 1996 Background 530
#9 Jan 1995 Downgradient NA
#10  Apr 1995 Downgradient NA
#11 Jul 1995 Downgradient 600
#12  Oct 1995 Downgradient 590
#13  Jan 1996 Downgradient 590
#14  Apr 1996 Downgradient 630
#15  Jul 1996 Downgradient 610
#16  Oct 1996 Downgradient 630

# Compute the estimated mean and standard deviation for the
# background well.

Sulfate.back <- with(EPA.09.Ex.16.1.sulfate.df,
Sulfate.ppm[Well.type == "Background”])



ciTableMean 115

enorm(Sulfate.back, ci = TRUE)

#Results of Distribution Parameter Estimation

# ____________________________________________

#

#Assumed Distribution: Normal

#

#Estimated Parameter(s): mean = 536.2500
# sd = 26.6927
#

#Estimation Method: mvue

#

#Data: Sulfate.back
#

#Sample Size: 8

#

#Confidence Interval for: mean

#

#Confidence Interval Method: Exact

#

#Confidence Interval Type: two-sided

#

#Confidence Level: 95%

#

#Confidence Interval: LCL = 513.9343
# UCL = 558.5657

# Compute the estimated mean and standard deviation for the
# downgradient well.

Sulfate.down <- with(EPA.09.Ex.16.1.sulfate.df,
Sulfate.ppm[Well.type == "Downgradient”])
enorm(Sulfate.down, ci = TRUE)

#Results of Distribution Parameter Estimation

# ____________________________________________

#

#Assumed Distribution: Normal

#

#Estimated Parameter(s): mean = 608.33333
# sd = 18.34848
#

#Estimation Method: mvue

#

#Data: Sulfate.down

#

#Sample Size: 6

#

#Number NA/NaN/Inf's: 2

#

#Confidence Interval for: mean

#

#Confidence Interval Method: Exact
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#

#Confidence Interval Type: two-sided

#

#Confidence Level: 95%

#

#Confidence Interval: LCL = 589.0778
# UCL = 627.5889

# Compute the estimated difference between the means and the confidence
# interval for the difference:

t.test(Sulfate.down, Sulfate.back, var.equal = TRUE)

#Results of Hypothesis Test

# __________________________

#

#Null Hypothesis: difference in means = @
#

#Alternative Hypothesis: True difference in means is not equal to @
#

#Test Name: Two Sample t-test

#

#Estimated Parameter(s): mean of x = 608.3333

# mean of y = 536.2500

#

#Data: Sulfate.down and Sulfate.back
#

#Test Statistic: t = 5.660985

#

#Test Statistic Parameter: df = 12

#

#P-value: 0.0001054306

#

#95% Confidence Interval: LCL = 44.33974

# UCL = 99.82693

# Use ciTableMean to look how the confidence interval for the difference

# between the background and downgradient means in a future study using eight

# quarterly samples at each well varies with assumed value of the pooled standard
# deviation and the observed difference between the sample means.

# Our current estimate of the pooled standard deviation is 24 ppm:

summary (1Im(Sulfate.ppm ~ Well.type, data = EPA.09.Ex.16.1.sulfate.df))$sigma
#[1] 23.57759

# We can see that if this is overly optimistic and in our next study the

# pooled standard deviation is around 5@ ppm, then if the observed difference
# between the means is 50 ppm, the lower end of the confidence interval for
# the difference between the two means will include @, so we may want to

# increase our sample size.

ciTableMean(nl = 8, n2 = 8, diff = c(100, 50, @), SD = c(15, 25, 50), digits = Q)
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# Diff=100  Diff=50 Diff=0
#SD=15 [ 84, 1161 [ 34, 661 [-16, 16]
#SD=25 [ 73, 1271 [ 23, 771 [-27, 27]
#SD=50 [ 46, 1541 [ -4, 104] [-54, 54]

rm(Sulfate.back, Sulfate.down)

ciTableProp Table of Confidence Intervals for Proportion or Difference Between
Two Proportions

Description

Create a table of confidence intervals for probability of "success" for a binomial distribution or the
difference between two proportions following Bacchetti (2010), by varying the estimated proportion
or differene between the two estimated proportions given the sample size(s).

Usage

ciTableProp(nl = 10, pl.hat = c(0.1, 0.2, 0.3), n2 = nl,
p2.hat.minus.pl.hat = ¢c(0.2, 0.1, @), sample.type = "two.sample”,
ci.type = "two.sided”, conf.level = 0.95, digits = 2, ci.method = "score”,
correct = TRUE, tol = 10*-(digits + 1))

Arguments

ni positive integer greater than 1 specifying the sample size when sample. type="one.sample”
or the sample size for group 1 when sample.type="two.sample"”. The default
value is n1=10.

p1.hat numeric vector of values between 0 and 1 indicating the estimated proportion
(sample. type="one.sample") or the estimated proportion for group 1 (sample.type="two.sample
The default value is c(@.1, @.2, @.3). Missing (NA), undefined (NaN), an in-
finite (-Inf, Inf) values are not allowed.

n2 positive integer greater than 1 specifying the sample size for group 2 when

sample.type="two.sample"”. The default value is n2=n1, i.e., equal sample

sizes. This argument is ignored when sample. type="one.sample”.
p2.hat.minus.pl.hat

numeric vector indicating the assumed difference between the two sample pro-

portions when sample. type="two.sample"”. The default valueisc(@.2, 0.1, 9).

Missing (NA), undefined (NaN), an infinite (-Inf, Inf) values are not allowed.

This argument is ignored when sample. type="one.sample”.

sample.type character string specifying whether to create confidence intervals for the dif-
ference between two proportions (sample. type="two.sample"; the default) or
confidence intervals for a single proportion (sample.type="one.sample"”).

ci.type character string indicating what kind of confidence interval to compute. The
possible values are "two-sided” (the default), "lower”, and "upper”.
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conf.level a scalar between 0 and 1 indicating the confidence level of the confidence inter-
val. The default value is conf.level=0.95.

digits positive integer indicating how many decimal places to display in the table. The
default value is digits=2.

ci.method character string indicating the method to use to construct the confidence interval.
The default value is ci.method="score" (i.e., the score method; see the help

file for prop. test), which is the only method available when sample. type="two.sample".

When sample. type="one.sample”, you may also set ci.method="exact" (i.e.,
the exact method).

correct logical scalar indicating whether to use the correction for continuity when ci.method="score"

(see the help file for prop. test). The default value is correct=TRUE.

tol numeric scalar indicating how close the values of the adjusted elements of p2.hat.minus.p1.hat

have to be in order to provide a simply display of confidence intervals (see DE-
TAILS section below). The default value is tol=10*-(digits + 1).

Details

One-Sample Case (sample.type="one.sample")

For the one-sample case, the function ciTableProp calls the R function prop. test when ci.method="score",

and calls the R function binom. test, when ci.method="exact". To ensure that the user-supplied
values of p1.hat are valid for the given user-supplied values of n1, values for the argument x to the
function prop. test or binom. test are computed using the formula

X <- unique(round((p1.hat * n1), 0))
and the argument p. hat is then adjusted using the formula

p.hat <- x/n1

Two-Sample Case (sample. type="two.sample")

For the two-sample case, the function ciTableProp calls the R function prop. test. To ensure that
the user-supplied values of p1.hat are valid for the given user-supplied values of n1, the values for
the first component of the argument x to the function prop. test are computed using the formula

x1 <- unique(round((pl1.hat * n1), 0))

and the argument p1.hat is then adjusted using the formula
pl.hat <- x1/n1

Next, the estimated proportions from group 2 are computed by adding together all possible com-
binations from the elements of p1.hat and p2.hat.minus.p1.hat. These estimated proportions
from group 2 are then adjusted using the formulas:

x2.rep <- round((p2.hat.rep * n2), 0)
p2.hat.rep <- x2.rep/n2

If any of these adjusted proportions from group 2 are < 0 or > 1 the function terminates with a
message indicating that impossible values have been supplied.

In cases where the sample sizes are small there may be instances where the user-supplied values of
p1.hat and/or p2.hat.minus.p1.hat are not attainable. The argument tol is used to determine
whether to return the table in conventional form or whether it is necessary to modify the table to
include twice as many columns (see EXAMPLES section below).
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Value

a data frame with elements that are character strings indicating the confidence intervals.

When sample.type="two.sample”, a data frame with the rows varying the estimated proportion
for group 1 (i.e., the values of p1.hat) and the columns varying the estimated difference between
the proportions from group 2 and group 1 (i.e., the values of p2.hat.minus.p1.hat). In cases
where the sample sizes are small, it may not be possible to obtain certain differences for given
values of p1.hat, in which case the returned data frame contains twice as many columns indicating
the actual difference in one column and the compute confidence interval next to it (see EXAMPLES
section below).

When sample.type="one.sample"”, a 1-row data frame with the columns varying the estimated
proportion (i.e., the values of p1.hat).

Note

Bacchetti (2010) presents strong arguments against the current convention in scientific research for
computing sample size that is based on formulas that use a fixed Type I error (usually 5%) and a
fixed minimal power (often 80%) without regard to costs. He notes that a key input to these formulas
is a measure of variability (usually a standard deviation) that is difficult to measure accurately
"unless there is so much preliminary data that the study isn’t really needed." Also, study designers
often avoid defining what a scientifically meaningful difference is by presenting sample size results
in terms of the effect size (i.e., the difference of interest divided by the elusive standard deviation).
Bacchetti (2010) encourages study designers to use simple tables in a sensitivity analysis to see
what results of a study may look like for low, moderate, and high rates of variability and large,
intermediate, and no underlying differences in the populations or processes being studied.

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)

References

Bacchetti, P. (2010). Current sample size conventions: Flaws, Harms, and Alternatives. BMC
Medicine 8, 17-23.

Also see the references in the help files for prop. test and binom. test.

See Also

prop.test, binom. test, ciTableMean, ciBinomHalfWidth, ciBinomN, plotCiBinomDesign.

Examples

++

Reproduce Table 1 in Bacchetti (2010). This involves planning a study with
nl = n2 = 935 subjects per group, where Group 1 is the control group and
Group 2 is the treatment group. The outcome in the study is proportion of
subjects with serious outcomes or death. A negative value for the difference
in proportions between groups (Group 2 proportion - Group 1 proportion)
indicates the treatment group has a better outcome. In this table, the
proportion of subjects in Group 1 with serious outcomes or death is set

to 3%, 6.5%, and 12%, and the difference in proportions between the two
groups is set to -2.8 percentage points, -1.4 percentage points, and 0.

e E E EE T

ciTableProp(n1 = 935, pl.hat = c(0.03, 0.065, 0.12), n2 = 935,
p2.hat.minus.pl.hat = c(-0.028, -0.014, @), digits = 3)
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# Diff=-0.028 Diff=-0.014 Diff=0
#P1.hat=0.030 [-0.040, -0.015] [-0.029, ©.001] [-0.015, 0.015]
#P1.hat=0.065 [-0.049, -0.007] [-0.036, ©.008] [-0.022, 0.022]
#P1.hat=0.120 [-0.057, ©.001] [-0.044, ©.016] [-0.029, 0.029]

# Show how the returned data frame has to be modified for cases of small
# sample sizes where not all user-supplied differenes are possible.

ciTableProp(n1 = 5, n2 = 5, pl.hat = c(0.3, 0.6, 0.12), p2.hat = c(0.2, 0.1, 9))

# Diff CI Diff CI Diff CI

#P1.hat=0.4 0.2 [-0.61, 1.00] 0.0 [-0.61, 0.61] 0 [-0.61, 0.61]

#P1.hat=0.6 0.2 [-0.55, ©.95] 0.2 [-0.55, 0.95] 0 [-0.61, 0.61]

#P1.hat=0.2 0.2 [-0.55, 0.95] 0.2 [-0.55, 0.95] 0 [-0.50, 0.50]

#==========

# Suppose we are planning a study to compare the proportion of nondetects at

# a background and downgradient well, and we can use ciTableProp to look how

# the confidence interval for the difference between the two proportions using

# say 36 quarterly samples at each well varies with the observed estimated

# proportions. Here we'll let the argument "p1.hat"” denote the proportion of

# nondetects observed at the downgradient well and set this equal to

# 20%, 40% and 60%. The argument "p2.hat.minus.p1.hat” represents the proportion
# of nondetects at the background well minus the proportion of nondetects at the
# downgradient well.

ciTableProp(nl = 36, pl.hat = c(0.2, 0.4, 0.6), n2 = 36,
p2.hat.minus.pl.hat = c(0.3, 0.15, @))

# Diff=0.31 Diff=0.14 Diff=0

#P1.hat=0.19 [ 0.07, 0.54] [-0.09, 0.37] [-0.18, 0.18]

#P1.hat=0.39 [ .06, 0.55] [-0.12, 0.39] [-0.23, 0.23]

#P1.hat=0.61 [ 0.09, 0.52] [-0.70, ©.38] [-0.23, 0.23]

# We see that even if the observed difference in the proportion of nondetects
# is about 15 percentage points, all of the confidence intervals for the

# difference between the proportions of nondetects at the two wells contain 0,
# so if a difference of 15 percentage points is important to substantiate, we
# may need to increase our sample sizes.

cv Sample Coefficient of Variation.

Description

Compute the sample coefficient of variation.

Usage

cv(x, method = "moments”, sd.method = "sqgrt.unbiased”,
1.moment.method = "unbiased”, plot.pos.cons = c(a = 0.35, b = 0),
na.rm = FALSE)
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Arguments
X numeric vector of observations.
method character string specifying what method to use to compute the sample coeffi-
cient of variation. The possible values are "moments” (product moment ratio
estimator; the default), or "1.moments"” (L-moment ratio estimator).
sd.method character string specifying what method to use to compute the sample standard

deviation when method="moments". The possible values are "sqrt.ubiased”
(the square root of the unbiased estimate of variance; the default), or "moments”
(the method of moments estimator).
1.moment.method

character string specifying what method to use to compute the L-moments when
method="1.moments". The possible values are "ubiased” (method based on
the U-statistic; the default), or "plotting.position” (method based on the
plotting position formula).

plot.pos.cons numeric vector of length 2 specifying the constants used in the formula for the
plotting positions when method="1.moments" and 1.moment .method="plotting.position".
The default value is plot.pos.cons=c(a=0.35, b=0). If this vector has a
names attribute with the value c("a"”,"b") or c("b","a"), then the elements
will be matched by name in the formula for computing the plotting positions.
Otherwise, the first element is mapped to the name "a" and the second element
to the name "b".

na.rm logical scalar indicating whether to remove missing values from x. If na. rm=FALSE
(the default) and x contains missing values, then a missing value (NA) is returned.
If na. rm=TRUE, missing values are removed from x prior to computing the coef-
ficient of variation.

Details

Let z denote a random sample of n observations from some distribution with mean p and standard
deviation o.

Product Moment Coefficient of Variation (method="moments")
The coefficient of variation (sometimes denoted CV) of a distribution is defined as the ratio of the
standard deviation to the mean. That is:

The coefficient of variation measures how spread out the distribution is relative to the size of the
mean. It is usually used to characterize positive, right-skewed distributions such as the lognormal
distribution.

When sd.method="sqrt.unbiased"”, the coefficient of variation is estimated using the sample
mean and the square root of the unbaised estimator of variance:
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Note that the estimator of standard deviation in equation (4) is not unbiased.

When sd.method="moments", the coefficient of variation is estimated using the sample mean and
the square root of the method of moments estimator of variance:

- S

CV:?m (5)
=Y @ -7 (©)

L-Moment Coefficient of Variation (method="1.moments")
Hosking (1990) defines an L-moment analog of the coefficient of variation (denoted the L-CV) as:

l
r==2 (7
l

that is, the second L-moment divided by the first L-moment. He shows that for a positive-valued
random variable, the L-CV lies in the interval (0, 1).

When 1.moment.method="unbiased", the L-CV is estimated by:

p=2 (g
by

that is, the unbiased estimator of the second L-moment divided by the unbiased estimator of the
first L-moment.

When 1.moment.method="plotting.position”, the L-CV is estimated by:

that is, the plotting-position estimator of the second L-moment divided by the plotting-position
estimator of the first L-moment.

See the help file for 1Moment for more information on estimating L-moments.

Value

A numeric scalar — the sample coefficient of variation.

Note

Traditionally, the coefficient of variation has been estimated using product moment estimators.
Hosking (1990) introduced the idea of L-moments and the L-CV. Vogel and Fennessey (1993) argue
that L-moment ratios should replace product moment ratios because of their superior performance
(they are nearly unbiased and better for discriminating between distributions).

Author(s)

Steven P. Millard (<EnvStats@ProbStatInfo.com>)
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See Also

Summary Statistics, summaryFull, var, sd, skewness, kurtosis.

Examples

# Generate 20 observations from a lognormal distribution with
# parameters mean=10 and cv=1, and estimate the coefficient of variation.
# (Note: the call to set.seed simply allows you to reproduce this example.)

set.seed(250)
dat <- rlnormAlt(20, mean = 10, cv = 1)

cv(dat)
#[1] 0.5077981

cv(dat, sd.method = "moments")
#[1] 0.4949403

cv(dat, method = "1.moments")

#[1] 0.2804148

# Clean up
rm(dat)

detectionLimitCalibrate
Determine Detection Limit

Description

Determine the detection limit based on using a calibration line (or curve) and inverse regression.

Usage

detectionLimitCalibrate(object, coverage = ©0.99, simultaneous = TRUE)
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Arguments
object an object of class "calibrate” thatis the result of calling the function calibrate.
coverage optional numeric scalar between 0 and 1 indicating the confidence level associ-

ated with the prediction intervals used in determining the detection limit. The
default value is coverage=0.99.

simultaneous  optional logical scalar indicating whether to base the prediction intervals on
simultaneous or non-simultaneous prediction limits. The default value is
simultaneous=TRUE.

Details

The idea of a decision limit and detection limit is directly related to calibration and can be framed
in terms of a hypothesis test, as shown in the table below. The null hypothesis is that the chemical
is not present in the physical sample, i.e., Hy : C' = 0, where C denotes the concentration.

Your Decision Hy True (C =0) Hy False (C > 0)
Reject Hy Type I Error

(Declare Chemical Present)  (Probability = o)

Do Not Reject H Type II Error
(Declare Chemical Absent) (Probability = ()

Ideally, you would like to minimize both the Type I and Type II error rates. Just as we use critical
values to compare against the test statistic for a hypothesis test, we need to use a critical signal level
Sp called the decision limit to decide whet