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1 Introduction

This tutorial demonstrates the use of the R package PAFit to estimate the attachment function Ak and node
fitness fi in a temporal complex network. In this package, we implemented the PAFit method [1, 2]. The
growth process of the network is assumed to follow a modified version of the Bianconi-Barabási model [3].
In this model, a node vi with degree k and fitness fi receives a new edge with probability proportional to
the product of Ak and fi.

PAFit provides a statistical method for joint estimation of the attachment function Ak and node fitness
fi. It does not make any assumptions on either the functional form of Ak or fi. PAFit implements Minorize-
Maximization(MM) algorithms [4,5] to estimate Ak and fi jointly. Method for computing confidence intervals
of the estimated values is also provided. Binning and regularization are implemented, too. PAFit are written
mainly in C++ by using the package Rcpp [6,7]. It employs OpenMP for simple parallel processing. PAFit also
implements a quasi-Newton acceleration method [8] for speeding-up MM algorithms. These considerations
allow high performance even in large datasets.

1.1 Citation Information

If you use this package in your projects, please run:

library("PAFit")

citation("PAFit")

for a list of references you should cite.

2 A quick example of how to use PAFit

Here we use PAFit to analyse the UC Irvine online student community message sending-receiving network [9].
This publicly available dataset is included in the PAFit package under the name UCIrvine.data. The format
of the data is a matrix where each row contains information of one edge in the form of (from node, to node,

time stamp). from node and to node are the ids of the source node and destination node, respectively.
time stamp is the arrival time of the node.

We can use such a data as input of the function GetStatistics. This function summarizes all important
statistics needed in estimation of Ak and fi. It is assumed that both ids are integer starting from 0.
time stamp can be either numeric or string. The only assumption is that a smaller time stamp represents
an earlier arrival time. The following script gives us summary statistics of UCIrvine.data:

library("PAFit")

stats <- GetStatistics(UCIrvine.data, deg_threshold = 5)

The option deg threshold = 5 indicates that we only estimate fitnesses of nodes whose number of new
edges acquired is not less than 5. The fitnesses of nodes whose number of new edges acquired is 0 are fixed
at 0. The fitnesses of all remaining nodes are fixed at 1. This simplification is reasonable, since we are
usually only interested in fitnesses of hubs, i.e. nodes that have acquired a considerable number of new
edges. This simplification also helps stabilizing the estimation, as well as making estimation in very large
datasets possible by reducing the number of parameters.
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From now on we can use the object stats in subsequent estimation of Ak and fi without re-running
the GetStatistics function, unless we want to change the way the dataset is summarized, for example by
changing deg threshold.

2.1 Estimation of the attachment function

First we estimate the attachment function Ak in isolation, i.e. fixing fi = 1 for all i, by specifying the option
only PA = TRUE in the following script:

result <- PAFit(stats, only_PA = TRUE)

It is important to note that the aforementioned option deg threshold = 5 does not affect the estimation
result in the current case of estimating Ak in isolation. We can plot the result as follows.

plot(result, stats, plot = "A")

The option plot = "A" indicates that we want to plot only Ak. The results is shown in Fig. 1a. We
can access the estimated attachment function Âk via result$k and result$A. Note that PAFit can also
estimate the confidence intervals of Âk, as can be seen from Fig. 1a. One can access the upper ends and
the lower ends of these confidence intervals via result$upper A and result$lower A. These confidence
intervals are calculated as two standard deviations from the estimated Âk. The variances of Âk (square of
standard deviations) are stored in result$var A. If desired, the variances of log Âk can also be explored via
result$var logA.

Sometimes one might want to estimate the attachment exponent α assuming the log-linear model Ak =
kα, given the estimated Âk. PAFit automatically does this. We can access the estimated α̂ via result$alpha.
In this case, the estimated Âk is sub-linear with α̂ = 0.73.

2.2 Joint estimation of the attachment function and node fitness

Next we estimate jointly the attachment function and node fitness in this dataset by removing the option
only PA = TRUE in the previous script:

result2 <- PAFit(stats, q = 2) #q >= 2: use quasi-Newton acceleration

Note the option q = 2. PAFit implements a quasi-Newton acceleration scheme [8] that will be activated
if q ≥ 2. Quasi-Newton accelerations are rarely needed in the case of estimating Ak in isolation, since in
this case the MM algorithm is already fast enough. In the current setting of joint estimation of Ak and
fi, the implemented quasi-Newton acceleration can often speed up the convergence at little cost. q is the
number of previous iterations using in calculating the quasi-Newton direction [8]. Good values of q vary
problem-to-problem. Here we choose q = 2.

We can plot the estimated attachment function and node fitnesses as follows.

plot(result2, stats, plot = "A")

# User needs to open a new plotting device here

plot(result2, stats, plot = "f")

Results are shown in Figs. 1b and 1c. As in the previous example, the estimated attachment function Âk, to-
gether with its confidence intervals and variances, are stored in result2$A, result2$upper A, result2$lower A

and result2$var A. The estimated node fitnesses and their variances can be accessed via result2$f and
result2$var f. The upper ends and lower ends of the confidence intervals of result2$f are result2$upper f

and result2$lower f, respectively.
By inspecting result2$alpha, it is interesting to find that the estimated attachment exponent α̂ in this

case (α̂ = 0.41) is lower than in the previous example.
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(a) Âk when estimating the attach-
ment function in isolation (α̂ = 0.73).
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(b) Âk when estimating jointly the
attachment function and node fitness
(α̂ = 0.41).
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Figure 1: Estimation results in the UCIrvine dataset.

3 Binning

Binning is the process of dividing the range of the degree k into bins and then group together the statistics
of k in each bin. It is a very important pre-processing step in order to obtain stable estimation of the
attachment function Ak. PAFit employs logarithmic binning. Binning is performed when the statistics are
summarized by the function GetStatistics. We specify Binning = TRUE and then specify the number of
bins G.

#Number of bins is G = 100

stats2 <- GetStatistics(UCIrvine.data, deg_threshold = 5, Binning = TRUE, G = 100)

result3 <- PAFit(stats2,only_PA = TRUE)

plot(result3, stats2, plot = "A")

The estimated Âk when binning is shown in Fig. 2b. One can see that binning greatly stabilized the estimated
Âk. We recommend to always use binning. The number of bins G should be chosen small enough in order
to affect the high degree region.

4 Regularization

Estimating jointly the attachment function Ak and node fitness fi can be difficult, due to data sparsity and
the non-concavity of the log-likelihood function. PAFit implements regularization for Ak and fi in order to
alleviate those problems. For the attachment function, PAFit use the following regularization term:

− λ
1∑
k wk

K−1∑
k=1

wk(logAk+1 + logAk−1 − 2 logAk)2 . (1)

This penalty term penalizes the second order differentiation of logAk, and by doing so encourages linearity
of logAk. The ratio of the strength of the regularization term (measured by λ) and the number of observed
data can be used as a heuristic, reasonable criterion for choosing λ. One can then specify λ indirectly
through the parameter ratio. Regarding the weights wk, the option weight PA mode = 1 corresponds to
the case wk = 1 for all k, while specifying weight PA mode = 0 corresponds to the case wk =

∑
tmt(k),

where
∑
tmk(t) is the total number of edges connected to a degree k node. We recommend the latter case.

Regarding node fitness fi, PAFit put a regularization term that equals to the effect of placing a Gamma
prior distribution on fi. We can specify the shape and rate of this Gamma distribution through the param-
eters shape and rate.
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(a) Âk when estimating the attachment function in iso-
lation without binning (α̂ = 0.73).
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(b) Âk when estimating the attachment function in iso-
lation with binning (α̂ = 0.69).

Figure 2: Effect of binning

To summarize, the following script performs estimation with ratio = 0.1, the weights wk =
∑
tmt(k),

shape = 0.5 and rate = 0.5.

result4 <- PAFit(stats2, q = 2, ratio = 0.1, weight_PA_mode = 0,

shape = 0.5, rate = 0.5)

5 Simulated data

PAFit includes the function GenerateNet to generate networks from many important network models, in-
cluding the Barabási-Albert model [10] and the Bianconni-Barabási model [3]. For example, the following
script generates a network where Ak = k, fi ∼ Gamma(1, 1), total number of nodes N = 1000, and number
of new edges introduced at each time step is m = 5:

#mode = 1: A_k = k^alpha with alpha = 1

data1 <- GenerateNet(N = 1000, m = 5, alpha = 1, shape = 1, rate = 1,mode = 1)

The object data1 is a list with components data1$graph and data1$fitness. data1$graph is a 3-column
matrix where information about the edges is stored in each row. data1$fitness stores the true fitness value
of each node. One then can use data1$graph as the input of GetStatistics.

One can also generate networks from the attachment function Ak = min(k, sat at)α with α = 1 and
sat at = 100 as follows.

#mode = 2: A_k = min(k,sat_at)^alpha with alpha = 1, sat_at = 100

data2 <- GenerateNet(N = 1000, m = 5, mode = 2, alpha = 1, sat_at = 100, shape = 1, rate = 1)

Finally, the following script generates a network where the attachment function is Ak = α logβ(k) + 1 with
α = 3 and β = 2.

#mode = 3: A_k = A_k = alpha*log^beta(k) + 1 with alpha = 3, beta = 2

data3 <- GenerateNet(N = 1000, m = 5, mode = 3, alpha = 3,beta = 2, shape = 1, rate = 1)

4



In all examples of this section, the number of new edges at each step m has been fixed at m = 5. It might
be more realistic to let m be a Poisson random variable, whose value of realization at each time-step varies.
This can be archived by specifying prob m = TRUE. In this case, if the option increase is FALSE then the
mean of this Poisson distribution is fixed at m, otherwise the mean itself will grow with the current size of
the network. In the latter case, if log = TRUE, the mean will grow logarithmically with the current size,
otherwise it will grow linearly.
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