
FAiR Vignette

Ben Goodrich

August 27, 2013

This vignette is intended to be a quick reference that defines terms and illustrates how to use the pop-up menus.
Large parts will not make a great deal of sense outside the introduction to SEFA and lexical optimization in
Goodrich (2008a) and Goodrich (2008b).

Contents

1 Notation 3

2 Discrepancy functions in FAiR 4

2.1 Estimating Gamma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Using make_manifest() 5

4 Esoteric definitions 7

4.1 The factor contribution matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.2 Generalized variance (GV) and effective variance (EV) . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Important theorems 8

5.1 Howe (1955) and Koopmans and Reiersøl (1950) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5.2 Reiersøl (1950) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

6 SEFA or CFA via Factanal() 9

6.1 Number of Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6.2 Main menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6.2.1 Fix specific coefficients to particular values (second and eigth checkboxes) . . . . . . . . . . 11

6.2.2 Constrain coefficients to be equal to each other (fourth checkbox) . . . . . . . . . . . . . . . 13

6.2.3 Change bounds on coefficients (third checkbox) . . . . . . . . . . . . . . . . . . . . . . . . . 13

6.2.4 Important Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6.2.5 Nondefault mapping rule and changing the requisite number of zeros (11th and 12th checkboxes) 15

6.2.6 Change bounds on correlations among primary factors (first checkbox) . . . . . . . . . . . . 17

6.2.7 Impose functional inequality restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1



7 Exploratory Factor Analysis via Factnal() and Rotate() 26

7.1 Factor Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7.2 Factor Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7.2.1 Functional inequality restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7.2.2 The ultimate analytic criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

8 References 31

2



1 Notation

Some notation is provided so that the reader can refer back to it. For simplicity, I usually do not distinguish the notation
for a population parameter from the notation for an estimate of that population parameter here. In particular, note that
all models currently in FAiR utilize an “embedded correlation” parameterization.

• n is the number of outcome variables, which are indexed by j

• Σ is the n× n covariance matrix among outcomes in the population

• S is the n× n covariance matrix among outcomes in the sample

• s = vecs (S) stacks the elements below and including the diagonal of S into a vector of length n∗ = 0.5n (n+ 1)

• Γ = acov (s) is the asymptotic covariance of s

• r is the number of factors, which are indexed by p

• β is the n× r primary pattern matrix with one column for each factor

• Φ is the r × r correlation matrix among primary factors

• Λ is used to indicate the primary pattern matrix only if Φ = Ir

• R∗ = βΦβ′ is the reduced correlation matrix with communalities along the diagonal, denoted by h2j = R∗jj

• Θ2 is the n× n diagonal (for now) covariance matrix among unique factors such that Θ2
jj = 1− h2j

• R = R∗ + Θ2 = βΦβ′ + Θ2 is the n× n reproduced correlation matrix with ones along the diagonal

• Ω is the n× n diagonal matrix of standard deviations of the manifest variables to be estimated generally

• C = ΩRΩ = Ω
(
βΦβ′ + Θ2

)
Ω is the n× n reproduced covariance matrix and also the expectation of S

• c = vecs (C) stacks the elements below and including the diagonal of C into a vector of length n∗

• Π = βΦ is the n× r primary structure matrix of correlations between outcome variables and factors

• a = β ×Π is the n× r factor contribution matrix, where × indicates element-by-element multiplication

• D =
[
Diag

(
Φ−1

)]− 1
2 is the r × r correlation matrix between primary and reference factors

• Ψ = DΦ−1D is the r × r correlation matrix among reference factors

• Υ = βD is the n× r reference structure matrix

• Φ = β̈Φ̈β̈
′
+ Θ̈

2
is the r̈ × r̈ primary factor correlation matrix as a function of second-order parameters

In general, the¨ notation indicates that the parameter pertains to level 2 of the model (if a two-level model is specified).
The R code in FAiR uses the same notational conventions at level 1, but uses different symbols at level 2. The primary
pattern coefficient at level two is called Delta and the correlation matrix among factors at level two is called Xi.
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2 Discrepancy functions in FAiR

This section defines the discrepancy functions that can be specified in the call to make_restrictions. If you
prefer to read good documentation, see the first section of this part of the LISREL documentation. FAiR is attempting
to do the same calculations (with some differences in notation), although FAiR does not do unweighted least squares
or generalized least squares or multisample models (yet).

The main discrepancy functions used in FAiR are1

FML = ln |C| − ln |S|+ tr
(
SC−1

)
− n,

FADF = (s− c)
′
Γ−1 (s− c) ,

The first, FML, is the maximum likelihood discrepancy function that is familiar in the literature and is used exclusively
by the previously-existing R functions for factor analysis factanal and by sem. One of the sources of added value
in FAiR is that users are not limited to FML which presumes that the data are multivariate normal. Another reason to
prefer FML is that it is a scale invariant function in the case of EFA and in the case of SEFA and CFA if the only exact
restrictions are exclusion restrictions. However, as was stated in the Notation section, FAiR utilizes an “embedded
correlation” parameterization, i.e. C = Ω

(
βΦβ′ + Θ2

)
Ω, which implies that β and Θ2 will take the same values

regardless of the scale on which the outcome variables are measured.

The second, FADF , is the “asymptotically distribution free” discrepancy function and is also relatively well-known
in the literature (see Browne 1982 and Browne 1984), although not previously available in R. There are a variety of
ways to calculate Γ, depending on the assumptions one wants to make about the data. Several of which are discussed
in Bentler and Durgeon (1996) and are implemented in FAiR. However, FADF requires an estimate of Γ, which is the
subject of the next subsection.

2.1 Estimating Gamma

The process by which Γ is estimated is somewhat convoluted in the source code because Γ is potentially estimated in
make_manifest and then reestimated in make_restrictions when the discrepancy function is chosen. If the
raw data are available, Γ is (preliminarily) estimated by make_manifest, because it is useful in calculating a robust
estimate of the variance-covariance matrix of the parameters, even if FML will have been chosen as the discrepancy
function.

In general, assuming the eighth-order moments of the data are finite

Γij,kl = σijkl − σijσkl,

where σijkl is a fourth-order central moment. By default, Γ is calculated with a (biased) maximum likelihood estima-
tor. Let yt be a row vector of n observed manifest variables for the tth unit of observation that are deviated from the
sample means of the n variables. Let zt = vecs (y′tyt) be a vector of length n∗. Then, s is a vector of column means
of Z, where Z is a matrix that stacks these N vectors, and Γ̂ = cov (Z), where N is used as the divisor instead of
N − 1. This formula is equivalent to that in Bentler and Dudgeon (1996), except N − 1 is used in calculating s there.

Since Γ = acov (s), another way to estimate Γ is to simply to bootstrap the estimator of s. In particular, bootstrapping
should probably be undertaken if s is estimated in some exotic fashion. If the raw data are available, the bootstrap
argument to make_manifest can be specified as some large positive number of bootstraps. Otherwise, the previous
estimator of Γ will be executed, if possible. One instance where this estimator is impossible is when some of the
outcome variables are ordinal and polychoric and / or polyserial correlations are calculated. In that case, the estimate

1There is another objective function based on the one in Yates (1987) that is not formally a discrepancy function. It probably should not be used
without further refinement.
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of Γ is diagonal, with the diagonal consisting of the squared standard errors of each element of s. This discrepancy
function is sometimes known is “diagonally-weighted least squares” (DWLS).

However, if the raw data are available and all variables are continuous, this estimate of Γ can be superceded in
the call to make_restrictions when the discrepancy function is "ELLIPTICAL", "HK", or "SHK". In the
heterogenous kurtosis (HK) case

σij,kl = (aijakl)σijσkl + (aikajl)σikσjl + (ailajk)σilσjk,

aij =
κi + κj

2
,

κi =

√√√√ ∑N
t=1 (yti)

4

3
∑N
t=1 (yti)

2
.

Note that κi is a kurtosis estimate. If κi = κ∀i, then the elliptical case results, and if κi = 1 ∀i, the multivariate
normal case results. FAiR includes a “shrunk heterogenous kurtosis” (SHK) estimator that shrinks each κi towards
the median kurtosis estimate. However, to explain the shrinking process, you have to read the next section.

3 Using make_manifest()

To estimate a factor analysis model, it is first necessary to obtain an estimate of Σ from the data, denoted S. The
make_manifest() generic function does so and has three primary, and somewhat redundant arguments, x, data,
and covmat. The following table may clear things up somewhat:

x data covmat comment
missing missing list must have cov element
missing missing hetcor probably better to pass the data instead
missing missing CovMcd probably better to pass the data instead
missing missing matrix should specify n.obs also

matrix, data.frame missing missing all variables in x will be used
missing matrix, data.frame missing all variables in data will be used
formula data.frame missing formula should not contain a response

The methods above the double line are used when x and data are unspecified but covmat is specified. These
methods pertain to the situation in which a covariance “matrix” (in some form) is passed to make_manifest() via
covmat but the raw data are not available. The covmat argument could be a covariance matrix (or a correlation
matrix, in which case it would be preferable to also specify the sds argument, which is a vector of manifest standard
deviations) or could be an object that contains a covariance matrix, such as a list (with an element named cov),
an object of S3 class "hetcor" (produced by the suggested polycor package) or an object of S4 class CovMcd
(produced by the rrcov package). However, it is usually unnecessary to make use of the latter two options because
make_manifest() can produce such objects if the raw data are passed to it (see below).

If covmat is a list, it may also contain an element named n.obs, which is the number of observations, and an
element named W, which is an estimate for Γ−1 to be used with FADF . Again, this mechanism should rarely need to
be used because FAiR can estimate Γ in several ways, provided that the raw data are available.

The methods below the double line in the above table are used when the raw data are available and have a few additional
arguments that govern how S is to be calculated, whether bootstrapping should take place, etc. The most common
estimator is the unbiased one, which is simply equal to the inner products of pairs of centered variables, divided by
N − 1. The maximum likelihood estimator is similar but divides by N instead. Either is appropriate under ideal
conditions, but such conditions are rare. Hence, make_manifest() has several alternative estimators of Σ.
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Two kinds of “shrinkage” estimators of Σ are implemented in make_manifest(). There are two reasons why one
might be interested in a shrinkage estimator. First, the unbiased estimator produces biased estimates of the eigenstruc-
ture, particularly when N

n is small. Second, if we assume that the number of “common” factors in the data are greater
than r but that the excess minor factors tend to exacerbate observed correlations, then it may be reasonable to fit a
covariance matrix that has been “shrunk” a bit toward an identity matrix.

The first shrinkage estimator makes use of the cov.shrink function in the suggested corpcor package; see also
Schääfer and Strimmer (2005) and Opgen-Rhein and Strimmer (2007). Let

λ̂∗1 = min

(
1,

∑
i 6=j v̂ar (rij)∑

i 6=j r
2
ij

)
,

λ̂∗2 = min

(
1,

∑n
i=1 v̂ar (vi)∑n

i=l (vi − vm)
2

)
,

where rij is an unbiased sample correlation estimate and vi is an unbiased sample variance estimate and vm is the
median of these variance estimates. Then,

r∗ij =
(

1− λ̂∗1
)
rij ,

v∗i = λ̂∗2vm +
(

1− λ̂∗2
)
vi,

s∗ij =
r∗ij√
v∗i v
∗
j

.

This estimator of Σ can be obtained by specifying how = "lambda" in the call to make_manifest when the
raw data are available.

The same idea can be applied to obtain a “shrunk heterogenous kurtosis” (SHK) estimator of Γ, which may have a
smaller root mean-squared error than HK estimator. Let

κi =

√√√√ ∑N
t=1 (yti)

4

3
∑N
t=1 (yti)

2

λ̂∗2 = min

(
1,

∑n
k=1 v̂ar (κi)∑n

k=l (κi − κm)
2

)
,

κ∗i = λ̂∗2κm +
(

1− λ̂∗2
)
κi,

and a∗ij =
κ∗
i +κ

∗
j

2 is used — rather than aij — to estimate of Γ in the last formula in the previous section. If λ̂∗2 = 1,
then something quite similar to the elliptical estimator would result, so FAiR simply reverts to the elliptical estimator
in that case.

The second “shrinkage” estimator is simpler and can be applied in a post-hoc fashion to (almost) any S by specifying
shrink = TRUE in the call to make_manifest. The second shrinkage estimator preserves the eigenvectors of S
but compresses the eigenvectors, which is proven to be a minimax estimator under the conditions specified in theorem
3.1 of Dey and Srinivasan (1985). Let λ (S) be the eigenvalues of the preliminary S, arranged in descending order.
The jth eigenvalue of the final S is set equal to Nλj(S)

N+n+1−2j and then the final S is reassembled by multiplying the
diagonal matrix of new eigenvalues from the left and right by the old eigenvector matrices. This shrinkage estimator
can often be used even when the raw dat are not available, and the preliminary S was passed to covmat.

The “minimum covariance determinant” (MCD) estimator is probably the best choice when all variables are continu-
ous, particularly if there may be multivariate outliers in the data. This estimator can be obtained by specifying how
= "MCD" in the call to make_manifest. In short, the MCD estimator picks a subsample of observations such
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that the determinant of the preliminary S is minimal. Then, a variety of correction factors are applied to dramatically
improve the efficiency of the estimator without undermining its high break-down point. The details are well explained
in Rousseeuw and van Driessen (1999), in Pison, Van Aelst, and Willems (2002), and in the documentation of the
CovMcd function in the rrcov package.

Another alternative when there are outliers is to fit a matrix of Spearman correlations, which can be obtained by
specifying how = "ranks" in the call to make_manifest. This ranks-based estimator has another important
role; namely it is used when bootstraping a polychoric correlation matrix. In that case, the polychoric correlations are
obtained using the hetcor function in the suggested polycor package. Then, a large number of Spearman correlation
matrices are obtained via bootstrapping, and finally the bias in the bootstrap distribution is corrected by rescaling
the distribution so that its means are equal to the polychoric point estimates. This short-cut procedure is reasonably
effective and considerably faster than bootstrapping a polychoric correlation matrix when there are a large number of
observations, a large number of variables,and a large number of categories for each variable.

If all the variables are continuous but there are missing data, then the mlest function in the sugested mvnmle pack-
age is used to estimate Σ assuming multivariate normal data and Missing At Random (MAR) missingness. See its
documentation for more details.

For all these estimators of Σ — except the unbiased and maximum likelihood estimators — we do not know the
asymptotic covariance of s and such an estimate is necessary to use the ADF discrepancy function. Thus, it is best
to bootstrap the estimate of Γ in those cases, which can be done by setting bootstrap equal to the number of
desired bootstraps in the call to make_manifest. One can also specify wt, which governs the probability that an
observation will be selected in the nonparametric bootstrap sampling. The wt argument can also be used with the
maximum likelihood or unbiased estimators of Σ when the sample has probability weights.

4 Esoteric definitions

Aside from the discrepancy functions and test statistics, FAiR differs from the implementation described in other
software manuals, textbooks, etc. Thus, it is important to highlight three concepts that are perhaps not well-known
among factor analysts.

4.1 The factor contribution matrix

As stated in the Notation section, the factor contribution matrix is defined (see White 1966 and Yates 1987) as the
element-by-element product of a pattern and a structure matrix, i.e. a = β ×Π, where Π = βΦ, and similarly for
level two. Hence if βjp = 0, then ajp = 0, but Πjp = 0 also implies ajp = 0.

Each row of a sums to the communality of the corresponding outcome variable. As White (1966) notes, each cell of a
“represents the proportion of variance on test j associated with variation on factor p. Specifically, it is the decrement
of [variance in the jth outcome variable] which would occur if the [pth factor were] dropped from the specification
. . . without adjusting the factor loadings on the other factors. (375)”

The factor contribution matrix was originally derived because some thought it would aid in the interpretation of factors.
The interpretation of ajp is straightforward, since it is just the correlation between the jth outcome and the pth factor,
weighted by βjp . Also, the column-wise sums of a provide a measure of the “strength” of the pth factor in the battery;
in fact, by default the factors produced by summary(*) are presented in decreasing order of the column-wise sums of
a. This matrix of factor contributions can be extracted for interpretation using loadings(*, matrix = "FC")
but has additional roles in FAiR.

If r > 1 and Φ 6= I, then any cell of a can be negative, which as Yates (1987) notes, implies that the pth factor is
a negative suppressor variable for the jth outcome and has negative weighted validity (Conger 1974). Conversely,
we could say that outcome j is the “best” indicator (in the sense of having the most weighted validity) of factor p if
ajp = max (ap).
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As discussed below, many restrictions that can be imposed on a factor analysis model are defined with respect to a in
FAiR, rather than with respect to β. Also, following a suggestion emailed to me by Peter Bentler, it is possible to use
a rather than β as the relevant matrix for some analytic transformation criteria for EFA.

4.2 Generalized variance (GV) and effective variance (EV)

The generalized variance of a set of variables is a generalization of the univariate concept of variance and is defined
as the determinant of their covariance (or correlation) matrix. The GV can be interpreted as the hypervolume of the
variables. In FAiR, the relevant matrices are all correlation matrices, and hence the GV is defined here on standardized
variables. For example, |Φ| is the GV of the primary factors.

One limitation of the GV is that it is inappropriate for comparisons between sets of variables that are of different sizes.
Hence, Peña and Rodríguez (2003) derives the “effective variance” of a set of variables as the determinant of their
covariance matrix raised to the power of the reciprocal of their number. For example, |Φ|

1
r is the EV of the primary

factors. Peña and Rodríguez (2003) suggests that the EV can be interpreted as the edge-length of a hypercube whose
volume is the GV of the variables and shows that it is a valid metric for comparing dispersion across differently-sized
sets of variables.

I have never encountered a paper in the factor analysis literature that attempted to interpret a result on the basis of the
GV or EV, although it is in harmony with the geometric interpretation of the factor analysis model. Nevertheless, both
have important roles in FAiR because restrictions can be defined on them, particularly in the case of the EV. Yates
(1987) advocates one such restriction, and several more have been included in FAiR that are loosely derived from
Yates (1987) are discussed below.

5 Important theorems

The two (three really) theorems discussed in this section are relevant to the identification of CFA and SEFA models.

5.1 Howe (1955) and Koopmans and Reiersøl (1950)

One theorem from Howe (1955) is somewhat well-known via various works of Karl Jöreskog. A set of conditions that
is sufficient for rotational uniqueness of β are that

1. Φ is a full-rank correlation matrix

2. β has r − 1 zeros in each column

3.
p

β is of rank r − 1, where
p

β is the submatrix of β that includes all rows where the pth factor is zero

Bollen and Jöreskog (1985) and Millsap (2001) emphasize that these conditions are insufficient for identification of
the parameters. Rotational uniqueness roughly means that there is no transformation matrix that can post-multiply β,
leave the zeros in the same positions, and change the values of the nonzeros. Identification roughly means that one
could uniquely solve for all free model parameters if the population Σ were available.

A similar theorem was proven in Koopmans and Reiersøl (1950), although this paper has been more influential in the
econometrics literature than in the factor analysis literature. I think Koopmans and Reiersøl (1950) should be credited
with Howe’s (1955) result, although it is not clear if Howe (1955) was aware of it. Koopmans and Reiersøl (1950)
shows that if Θ2 is identified and the r − 1 zeros in β are specified in specific cells a priori, then these conditions are
collectively necessary and sufficient for identification of the free parameters in β and Φ.
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In the example from Bollen and Jöreskog (1985), Θ2 is not identified, and thus neither are β and Φ. If r ≤ 2 or r = 3
and n ≥ 7, then a necessary and sufficient condition for the identification of Θ2 is that, after deleting any row of β,
there remain two disjoint submatrices of rank r, which is a well-known result from Anderson and Rubin (1956). If
r > 3, this condition is merely sufficient, but it is a rather weak sufficient condition.

The upshot of Koopmans and Reiersøl’s (1950) result is that it gives minimal conditions under which a CFA model is
identified. Warnings will be produced if a CFA model appears to be inconsistent with these conditions. Note, however,

that if r > 2, it is not possible to verify the third condition with certainty. FAiR will check that the rank of each
p

β

could be r−1 but cannot preclude the possibility that two or more columns of
p

β besides column p are linear functions
of each other in the population.

5.2 Reiersøl (1950)

Koopmans and Reiersøl (1950) also states another important theorem that is more relevant for SEFA, although the
proofs are given in Reiersøl (1950).

1. Φ is a full-rank correlation matrix

2. β has r zeros somewhere in each column (without comitting to where they are located)

3.
p

β is of rank r − 1 ∀p, where
p

β is the submatrix of β that includes all rows where the pth factor is zero

4. If any row of β that is not in
p

β is appended to
p

β, the rank of the resulting matrix is r

5.
p

β−t is of rank r − 1 ∀p, t, where
p

β−t is the submatrix of
p

β that excludes the tth row

6. No other r × r submatrix of β is of rank r − 1 besides the
1

β . . .
r

β matrices

7. Θ2 is identified

Reiersøl (1950) contains a weaker theorem, but it is characterized as “less useful” and is not considered here (yet). It is

possible for a SEFA model to enforce conditions 1 and 2 by construction. FAiR will check that the ranks of
p

β and
p

β−t
could be r − 1 but again cannot preclude the possibility that the rank is actually smaller in the population. Similarly,
it is impossible to verify conditions 4 and 6 without population knowledge, but we usually are not too concerned with
such corner cases.

The upshot of Reiersøl’s (1950) theorem is that it provides minimal (albeit extensive) conditions for identification in
SEFA models where the number of zeros in the pth column of β is specified but not their locations. Hence, the proto-
type value for the rankcheck slot of an object that inherits from class paramter.coef.SEFA is "reiersol"
for SEFA models and warnings will be produced if the model appears to be unidentified. It is possible that identifi-
cation could plausibly be asserted under various weaker conditions, particularly if inequality restrictions are used to
preclude some otherwise duplicative solutions. However, departures from Reiersøl’s (1950) theorem would have to be
considered on a case-by-case basis.

6 SEFA or CFA via Factanal()

In this example, I will use a covariance matrix containing 24 mental tests used by Harman (1976). Execute ?Harman74.cor
to see more information about it, but it is just a fairly standard and well-known mental test example.
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WARNING: The editable menus are kept small in this vignette; it may be necessary to resize the editor window
or scroll to access all the cells of the matrix you intend to edit. Also, note that changes to a cell do not “register”
until you press enter, tab, arrow, etc. If you have an “unregistered” change and click OK, that change will be
ignored. Also, if you click Cancel, the function aborts rather than reverts to the previous menu.

To start this sequence, I typed the commands
library(FAiR)
man <- make_manifest(covmat = Harman74.cor)
res <- make_restrictions(manifest = man, model = "SEFA")

6.1 Number of Factors

The first questions that will be asked pertain to the number of factors and can be avoided if factors were specified
explicitly, e.g. make_restrictions(manifest = man, factors = c(5,2), model = "SEFA").

Some people may be unfamiliar with the idea of a two-level model; it is briefly defined in the Notation section and
also in the help page for make_restrictions. If r ≥ 3, the user will be asked whether to estimate a simultaneous
second-order model, which decomposes the correlation matrix among first-order primary factors (Φ) as a function of
fewer second-order factors. For example, some people define “general intelligence” to be the second-order factor that
drives various first-order (primary) mental abilities.

If a second-order model is estimated, and if r ≥ 5, the user will be asked how many second-order factors (r̈) to extract.
For the sake of completeness, I will assume that the user answered “Yes” to the question of whether a simultaneous
second-order model should be estimated. Then, the dialog asks the user to specify the number of second-order factors
to extract. If r = 3 or r = 4, then r̈ can only be one. If r = 5, then r̈ can be one or two. If r ≥ 7, then r̈ can be three
in a SEFA model. Rarely would one need to estimate a model with larger numbers for r and r̈. I will assume that the
user has chosen r̈ = 2.

6.2 Main menu

The following menu is is critical in the sense that the user will only be subsequently asked about options that are
checked. This menu would have fewer options if there were no simultaneous second-order model, or if there were
only one second-order factor, or if the model were a CFA. It is quite possible to check multiple options. I will discuss
each of these options eventually; however, the order in which subsequent options are specified is not necessarily the
same order that is presented in this menu.
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6.2.1 Fix specific coefficients to particular values (second and eigth checkboxes)

The figures below illustrate dialogs that ask about pegging specific coefficients to particular values a priori and hence
not estimating them. The dialogs for both level two (r × r̈) and level one (n× r) are shown simultaneously here
but are not actually simultaneously specified when using FAiR. Although it is not visably apparent unless the editor
window is maximized, the dimensions of matrix to be edited are the same as the dimensions of the matrix to eventually
be estimated, and there is an exact correspondence between the cells of the editor window and the cells of β (or β̈
as the case may be). This correspondence holds in almost all of the editor windows to follow, but this matrix-based
interface may not be as intuitive to users who are accustomed to specifying SEMs with path diagrams. Although
this example is a SEFA, these dialogs are more characteristic of a CFA model, which requires enough a priori zero
coefficients to satisfy the theorems discussed in section 5.1. If this were a CFA model, these editing windows would
pop up regardless of whether the user requested so.
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There are several important things to note. First, any unrestricted coefficients should be left as NA. In many SEM
programs, a coefficient is restricted to be zero unless the user specifies otherwise. This is not the case in FAiR; if and
only if you specify that a coefficient is zero will it be zero a priori. In a SEFA model, it is possible to leave all cells as
NA, but doing so would generate an error message under a CFA model.

Second, in many SEM programs it is possible or even customary to specify that some coefficient is 1.0 to normalize
the scale of a factor. In FAiR, the user generally should not restrict one coefficient per factor to have a coefficient of
1.0 because the factors are already normalized to have unit variances along the diagonal of Φ. Hence, to also constrain
a coefficient to be 1.0 would be a substantive restriction rather than merely a normalization.

Third, if one were to restrict a coefficient to be 1.0, then one would almost always restrict the other coefficients in
that row to be 0.0, in which case the corresponding outcome variable will be treated as “exogenous” and its standard
deviation will be estimated from the data rather than by the model. Hence, this mechanism (which is apparently all too
familiar to long-time users of LISREL) can be used for factor analysis where some factors are identical to observed
manifest variables. However, this specification is not generally recommended in FAiR. It is better to exploit a feature
of FAiR (discussed below) to designate some outcome variable as the “best” (yet imperfect) indicator of a factor.

Fourth, if one wanted to impose the restriction that some coefficient is an exact function of other coefficients (but
not the simpler restriction that two or more coefficients are equal), then it is necessary to designate the “fixed”
coefficient in this dialog and pass a function that enforces these restrictions to the nl_1 or nl_2 arguments of
make_restrictions. For example, to impose the restriction that the first coefficient on the “Visual Perception”
test is the ratio of the second and third coefficients, one could proceed like this
foo <- function(x) {
x[1,1] <- x[1,2] / x[1,3]
return(x)
}
res <- make_restrictions(manifest = man, model = "SEFA", nl_1 = foo)
But it is also necessary to designate β11 as “fixed”, even though we do not know what number it is fixed to until β12
and β13 are specified. In such situations, “fix” coefficients that are exact functions of other coefficients to Inf (note
the capitalization of Inf).

Fifth, if merely imposing the restriction that two or more coefficients are equal to each other, do not pass such a
function to nl_1 or nl_2 and do not bother designating affected coefficients as “fixed” in this dialog. Instead, use
the dedicated mechanism for imposing equality restrictions, which is discussed in the next subsection.

All that said, the most common use of this dialog (particularly for a CFA) is to restrict specific coefficients to be 0.0.
Simply type 0.0 in the appropriate cell(s), press Enter to make sure the change “registers” in the editor, and press OK
to exit this dialog. If restricting a specific coefficient to some number other than 0.0, keep in mind that the embedded
correlation parameterization in FAiR means that coefficients are calibrated for standardized variables.
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6.2.2 Constrain coefficients to be equal to each other (fourth checkbox)

This figure illustrates the dialog to constrain one or more coefficients (at level one) to be equal to each other; the dialog
for level two is similar. Again, it is not visibly apparent unless the editor window is maximized but the dimensions of
the matrix to be edited are n× r just like β.

The matrix is initially filled with FALSE, which is a keyword in R. To impose an equality restriction among two
or more coefficients, change at least two of the cells to TRUE, which is also a keyword in R. The capitalization is
essential. For example, to impose the restriction that β11 = β21, I would change the first two cells in the first column
to TRUE. It is possible to constrain three or more coefficients to all be equal to each other by changing three or more
cells to TRUE. When all cells that are restricted to be equal to each other are designated with TRUE in the appropriate
cell, click OK.

At that point, all the cells will be reset to FALSE, which allows you to impose another set of equality restrictions
(among a disjoint set of coefficients, e.g. β14 = β15). This process can be repeated as many times as is necessary to
represent all the equality coefficients you want to impose on disjoint sets of coefficients. If OK is clicked when all
cells remain FALSE, then whatever dialogue box is next appears.

Finally, again recall that the embedded correlation parameterization in FAiR implies that coefficients should be cal-
ibrated for standardized variables. Hence, constraining two or more cells of β to be equal does not imply that the
corresponding cells of Ωβ will be equal.

6.2.3 Change bounds on coefficients (third checkbox)

These figures ask about bounds on coefficients at level one, i.e. on β. The dialogue for level two would be similar.
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Specifying bounds on coefficients is a three-stage process. First, the user is asked whether to change the lower and /
or upper bounds from their default values, here ±1.5. I only illustrate changing the lower bounds, but the process is
similar if one wanted to additionally or alternatively change the upper bounds.

Second, the user is asked for a “fill value” to use for most of the (lower in this case) bounds on coefficients. After
pressing OK, this value is filled into an editable matrix that is of the same dimension as β, although that is not obvious
when the editor window is not maximized. Third, the user can edit any cell of this n×r matrix to modify the bound for
any coefficient. Here I leave all lower bounds at my “fill value” of−0.1. Thus, this model requires a “almost-positive”
manifold, which is a substantive constraint that can be wrong and can be tested.

Finally, again recall that the embedded correlation parameterization in FAiR implies that coefficients (and hence
their bounds) should be calibrated for standardized variables. In particular, rarely would it be necessary to make the
bounds wider than ±1.5 because more extreme standardized coefficients are incredibly rare (provided that Φ is well-
conditioned). Moreover, if there were only one factor, it is impossible to make the bounds on its coefficients wider
than ±1.0. If one were to impose the inequality restriction that there are no negative suppresor variables (see below),
then it is somewhat advantageous to also narrow the upper bound on the coefficients to 1.0.
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6.2.4 Important Note

The running example is a two-level model. In two-level models, one cannot currently impose bounds on the off-
diagonals of Φ using the pop-up menus. However, if this were a one-level model, the next dialog box would ask about
bounds on the off-diagonals of Φ if such an option were selected from the main menu. That dialog would be similar
to the one illustrated in subsubsection 6.2.6.

6.2.5 Nondefault mapping rule and changing the requisite number of zeros (11th and 12th checkboxes)

In the SEFA model presumed here, the question shown in the figure below is very important and pertains to the
mapping rule used to squash certain cells of β to zero during the optimization. The dialog for level two is similar
but generally has fewer options. If a CFA model were being estimated, this question would not appear because the
theorems in section 5.1 must be satisfied by a priori restrictions. Specifying a non-default mapping rule is more
common for a rather “exploratory” SEFA; for a more “confirmatory” SEFA, one would typically accept the default
mapping rule and suppliment it with other restrictions.

Let bp be the number of zeros required for the pth column of β. Let β be a matrix with the same dimensions as β.
Suppose the free cells of β have been filled in by a proposal for the restricted optimum of the discrepancy function,
but it has fewer than bp zeros in the pth column (and possibly no zeros at all). The “mapping rule” maps from β to
β by changing some “small” cells of β to zero and then the discrepancy function (and each constraint function) is
evaluated at β, not β . By “small”, I always mean in absolute value; however the rules are usually defined on the
reference structure matrix

(
Υ = βD

)
or the factor contribution matrix

(
a = β ×

(
βΦ
))

, rather than β itself.

• “No, I just want plain zeros”. This default mapping rule simply squashes the bp smallest elements in βp to zero.

• “At least one zero per factor on a high communality variable.” This mapping rule is similar but is slightly
more complicated. Let aj = 1

r

∑r
p=1 ajp = h2

r be the arithmetic mean of the factor contributions for the jth

outcome variable and let ãj =
(∏r

j=1 ajp
) 1

r

be the geometric mean of the factor contributions for the jth

outcome, which is defined only for outcomes with nonnegative factor contributions. Hence, aj

ãj
will tend to be

more positive when the communality of the jth outcome is large but at least one factor contributes little to the
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communality. Define the set of “potential zeros” on factor p as those rows of Υ where Υjp < Υjq ∀q 6= p.
For each p, this mapping rule squashes βjp to zero for the outcome among the set of “potential zeros” with the

largest (well-defined) aj

ãj
. The default mapping rule is then applied to squash bp − 1 more cells to zero for the

pth factor.

• “Encourage cohyperplanrity (revisionist Yates 1987)”. This very promising mapping rule squashes r − 1 cells
in the pth column of β using the following piecewise function ∀q 6= p:

βjp =

{
0 ifajq − ajp = max

{
aq − ap

}
βjp otherwise,

which tends to place the zeros for the pth column of β in the rows where the factor contribution of the qth factor
is large. The default mapping rule is then applied to squash bp − (r − 1) more cells to zero for the pth factor.
Although Yates (1987) did not anticipate SEFA, it repeatedly recommends procedures that tend to encourage
outcomes within hyperplanes in the common factor space to be widely dispersed throughout their hyperplane(s).
This mapping rule attempts to do so.

• “r outcomes of complexity r − 1 for each factor (weaker Thurstone)”. This mapping rule is similar to the
default mapping rule in that r small elements in the pth column of β are squashed to zero, except that there
is an additional stipulation that no outcome is of complexity less than r − 1 where the complexity of the jth
outcome is its number of non-zero coefficients. However, any “non-zero” coefficient can be arbitrarily close to
zero. Thus, each column of β will have r exact zeros. If necessary, the default mapping rule will then be applied
to squash bp − r more cells to zero for the pth factor.

• “2r outcomes each of complexity r − 2.” This mapping starts by finding the smallest cell in the first column
of Υ and squashes it to zero. Say this cell is Υj1. Then, the smallest nonzero cell in the jth row of Υ is also
squashed to zero so that the jth outcome is of complexity r − 2. This procedure is repeated for all columns to
yield 2r outcomes each of complexity r − 2, such that each factor has r − 1 zeros. Finally, the default mapping
rule is applied to squash bp − (r − 1) more cells to zero for the pth factor.

• “Unit complexity basis (revisionist Butler 1969)”. Butler (1969) defines “the r most distinguished outcomes”
and proposes to run the r primary axes through them in EFA to create a unit complexity basis for β. The
following SEFA mapping rule is similar and is defined by a piecewise function ∀q 6= p:

βjp =

{
0 if abs

(
βjq

)
= max

(
abs
(
βq

))
βjp otherwise

The default mapping rule is then applied to squash bp − (r − 1) more cells to zero for the pth factor.

• “Set the maximum complexity for each outcome.” This mapping rule is similar to the default mapping rule,
except that it is applied to the rows of Υ rather than its columns. In general, ∀j, the user can choose bj ∈
{0, . . . , r − 1} for the minimum number of zero coefficients in βj , and the complexity of the jth outcome is
r − bj . It is possible to choose the same complexity for all rows of β. If the complexity of βj is r − 1∀j, this
restriction characterizes the main tenet of Thurstone’s (1935) definition of simple structure. If the complexity
of βj is 1 ∀j, this restriction implies a perfect cluster configuration. Alternatively, bj can be specified on a
row-by-row basis, as is shown in the dialog below, which will pop up if this maping rule is selected. Finally, the
default mapping rule is applied to ensure that there are at least bp zeros for the pth factor.
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Finally, in the case of SEFA, it is necessary to specify bp ∀p. By default, bp = r ∀p, which is the minimum that is
necessary for identification of the nonzero parameters. However, it is possible to select bp > r and may be possible to
select bp = r− 1 in some cases if identification of the relevant parameters can be accomplished in some other fashion.
The following dialogs illustrate this mechanism, which is initialized when the box for “Change the number of zero
coefficients required for each factor” is checked in the main menu:

6.2.6 Change bounds on correlations among primary factors (first checkbox)

This figure below illustrates a dialog that asks about bounds on the off-diagonals of Φ̈. If r̈ ≤ 1, this question would
not be asked, although if r̈ = 0, a similar dialogue would ask about bounds on the off-diagonals of Φ. If there were
more factors, the editor window would have more rows, totalling 0.5r̈ (r̈ − 1).

The user is given an editor with columns for the lower and upper bounds on these correlations. The bounds cannot
exceed±1 because they pertain to correlations. Here, I edited the admissable interval to [−0.9, 0.9], which is a largely
irrelevant restriction.
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6.2.7 Impose functional inequality restrictions

It is always important to keep in mind that FAiR does something tantamount to restricted optimization and that the
possibilities for restrictions are endless. Hence, perhaps the most important feature of FAiR is the ability to impose
inequality restrictions on functions of multiple parameters. It is even possible to define your own restriction functions
and pass them to the criteria argument of make_restrictions. In this subsection, I will only discuss the functional
inequality restrictions that are pre-programmed in FAiR.

Please refer to section 4 for definitions of the factor contribution matrix, the generalized variance, and the effective
variance. Also, let I {·} be the “indicator function”, which equals 1 if the condition inside the braces is true and equals
0 if the condition is false. In FAiR, an inequality restriction function is a piecewise function that equals −1 if the
restriction is satisfied and equals some number greater than −1 if the the restriction is not satisfied. You do not need
to worry too much about the return values for the case where the restriction is not satisfied.

When the box for “Impose functional inequality restrictions” (at level one) is checked, the following menu appears:
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The menu would be similar at level two but will perhaps have fewer options. These restrictions are defined as follows:

• “Factor contributions must respect row-wise order constraints.” Let G be a n× r matrix that is specified by the
user to indicate the required ranks of the factor contributions within each row with larger factor contributions
receiving smaller ranks. For example, Gj could be

[
4 1 5 3 2

]
to require that the second factor contribu-

tion in the jth row be biggest, the third factor contribution be smallest, etc. However, it is not necessary for the
ranks to be unique. For example, Gj could be

[
5 1 5 5 5

]
to require that the second factor contribution

in the jth row be biggest, while allowing the other ranks to be unrestricted. Such a specification would often
be used in CFA or in a more “confirmatory” SEFA where the user has strong theoretical reason to believe that
the jth outcome largely “measures” the pth factor and thus specifies that Gjp = 1 and that Gjq = r ∀q 6= p.
But keep in mind that, for example, Gj =

[
2 2 5 5 5

]
is also valid and requires that the first two factor

contributions in the jth row be the top two without taking a position on whether the first is larger than the second.
Conversely, Gj =

[
2 2 3 3 5

]
, for example, is invalid because it is impossible for the first four factor

contributions to all be ranked in the top three.
G can be specified interactively in response to the following dialog:2

2This restriction can also be enforced from the command line with make_restrictions(*, critieria =
list("ranks_rows_1st"), methodArgs = list(row_ranks_1st = G))where G matrix is manually defined in the global
environment.
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Let a−→ be a factor contribution matrix that has been converted to ranks within rows. The function that imposes
this constraint is formally defined as

−1

nr

n∑
j=1

r∑
p=1

I
{
ajp−→
≤ Gjp

}
∈ [−1, 0]

and thus equals −1 if and only if a−→ is consistent with G in every cell.

• “Factor contributions must respect column-wise order constraints.” Essentially, this constraint involves the same
concept as the previous constraint, except that a−→ and G are defined on the basis of column-wise ranks. I use the
same notation as before but the matrices have different contents. For example, G′p =

[
3 3 3 n . . . n

]
would require that the first three outcomes have the three largest factor contributions on the pth factor. The
remaining n− 3 outcomes can be ranked in any fashion on the pth factor, provided that none is in the top three.
Again, this mechanism would most often be used in CFA or in a more “confirmatory” SEFA. It is tempting to
specify that Gjp = 1 in order to make the pth factor closely related the to jth outcome, but there is a better
mechanism for doing so, which is discussed next.
G can be specified interactively in response to the following dialog:3

3This restriction can also be enforced from the command line with make_restrictions(*, critieria =
list("ranks_cols_1st"), methodArgs = list(col_ranks_1st = G))where G matrix is manually defined in the global
environment.
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Let a−→ be a factor contribution matrix that has been converted to ranks within columns. The function that
imposes this constraint is formally defined as

−1

nr

n∑
j=1

r∑
p=1

I
{
ajp−→
≤ Gjp

}
∈ [−1, 0]

and thus equals −1 if and only if a−→ is consistent with G in every cell.

• “Designate which outcome variable is the best indicator of each factor.” This criterion just is a special case
of the previous one but is operationalized differently for better computational performance. In essence, one is
merely requiring that Gjp = 1 and Gkp = n ∀k 6= j for any designated p. Hence, it is not necessary to impose
such a restriction for every factor. This restriction would be used when the user believes that the jth outcome
is the pth factor but measured with error. It may be fruitful to combine this restriction with the restriction that
βjq = 0∀q 6= p but doing so is not required. Thus, this restriction is weaker and presumably more realistic than
the restriction that the jth variable is “exogenous” and measured without error, i.e. βjp = I {q = p}.
These indicators can be specified interactively in response to the following dialog:4

4This restriction can also be enforced from the command line with make_restrictions(*, criteria =
list("indicators_1st"), methodArgs = list(indicators_1st = z)), where z is an integer vector with r elements,
each of which contains the row number of the best indicator of the pth factor, which can be NA_integer_ to avoid constraining the pth factor.
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The function that imposes this constraint is formally defined as as the average column-wise rank of the desig-
nated indicators (among factors with designated indicators) less two. This function ranges from−1 to n−2 and
equals −1 if and only if the indicators have the largest factor contribution in their respective columns.

• “Reference factors at level 1 must have more effective variance than does the battery as a whole”. The function
that imposes this constraint is formally defined as5{

−1 if |Ψ|
1
r ≥ |R|

1
n

|R|
1
n − |Ψ|

1
r otherwise

∈ [−1, 1] ,

This criterion loosely implies that the reference factors at level 1 be “less correlated” than is the configuration
of outcomes in common factor space and encourages the primary axes to cut through the edges of the test
configuration. This restriction is extremely weak and could be imposed in a more “exploratory” SEFA.

• “Primary factors at level 1 must have more effective variance than does the battery as a whole”. The function
that imposes this constraint is formally defined as6{

−1 if |Φ|
1
r ≥ |R|

1
n

|R|
1
n − |Φ|

1
r otherwise

∈ [−1, 1] ,

and is similar to the previous criterion above except is more intuitive because the effective variance of the
primary factors is at issue. In general, it seems that imposing this restriction on the primary factors is stronger
than imposing it on the reference factors and tends to push the first-order axes farther out into the edges of the
test configuration. It seems clear that Yates (1987) would have supported this restriction but does not specifically
mention it.

• “Communalities must exceed all the factor contributions that constitute them.” The function that imposes this
constraint is formally defined as7

−1

nr

n∑
j=1

r∑
p=1

I
{
h2j ≥ ajp

}
∈ [−1, 0] ,

which permits some negative suppressor variables but prohibits extreme situations such as that where one factor
contribution is large and positive and another in that row is almost equally large in magnitude but negative.
Overall, this restriction seems quite weak.

5This constraint can be enforced by from the command line with make_restrictions(*, criteria = list("ev_RF_1st")).
6This constraint can be enforced by from the command line with make_restrictions(*, criteria = list("ev_PF_1st")).
7This constraint can be enforced by from the command line with make_restrictions(*, criteria =

list("h2_over_FC_1st")).
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• “Best indicator of each factor must have non-negative factor contributions.” Let a←→ be the r × r submatrix
of a whose rows contain the best indicators of each factor as defined by the column-maximums of a with the
additional proviso that the rows are unique. The function that imposes this constraint is formally defined as8

−1

r2

r∑
q=1

r∑
p=1

I
{
aqp←→
≥ 0

}
∈ [−1, 0] ,

and is stronger than the previous criterion and weaker than the next criterion. Although it prohibits negative
suppressor variables among the best indicators, it permits any degree of suppression among the other outcome
variables.

• “No negative suppressor variables.” Let a∗ ≤ 0 be the minimum factor contribution that the user is willing to
accept, and thus wants all factor contributions to exceed this threshold to prohibit “negative” suppressor variables
but perhaps make some allowance for factor contributions to be slightly negative by chance. This constraint can
be specified interactively via the following diaglog with a∗ = −0.01:9

The function that imposes this constraint is formally defined as

−1

nr

n∑
j=1

r∑
p=1

I {ajp ≥ a∗} ∈ [−1, 0] ,

and is a fairly strong — yet in many cases, reasonable — restriction. Yates (1987, p. 119) essentially recom-
mends it, albeit with some incorrect statements about the relationship between this restriction and the rest of the
surrounding chapter.

• “Reference factors must have more generalized variance than do primary factors”. The function that imposes
this constraint could be formally defined as10{

−1 if |Φ| ≤ |Ψ|
|Φ| − |Ψ| otherwise

∈ [−1, 1]

but has a faster and substantively equivalent operationalization in the code. When r1 = 2, |Φ| = |Ψ| by
necessity, so this criterion can bind in the case when r ≥ 3. Also, this criterion necessarily holds when there is
a single second-order factor. Yates (1987, p. 27) asserts that this restriction is a necessary condition of a useful
factor analysis model, although counter-examples can be generated. With randomly drawn correlations from a
uniform distribution on [−1, 1], Φ is both positive definite and satisfies this restriction about 25% of the time
when r = 3, 5% of the time when r = 4, 0.5% of the time when r = 5, and even less frequently for r > 5.

8This constraint can be enforced from the command line with make_restrictions(*, criteria =
list("distinguishability_1st").

9This constraint can be enforced at the command line with make_restrictions(*, criteria =
list("no_neg_suppressors_1st"), methodArgs = list(FC_threshold_1st = -.01))

10This constraint can be enforced by from the command line with make_restrictions(*, criteria = list("gv_1st")).
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• “Outcomes in hyperplanes have more effective variance than does the battery as a whole”. The function that
imposes this constraint is formally defined as11

−1

r

r∑
p=1

I

{∣∣∣∣ pβΦ
p

β′ +
p

Θ2

∣∣∣∣
1
bp

≥ |R|
1
n

}
∈ [−1, 0] ,

where
p

β is the bp × r submatrix of β with exact zeros in the pth column and
p

Θ2 is the bp × bp diagonal
submatrix of Θ2 with the unique variances for these bp outcomes. Thus, this criterion loosely requires that the
outcomes in the pth hyperplane be “less correlated” than is the battery as a whole (in common factor space) for
all r hyperplanes and is thus fairly strong. This constraint goes well with the revisionist Yates mapping rule
discussed in section 6.2.5.

• “Minimum binary distance among columns of the logically negated loadings matrix.” Let β∗jp =

{
1 ifβjp = 0

0 ifβjp 6= 0

be the “logically negated loadings matrix”. The binary distance between two columns of the “logically negated
loadings matrix” is defined as (see ?dist) as “the proportion of bits in which only one is on amongst those
in which at least one is on”. In order to satisfy the theorem in Reiersøl (1950), the minimum binary distance
betwen any two columns must be positive, but it is possible to require a larger minimum binary distance.
Let d∗ be the requisite minimum binary distance, which can be specified in response to the following dialog:

Let dqp be the binary distance between the qth and pth columns of β. The function that imposes this constraint
is formally defined as12

−2

r (r − 1)

r∑
q=1

r∑
p 6=q

I {dqp ≥ d∗} ∈ [−1, 0]

and would most often be used in a more “exploratory” SEFA.

• “Generalized variance of the reproduced correlation matrix must be less than that of the sample correlation
matrix.” The function that imposes this constraint is formally defined as13{

−1 if |R| ≥ |cor (Y)|
|cor (Y)| − |R| otherwise

∈ [−1, 1] ,

where |cor (Y)| is the determinant of the sample correlation matrix. This restriction is pretty weak.

• “Prohibit some coefficients from being zero.” This restriction is relevant only for SEFA, where it is possible that
the mapping rule will map some coefficient to zero that theoretically should not be zero. The most common case
where this restriction is helpful is when equality restrictions are impose on two coefficients, and one presumably
intends that they both be nonzero. The genetic algorithm would otherwise tend to make both zero and thereby
satisfy two restrictions the easy way.

11This constraint can be enforced from the command line with make_restrictions(*, criteria =
list("cohyperplanarity_1st")).

12This constraint can also be enforced from the command line with make_restrictions(*, critieria =
list("dist_cols_1st"), methodArgs = list(cutpoint_1st = 0.5))

13This constraint can be enforced from the command line with make_restrictions(*, criteria = list("volume_1st")).
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Let β∗ be a matrix such that β∗jp = 1 if βjp must not be zero and equals zero otherwise, which can be specified
in response to the following dialog:

The function that imposes this constraint is formally defined as14

−1∑n
j=1

∑r
p=1 β

∗
jp

n∑
j=1

r∑
p=1

I
{
β∗jp = 1

}
I {βjp 6= 0} ∈ [−1, 0]

and equals −1 if and only if none of the prohibited coefficients are zero.

Note that it is possible to select (or specify at the command line) more than one of these criteria as constraints in the
lexical optimization process.

14This constraint can also be enforced at the command line with make_restrictions(*, criteria = list("block_1st"),
methodArgs = list(blockers = beta_star))
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7 Exploratory Factor Analysis via Factnal() and Rotate()

To start this sequence, I typed the command
man <- make_manifest(covmat = Harman74.cor)
res <- make_restrictions(manifest = man, factors = 5, model = "EFA")
EFA <- Factanal(manifest = man, restrictions = res)

7.1 Factor Extraction

I use Λ to indicate the preliminary pattern matrix to estimate when the preliminary factors are orthogonal. The above
sequence of commands will estimate the EFA model under the assumptions that Φ = I and that Λ′Θ−2Λ is diagonal
using the maximum likelihood discrepancy function. If a different discrepancy function were specified, then the EFA

model would be estimated under the assumptions that Φ = I and that Λ =

[
Λ1

Λ2

]
where Λ1 is a r × r matrix with

zeros above its diagonal.

7.2 Factor Transformation

Note that regardless of how the EFA model was estimated, the preliminary factors will have the noncanonical form

where Λ =

[
Λ1

Λ2

]
and Λ1 is a r × r matrix with zeros above its diagonal. After verifying that a EFA model with r

factors fits the data reasonably well, there were no near-Heywood cases, etc., the next task is to choose a transformation
of the preliminary factors.

Let Φ = T′T where T is a r×r transformation matrix with unit-length columns (not rows). The factor transformation
step chooses T so so that some (lexical) objective function is minimized. I initiated this sequence with
EFA_rotated <- Rotate(EFA)

WARNING: The subsequent pop-up menus are presented here in the logical order, which is different than the
order in which they will appear when calling Rotate().

7.2.1 Functional inequality restrictions

Again let I {·} be the “indicator function”, which equals 1 if the condition within the braces is true and equals 0 if the
condition is false. In FAiR, an inequality restriction function is a piecewise function that equals −1 if the restriction
is satisfied and equals some number greater than −1 if the the restriction is not satisfied. You do not need to worry too
much about the return values for the case where the restriction is not satisfied.

One such inequality restriction is mandatory and is used to prevent factor collapse. The function that imposes this
constraint is formally defined as {

−1 if |Φ|
1
r ≥ v∗

v∗ − |Φ|
1
r otherwise

∈ [−1, 1] ,

where v∗ > 0 is the minimum acceptable effective variance for the primary factors. Please refer to section 4 for the
definition of effective variance. One can specify v∗ by responding to the following dialog:15

15The corresponding pop-up menu can be avoided from the command line with Rotate(EFA, criteria =
list("no_factor_collapse"), methodArgs = list(nfc_threshold = .3))
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A value of v∗ = 0.3 is quite weak and in the r = 2 case would permit the off-diagonal of Φ to be up to ±0.954,
which only precludes literal factor collapse. One deliberately nice property of defining the restriction with respect to
the effective variance is that the same v∗ is more-or-less reasonable regardless of r.

The following menu is similar to that in section 6.2.7, which offered choices for functional inequality restrictions on
SEFA and CFA models. Except for the first two choices, the definitions of the criteria and subsequent pop-up menus
are the same; only the two that differ will be discussed in this subsection.

• “Bounds on correlations among primary factors.” This restriction is conceptually simple and merely places
lower and / or upper bounds on all off-diagonals of Φ = T′T. However, because the objective function is
minimized over the cells of T instead of Φ, we have to use a constraint function to accomplish this goal. Let
Φ be the minimum acceptable factor correlation and let Φ be the maximum acceptable factor correlation, which
can be specified interactively as follows:16

16This constraint can also be enforced from the command line with Rotate(EFA, criteria = list("limit_correlations"),
methodArgs(lower = -.1, upper = 1))
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The function that imposes this constraint returns −1 if Φ ≤ Φpq ≤ Φ ∀p > q and otherwise returns the distance
between the relevant bound the the correlation that most egregiously fails to satisfy these bounds.

• “Positive manifold.” Similarly, this restriction merely places a lower bound on Υjp ∀j, p. Let Υ∗ ≤ 0 be this
lower bound, which can be specified interactively by responding the to following dialog:17

The function that imposes this constraint is formally defined as

−1

nr

n∑
j=1

r∑
p=1

I {Υjp ≥ Υ∗} ∈ [−1, 0]

and hence is satisfied if and only if the proposed T yields a “positive” manifold.

7.2.2 The ultimate analytic criterion

The next step is to choose the ultimate criterion for lexical optimization, as shown in the above dialog box. These
criteria are defined as follows:

• phi: This criterion was proposed by Thurstone (1935) to numerically characterize simple structure when it
reaches its theoretical minimum of (log) zero. The criterion is formally defined as

ln
(∑n

j=1 exp
(

1
c

∑r1
p=1 ln

(
Υ2
jp

)))
,

17This constraint can be enforced at the command line with Rotate(EFA, criteria = list("positive_manifold"),
methodArgs(pm_threshold = -0.1))
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which is equal to logarithm of φ as defined by Thurstone (1935) when c = 1. Thurstone suggested that choosing
c to be greater than 1.0 could yield better results by lessening the pressure to get one exact zero into each row
of Υ and increasing the pressure to get more than one near-zero into some rows of Υ. If Thurstone’s criterion
is used, the following dialog box will appear, prompting the user for c:18

• varphi: This criterion is a generalization of Thurstone’s φ. Let
−→
Υ be a matrix of reference structure cor-

relations where each row is independently sorted in increasing magnitude, and let
−→
φ
−[1:p]

be Thurstone’s cri-

terion (with c = 1) calculated on
−→
Υ, excluding the first through the pth column of

−→
Υ. Then define ϕ =

ln

(
φ+

∑r−2
p=1 wp

−→
φ
−[1:p]

)
, where wp ∈ [0, 1] is the weight the analyst specifies for

−→
φ
−[1:p]

relative to a unit

weight placed on φ. At one extreme, if wp = 0 ∀p, then ϕ = φ. At the other extreme, if wp = 1 ∀p,
then the analyst favors a perfect cluster configuration, where three is only one non-zero coefficient per test.
An “objective” alternative to specifying weights is to specify that the weights are a function of

−→
Υ, such as

wp = 1 − max

{(−→
Υp+1

)2} 1
2

to gradually reduce the weight as p increases. These weights can be specified

interactively19:

• minimaximin: This criterion attempts to satisfy Thurstone’s definition of simple structure by choosing T so that
all outcomes have at least one near-zero reference structure correlation. The criterion is formally defined as

ln
(
max

{
min

{
Υ2

1

}
,min

{
Υ2

2

}
, . . . ,min

{
Υ2
n

}})
.

Thus, the (log of the) maximum, minimum, squared, row-wise reference structure correlation is minimized.
18This pop-up menu can be avoided from the command line with Rotate(EFA, critieria = list("phi"), methodArgs(c =

1))
19These pop-up menus can be avoided from the command line with Rotate(EFA, criteria = list("varphi"), methodArgs(w

= rep(0.5, 4)) to weight all subsequent columns at half th weight of the first, for example. Or, w can be any negative number to indicate
dynamic weights.
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• LS: This criterion is called the Loading Simplicy Index in Lorenzo-Seva (2003). The derivation of it is not
complicated but involves a lot of notation not previously introduced here, so the reader is refered to Lorenzo-
Seva (2003) for details. Simply put, it reaches its optimum of (negative) 1.0 when Υ exhibits a perfect cluster
configuration. Although Lorenzo-Seva (2003) defines the Loading Simplicity Index in terms of the primary
pattern matrix, it is invariant to the column-scale of the primary pattern matrix and thus can arbitrarily be
defined for the reference structure matrix as well.

• “Some oblique criterion from the GPArotation package.” If this option is marked, then the following dialog box
appears, unless the name of the criterion is specified in criteria in the call to Rotate, e.g. Rotate(EFA,
criteria = list("quartimin"))

These criteria are all defined in Browne (2001) and Bernaards and Jennrich (2006) and documented in the
suggested GPArotation package. The versions in FAiR work the same way, with four exceptions. First, and
most importantly, FAiR minimizes these criteria subjects to the aforementioned restrictions. Second, if the
criterion has any additional arguments, they can be specified in a corresponding pop-up menu (or specified in
methodArgs, as in the GPArotation library). Third, the partially-specified target implementation allows the
partially-specified target matrix to have NA in cells that are not targeted, instead of specifying a separate weight
matrix of zeros and ones. Fourth, in FAiR the criteria defined in the GPArotation package can also be invoked on
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Υ or a, instead of β by specifying matrix = "RS" or matrix = "FC" as an element of methodArgs
or by responding to this dialog:
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