

PBSmodelling 2.65: User’s Guide

Jon T. Schnute, Alex Couture-Beil, Rowan Haigh, and A.R. Kronlund

Fisheries and Oceans Canada
Science Branch, Pacific Region
Pacific Biological Station
3190 Hammond Bay Road
Nanaimo, British Columbia
V9T 6N7

2013

User’s Guide Revised from
Canadian Technical Report of
Fisheries and Aquatic Sciences 2674 (2006)

© Her Majesty the Queen in Right of Canada, 2013

Revised from Cat. No. Fs97-6/2674E ISSN 0706-6457

Last update: Mar 28, 2013

Correct citation for this publication:

Schnute, J.T., Couture-Beil, A., Haigh, R., and Kronlund, A.R. 2013. PBSmodelling 2.65: user’s

guide revised from Canadian Technical Report of Fisheries and Aquatic Sciences
2674: viii + 194 p. Last updated Mar 28, 2013

 – i –

TABLE OF CONTENTS

Abstract .. iii
Preface.. iv
1. Introduction... 1
2. GUI tools for model exploration... 3

2.1. Example: Lissajous curves.. 4
2.2. Window description file.. 6
2.3. Window support functions.. 8
2.4. Internal data .. 12

3. Functions for data exchange ... 13
4. Support functions for graphics and analysis ... 15

4.1. Graphics utilities ... 15
4.2. Data management.. 16
4.3. Function minimization and maximum likelihood... 16
4.4. Handy utilities... 18

5. Functions for project management.. 18
5.1. Project options .. 19
5.2. Project management utilities... 20

6. Support for lectures and workshops.. 21
7. Examples... 25

7.1. Random variables.. 26
7.1.1. RanVars – Random variables... 26
7.1.2. RanProp – Random proportions... 27
7.1.3. SineNorm – Sine normal.. 28
7.1.4. CalcVor – Calculate Voronoi tessellations.. 29

7.2. Statistical analyses .. 30
7.2.1. LinReg – Linear regression .. 30
7.2.2. MarkRec – Mark-recovery.. 31
7.2.3. CCA – Catch-curve analysis.. 32

7.3. Other applications ... 33
7.3.1. FishRes – Fishery reserve ... 33
7.3.2. FishTows – Fishery tows... 34

References... 35
Appendix A. Widget descriptions... 37

Window... 37
Button.. 38
Check .. 39
Data ... 40
Droplist ... 42
Entry.. 43
Grid ... 45
History... 46
Image... 47
Include... 48
Label ... 49

 – ii –

Matrix.. 50
Menu ... 51
MenuItem.. 52
Notebook... 53
Null ... 55
Object.. 56
Progressbar.. 57
Radio ... 60
Slide .. 61
SlidePlus ... 62
Spinbox ... 63
Table ... 64
Text ... 65
Vector.. 67

Appendix B. Talk description files ... 69
<talk> ... </talk> ... 69
<section> ... </section>... 70
<text> ... </text> ... 70
<file> ... </file>... 71
<code> ... </code> .. 71

Appendix C. Building PBSmodelling and other packages ... 73
C.1. Installing required software... 73

Appendix D. PBSmodelling functions and data.. 84
D.1. Objects in PBSmodelling .. 84
D.2. PBSmodelling manual ... 87

LIST OF TABLES

Table 1. Lissajous project files ... 4
Table 2. R source code with GUI definition strings ... 9
Table 3. Data file in PBS format... 13
Table 4. Talk description file swisstalk.xml.. 23
Table C1. C representations of R data types.. 79
Table C2. .C() example in PBStry ... 81
Table C3. .Call() example adapted from PBStry.. 82

LIST OF FIGURES
Figure 1. Tangled relationships among computer model components ... 2
Figure 2. GUI organization of computer model components ... 2
Figure 3. Lissajous GUI.. 5
Figure 4. Lissajous graph.. 5
Figure 5. GUI generated by presentTalk from swisstalk.xml 24
Figure 6. RanVars GUI and density plot.. 26
Figure 7. RanProp GUI and pairs plot for Dirichlet .. 27
Figure 8. SineNorm GUI and plot.. 28
Figure 9. CalcVor GUI and tessellation plot ... 29

 – iii –

Figure 10. LinReg GUI and regression plot ... 30
Figure 11. MarkRec GUI and density plots .. 31
Figure 12. CCA GUI and parameter pairs plot .. 32
Figure 13. FishRes GUI and population time series ... 33
Figure 14. FishTows GUI and simulated tow tracks... 34

ABSTRACT

Schnute, J.T., Couture-Beil, A., Haigh, R., and Kronlund, A.R. 2013. PBSmodelling 2.65: user’s

guide revised from Canadian Technical Report of Fisheries and Aquatic Sciences
2674: viii + 194 p. Last updated Mar 28, 2013.

This report describes the R package PBSmodelling, which contains software to facilitate the
design, testing, and operation of computer models. The initials PBS refer to the Pacific
Biological Station, a major fisheries laboratory on Canada’s Pacific coast in Nanaimo, British
Columbia. Initially designed for fisheries scientists, this package has broad potential application
in many scientific fields. PBSmodelling focuses particularly on tools that make it easy to
construct and edit a customized graphical user interface (GUI) appropriate for a particular
problem. Although our package depends heavily on the R interface to Tcl/Tk, a user does not
need to know Tcl/Tk. In addition to GUI design tools, PBSmodelling provides utilities to
manage projects with multiple files, write lectures that use R interactively, support data exchange
among model components, conduct specialized statistical analyses, and produce graphs useful in
fisheries modelling and data analysis. Examples implement classical ideas from fishery
literature, as well as our own published papers. The examples also provide templates for
designing customized analyses using other R packages, such as PBSmapping, PBSddesolve,
odesolve, and BRugs. Users interested in building new packages can use PBSmodelling and a
simpler enclosed package PBStry as prototypes. An appendix describes this process completely,
including the use of C code for efficient calculation.

 – iv –

Preface

 After working with fishery models for more than 30 years, I’ve used a great variety of
computer software and hardware. Currently, the free distribution of R (R Development Core
Team 2011a) provides an excellent platform for software development in an environment
designed to support multiple computers and operating systems. Furthermore, an associated
network of contributed packages on the Comprehensive R Archive Network (CRAN:
http://cran.r-project.org/) gives access to a wealth of algorithms from many users in various
fields. This disciplined system allows users, like the authors of this package, to distribute
software that extends the utility of R in new directions.

 Previously I’ve used software in Basic (Schnute 1982), Fortran (Mittertreiner and
Schnute 1985), Pascal, C, and C++ to implement ideas in published papers. Usually this software
goes stale in time, due to minimal documentation, changing operating systems, the lack of
portable libraries, and many other factors. Because R includes a rich library of statistical
software that operates on multiple platforms, my colleagues and I can now distribute software
that actually works when other people try it. The user community includes us, because we often
find that we can’t remember how to operate our own software after a few weeks or months, let
alone years. Although writing a good R package requires considerable effort, the result often
pays off in portability, communication, and long term usage.

 PBSmodelling tries to accomplish several goals. First, it anticipates the need for model
exploration with a graphical user interface, a so-called GUI (pronounced gooey). We make this
easy by encapsulating key features of Tcl/Tk into convenient tools fully documented here. A user
need not learn Tcl/Tk to use this package. Everything required appears in Appendix A. You
might want to start by running the function testWidgets(). Co-author Rowan Haigh likes the
subtitle: “modelling the world with gooey substances.”

 Second, we want to demonstrate interesting analyses related to our work in fishery
management and other fields. The function runExamples() illustrates some of these, as
described further in Section 7. The code for all of them appears in the R library directory
PBSmodelling\examples. We demonstrate the power of other R packages, such as BRugs (to
perform Bayesian posterior sample with the application WinBUGS), odesolve (to solve
differential equations numerically), PBSddesolve (to solve delay differential equations), and
PBSmapping (to draw maps and perform spatial analyses).

 Third, PBSmodelling serves as a prototype for building a new R package, as summarized
in Appendix B. We illustrate two methods of calling C code (.C and .Call), and discuss many
other technical issues encountered while building this package. The functions compileC and
loadC (added in 2008) give direct support for dynamically adding C functions to the working R
environment.

 Finally, to use R effectively, we’ve found it convenient to devise a number of “helper”
functions that facilitate data exchange, graphics, function minimization, and other analyses. We
include these here for the benefit of our users, who may choose to ignore them. We hope that

 – v –

PBSmodelling inspires interest in interactive models that demonstrate applications in many
fields.

 As with our earlier package PBSmapping, Rowan and I employed a bright student who
could learn quickly and implement creative ideas. Dr. Jim Uhl (Computing Science) and Dr. Lev
Idels (Mathematics), both from Malaspina University-College (MUC) here in Nanaimo, drew my
attention to the student Alex Couture-Beil, who has strong credentials in both fields. Rowan and
I gave him a few initial specifications, and he quickly got ahead of us by extending our ideas in
new and useful directions. This process continued in 2008, when we employed Anisa Egeli,
another bright student from MUC. The current version of PBSmodelling represents the result of
an evolutionary process, as we experimented with design concepts that would support our
modelling goals. Users familiar with the earlier versions (starting with 0.60, posted on CRAN in
August, 2006) may need to revise their code slightly to make it work with this version.

 Since 1998, I have maintained a formal relationship with the Computing Science
Department at MUC (now named Vancouver Island University – VIU), where I find kindred
spirits in developing projects like this one. I particularly want to thank Dr. Jim Uhl for his
suggestions and support on this project. Conversations with Dr. Peter Walsh have also stimulated
my interest in the theory and application of computing science.

 Fishery management depends on models with a great range of complexity, starting from
some fairly simple ideas. Unfortunately from a coding perspective, “industrial strength” models
can’t run exclusively in R. Algorithms with high computational requirements don’t run fast
enough in R for practical application, due to interpretive code and other technical limitations.
Examples in PBSmodelling often illustrate ideas at the simple end of the spectrum, although the
package can certainly be used to manage external software designed to deal with greater
complexity. The current version assists users in writing C code that can dramatically speed
model performance.

 Scientifically, I like to work from both ends of the spectrum. The behaviour of a complex
model sometimes mimics a much simpler model, and it helps to become well versed in some of
the simpler cases. I appreciate the motto of Canadian storyteller and humorist Stuart McLean,
who hosts a CBC radio broadcast The Vinyl Cafe (http://www.cbc.ca/vinylcafe/), “We may not
be big, but we’re small.”

Jon Schnute, December 2006; revised October 2008.

 – vi –

Update for Version 2.50

 Our colleagues Rob Kronlund, Sean Cox, and Jaclyn Cleary used this package
extensively for research on Management Strategy Evaluation. Their experiences led them to
suggest a number of significant improvements. We thank Rob for providing written
specifications and financial resources to implement their ideas. PBSmodelling now includes new
widgets (droplist, table, spinbox, include), bug fixes, and other improvements that give
users even greater control over GUIs designed for exploring and demonstrating analyses with R.
Alex Couture-Beil, who now pursues graduate studies at Simon Fraser University, added the new
programming code that contributes to this significant upgrade.

 This update also includes greatly enhanced versions of our functions to support project
development (Section 5) and interactive lectures (Section 6). Our colleague Andrew Edwards at
PBS assisted this work with funding that allowed us, once again, to engage our intrepid graduate
student Alex. Our code now includes modest use of S4 classes, such as the new PBSoptions
class (Section 5.1). Furthermore, we now use XML scripts in the talk description files that enable
users to give dynamic presentations about analyses in R (Section 6). Users who employed our
function presentTalk in the past will need to revise their description files to operate with this
update.

 The scope of our R packages has grown considerably over the last few years. Thanks to
prodding from Alex, we now use Google Code web sites for all our projects. The web site
http://code.google.com/p/pbs-software/ provides further information. In particular, this update
supports our new package PBSadmb (http://code.google.com/p/pbs-admb/). It allows R users to
tap into an open source package that can handle “industrial strength” assessment problems. We
have a version that should soon be ready for posting on CRAN.

Jon Schnute, October 2009

 – vii –

Update for Version 2.60

 Open source software often benefits greatly from unanticipated suggestions and
participation by the user community. John Chambers (2008, p. 10), who designed the S language
that underlies R, describes this phenomenon as “a cause for much gratitude and not a little
amazement.” Eric Raymond (2000), speaking from his own experience with open source
projects, puts it this way: “Treating your users as co-developers is your least-hassle route to rapid
code improvement and effective debugging.” This is Raymond’s sixth lesson in a series of
fundamental observations. The tenth is: “If you treat your beta-testers as if they're your most
valuable resource, they will respond by becoming your most valuable resource.”

 In the previous update for version 2.50, I mentioned my long-time friend, colleague, and
co-author Rob Kronlund. I was delighted by his interest in applying PBSmodelling to evaluate
fishery management strategies (Kronlund et al. 2010). He quickly identified problems and helped
design extensions that have greatly benefited the current version. In addition to many small
changes and bug fixes, it includes three new widgets: notebook, image, and progressbar.
Very significantly, the new notebook widget implements tabbed windows, in which distinct
tabs correspond to different aspects of the GUI. This can help organize material for user
interaction, and it potentially reduces the required size of a GUI so that it can fit on the small
screens now popular on ultraportable computers.

 We are delighted and grateful to welcome Rob as a coauthor of PBSmodelling. He has
certainly become a valuable resource, although I’m not sure we always gave him the quality
treatment suggested by Eric Raymond.

Jon Schnute, March 2010

 – viii –

Additional Notes:

 Version 2.60 fixes an unfortunate bug in the grid widget. In earlier versions, the
arguments nrow and ncol were reversed when byrow=FALSE. We realized that we had
programmed around this bug in our previous window description files. Consequently, after the
bug was fixed, we needed to make changes to every grid widget with byrow=FALSE. (These
were relatively uncommon.) We encourage users of version 2.60 to check their own historical
description files for this potential problem.

 Starting in version 2.65, we implement accessor functions to comply with CRAN
Repository Policy: http://cran.r-project.org/web/packages/policies.html, specifically “packages
should not modify the global environment (user’s workspace).” This change should largely be
invisible to users; however, be aware that control objects like .PBSmod are now located in a
temporary environment called .PBSmodEnv. The accessor functions tget, tput, tcall, and
tprint communicate with this environment, and we recommend that users become familiar
with these functions (see the tget help file in R). Additionally, the accessor functions are
implemented in all of the PBS packages that depend on PBSmodelling, invariably as wrappers
to the original functions. For example, in PBSadmb the temporary workspace is called
.PBSadmbEnv and the accessor functions are called atget, atput, atcall, and atprint,
using the prefix “a” to designate PBSadmb wrappers to the PBSmodelling accessor functions.
Similarly, we employ the wrapper prefixes “t” for accessing .PBStoolEnv in PBStools, “x”
for .PBSmapxEnv in PBSmapx, and “d” for .PBSdataEnv in PBSdata.

 We maintain development and distribution sites for a suite of PBS software packages on
Google Code: http://code.google.com/p/pbs-software/, including one for PBSmodelling. Some
of these appear on CRAN while others remain too specialised for mass appeal. The latter
packages, however, contain interesting and complex functionality that individuals are welcome
to explore.

 – 1 –

1. Introduction

 This report describes software to facilitate the design, testing, and operation of computer
models. The package PBSmodelling is distributed as a freely available package for the popular
statistical program R (R Development Core Team 2011a). The initials PBS refer to the Pacific
Biological Station, a major fisheries laboratory on Canada’s Pacific coast in Nanaimo, British
Columbia. Previously, we produced the R package PBSmapping (Schnute et al. 2004), which
draws maps and performs various spatial operations. Although both packages (which can run
separately or together) include examples relevant to fishery models and data analysis, they have
broad potential application in many scientific fields.

 Computer models allow us to speculate about reality, based on mathematical assumptions
and available data. The full implications of a model usually require numerous runs with varying
parameter values, data sets, and hypotheses. A customized graphical user interface (or GUI,
pronounced “gooey”) facilitates this exploratory process. PBSmodelling focuses particularly on
tools that make it easy to construct and edit a GUI appropriate for a particular problem. Some
users may wish to use this package only for that purpose. Other users may want to explore the
examples included, which demonstrate applications of likelihood inference, Bayesian analysis,
differential equations, computational geometry, and other modern technologies. In constructing
these examples, we take advantage of the diversity of algorithms available in other R packages.

 In addition to GUI design tools, PBSmodelling provides utilities to support data
exchange among model components, conduct specialized statistical analyses, and produce graphs
useful in fisheries modelling and data analysis. Examples implement classical ideas from fishery
literature, as well as our own published papers. The examples also provide templates for
designing customized analyses using the R packages discussed here. In part, PBSmodelling
provides a (very incomplete) guide to the variety of analyses possible with the R framework. We
anticipate many revisions, as we find time to include more examples.

 PBSmodelling depends heavily on Peter Dalgaard’s (2001, 2002) R interface to the
Tcl/Tk package (Ousterhout 1994). This combines a scripting language (Tcl) with an associated
GUI toolkit (Tk). We simplify GUI design with the aid of a “window description file” that
specifies the layout of all GUI components and their relationship with variables in R. We support
only a subset of the possibilities available in Tcl/Tk, but we customize them in ways intended
specifically for model design and exploration (Appendix A). A user of PBSmodelling does not
need to know Tcl/Tk.

 Computer models typically involve a variety of components, such as code, data,
documentation, and a user interface. Figure 1 illustrates the tangled relationships that sometimes
accompany computer model design. PBSmodelling allows the GUI to become a device for
organizing components, as well as running and testing software (Figure 2). The project might
involve other applications, as well as R itself. In addition to its interactive role, the GUI becomes
an archival tool that reminds the developer how components, functions, and data tie together.
Consequently, it facilitates the process of restarting a project at a future date, when details of the
design may have been forgotten.

 – 2 –

Figure 1. Tangled relationships among computer model components.

Figure 2. Computer model components organized with a graphical user interface (GUI).

 In PBSmodelling, project design normally begins with a text file that describes the GUI.
Additional files may contain code for R and other applications, which sometimes require
languages other than R. For example, the R BRugs package (to perform Bayesian inference
using Gibbs sampling) requires a file with the intended statistical model, written in the language
of a separate program WinBUGS. In other contexts, a user might write C code to get acceptable
performance from model components that require extensive computer calculations. This code
might be compiled as a separate program or linked directly into a customized R package.

 – 3 –

 Section 2 of this report describes the process of designing a GUI to operate a computer
model. Components can share data through text files in a specialized “PBS format” presented in
Section 3. These correspond naturally to list objects within R. Section 4 describes additional
tools for customized graphics and data analysis. Sections 5 and 6 discuss tools developed in 2008
for managing projects (like C code development) and writing lectures that use R interactively. In
Section 7, we highlight briefly some of the examples in our initial release, although we expect
the list to expand in future versions. This guide explains the context and general purpose of all
functions in PBSmodelling. Consult the help files for complete technical details.

 Appendix A gives the complete syntax for all visual components (called widgets)
available for writing a window description file to construct a customized GUI. Appendix B
provides syntax detail for talk description files. Appendix C describes the process of building
PBSmodelling in a Windows environment. A simple enclosed package PBStry gives a
prototype for building any R package, including the use of C code to speed calculations.
Appendix D shows the help files included with the package.

 To use PBSmodelling, run R and install the package from the R GUI (click “Packages”,
“Install package(s)…, select a mirror, and choose PBSmodelling from the list of packages).
Windows users can also obtain an appropriate compressed file from the authors of this report or
directly from the CRAN web site http://cran.r-project.org/.

 The R GUI normally runs as a Multiple Document Interface (MDI), in which child
windows like the R console and graphics screens all appear within the GUI itself and a menu
item can be used to tile the sub-windows. Unfortunately, in this configuration, windows
generated by Tcl/Tk sometimes disappear mysteriously when an application runs. They can be
recovered by clicking the appropriate “Tk” icon on the taskbar. You can avoid this problem by
using the Single Document Interface (SDI), in which the operating system manages all R
windows (console, graphics, Tcl/Tk, etc.) independently on the desktop. Set this configuration by
running the R GUI, choosing the menu items Edit� � and GUI Preferences� � , and then selecting
and saving the SDI option. Alternatively, go to the master configuration file Rconsole in the
\etc subdirectory of the R installation, and use a text editor to select the option MDI = no.

2. GUI tools for model exploration

 The practical task of writing appropriate code for the R Tcl/Tk package can sometimes
become daunting, particularly if the GUI window requires extensive design and change. For a
restricted set of Tk components (called widgets), PBSmodelling makes it much easier to design
and use GUIs for exploring models in R. A user needs to supply two key parts of a GUI-driven
analysis:
• a window description file (an ordinary text file) that completely specifies the desired layout

of widgets and their relationship with functions and variables in R, and
• R code that defines relevant functions, variables, and data.
This section begins with an example to illustrate the main ideas, and then gives complete details
for constructing window description files that can be used to generate GUIs.

 – 4 –

2.1. Example: Lissajous curves

 A Lissajous curve (http://mathworld.wolfram.com/LissajousCurve.html), named after one
of its inventors Jules-Antoine Lissajous, represents the dynamics of the system

sin(2) , sin[2 ()],x mt y ntπ π φ= = + (1)

where time t varies from 0 to 1. During this time interval, the variables x and y go through m and
n sinusoidal oscillations, respectively. The constant φ , which lies between 0 and 1, represents a
cycle fraction of phase shift in y relative to x. We want to design a GUI that allows us to explore
this model by plotting Lissajous curves (y vs. x) for various choices of the parameters (, ,)m n φ .
We also want to vary the number of time steps k and choose a plot that is either lines or points.

Table 1. Two text files associated with the “Lissajous Curve” project. The first gives a

description of the GUI window used to manage the graphics. The second contains R code to
draw a Lissajous curve.

———————————————————————————————————————
File 1: LissajousCurve.txt

window title="Lissajous Curve"
vector length=4 names="m n phi k" \
 labels="'x cycles' 'y cycles' 'y phase' points" \
 values="2 3 0 1000"
radio name=ptype text=lines value="l" mode=character
radio name=ptype text=points value="p" mode=character
button text=Plot function=drawLiss

File 2: LissajousCurve.r
drawLiss <- function() {
 getWinVal(scope="L");
 tt <- 2*pi*(0:k)/k;
 x <- sin(2*pi*m*tt); y <- sin(2*pi*(n*tt+phi));
 plot(x,y,type=ptype);
 invisible(NULL); }

———————————————————————————————————————

 This analysis can be accomplished with the R code and window description file shown in
Table 1. Assume that these two files reside in the current working directory and that
PBSmodelling has been installed in R. Start an R session from this directory, and type the
following three lines of code in the R command window:
> require(PBSmodelling)
> source("LissajousCurve.r")
> createWin("LissajousCurve.txt")

The first line assures that PBSmodelling is loaded, the second defines the function drawLiss
for drawing Lissajous curves, and the third creates a window that can be used to draw curves
corresponding to any choice of parameters. Figure 3 shows the resulting GUI window interface.

 – 5 –

When the Plot� � button is clicked, the curve in Figure 4 appears in the R graphics window. This
corresponds to the default parameter values:

2, 3, 0, 1000m n kφ= = = = . (2)

The GUI allows different Lissajous figures to be drawn easily. Simply change parameter values
in any of the four entry boxes, and click Plot� � .

Figure 3. GUI generated by the description file LissajousCurve.txt in Table 1. It contains

five widgets: the window titled “Lissajous Curve”, a vector of four entries, two linked radio
buttons (lines� � and points� �), and a Plot� � button.

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

x

y

Figure 4. Default graph for the “Lissajous Curve” project, obtained by clicking the Plot� � button

in Figure 3. The x variable goes through two cycles while the y variable goes through 3
cycles. A line graph is drawn through 1,000 points generated by the algorithm (1).

 – 6 –

 The window description file (Table 1) specifies a window titled “Lissajous Curve” with a
vector of four entries. These correspond to quantities with the R variable names m, n, phi, and
k. The corresponding window (Figure 3) will contain four entry boxes that allow these quantities
to be changed. A label for each quantity emphasizes its conceptual role: the number of cycles for
x or y, the phase shift for y, and the number of points plotted. Initial values correspond to those
listed in (2). The backslash (\) character indicates that a widget description (in this case, a
vector) continues on the next line. A pair of radio buttons, both corresponding to an R
variable named ptype, allow selection between “lines” and “points” when drawing the plot. The
graph (Figure 4) is actually drawn (i.e., the R function drawLiss is called) when the user
presses a button that contains the text “Plot”. In, we use the symbols � �� to designate a button
or keystroke, such as the Plot� � button or the radio buttons lines� � and points� � . These symbols
are not to be confused with talk description file tags (<>) used later (Section 6).

 The file of R code (Table 1) implements the algorithm (1) for computing k points on a
Lissajous curve. The function drawLiss has no arguments, but gets values of the R variables m,
n, phi, k, and ptype from the GUI window via a call to the PBSmodelling function
getWinVal. The argument scope="L" implies that these variables have local scope within this
function only. (Another choice scope="G" would give the variables global scope by writing
them to the user’s global environment .GlobalEnv.)

2.2. Window description file

A window description file currently supports the following widgets:

1. window – an entire new window;
2. grid – a rectangular block for placing widgets;
3. menu – a menu grouping;
4. menuitem – an item in a menu;
5. button – a button linked to an R function that runs a particular analysis and generates a

desired output, perhaps including graphics;
6. check – a check box used to turn a variable on or off, with corresponding values TRUE or

FALSE;
7. data – an aligned set of entry fields for all components of a data frame, where columns can

have different modes;
8. droplist – an entry widget with a drop down list of values;
9. entry – a field in which a scalar variable (number or string) can be altered;

10. history – a device for archiving parameter values corresponding to different model
choices, so that a “slide show” of interesting choices can be preserved;

11. image – a graphical widget that displays a GIF image file;
12. include – a pseudo widget which embeds a specified window description file within the

current window description file;
13. label – a text label;
14. matrix – an aligned set of entry fields for all components of a matrix;
15. notebook – a widget comprised of pages that can be selected by tabs, where each page is

visible when the corresponding tab is selected;

 – 7 –

16. null – a blank widget that can occupy an empty space in a grid;
17. object – an aligned set of entry fields defined by an existing R-object (vector, matrix, or

data frame);
18. progressbar – a progress indicator widget;
19. radio – one of a set of mutually exclusive radio buttons for making a particular choice;
20. slide – a slide bar that sets the value of a variable;
21. slideplus – an extended slide bar that also displays a minimum, maximum, and current

value;
22. spinbox – an entry widget for a numeric value within a given range which can be changed

with the up and down arrows;
23. table – a spreadsheet widget with scrollbars for large tabular data;
24. text – an entry box that supports multiple lines of text;
25. vector – an aligned set of entry fields for all components of a vector.

 The description file is an ordinary text file that specifies each widget on a separate line.
However, any one widget description can span multiple lines by using a backslash character (\)
to indicate the end of an incomplete line. For example, the single line:
label text="Hello World!"
is equivalent to:
label \
 text="Hello World!"

Meaningful indentation is highly recommended, but not compulsory. The three-line description
of a vector widget in Table 1 illustrates a readable style.

 Each widget has named arguments that control its behaviour, analogous to the named
arguments of a function in R. Some (required) arguments must be specified in the widget
description. Others (not required) can take default values. All widgets have a type argument
equal to one of the 25 names above, although the word type can be omitted in the description
file. Appendix A gives an alphabetic list of all these widgets, along with detailed descriptions of
all arguments. As in calls to R functions, argument names can be omitted as long as they
conform to the order specified in the detailed widget descriptions given below. Nevertheless, we
recommend that all argument names be specified, except possibly the name type, which is
always the first argument for each widget. Unlike R functions, where commas separate
arguments, the arguments in a widget description are separated by white space.

 In a description file, all argument values are treated initially as strings. In addition to
specifying a line break, the backslash can be used to indicate five special characters: single quote
\', double quote \", tab \t, newline \n, and backslash \\. If an argument value does not
include spaces or special characters, then quotes around the string are not required. Otherwise,
double quotes must be used to delineate the value of an argument. Some arguments can take a
NULL argument value; quotes are used to differentiate between a NULL object, and the text value
"NULL". Single quotes indicate strings nested within strings. For example, the vector in
Table 1 has four labels specified by the string argument
labels="'x cycles' 'y cycles' 'y phase' points"

 – 8 –

A hash mark (#) that is not within a string begins a comment, where everything on a line

after the hash mark is ignored. As mentioned above, an isolated backslash (not part of a special
character) indicates continuation onto the next line. A break can even occur in the middle of a
string, such as the long label
label text="This long label with spaces \
 spans two lines in the description file"
In this case, leading spaces in the second line are ignored, to allow meaningful formatting in the
description file. Intentional spaces in a long string should appear prior to the backslash on the
first line.

 Although the type argument (like vector) for a widget can never be abbreviated, other
arguments follow the convention used with named arguments in R function calls. For a given
widget type, the available arguments can be abbreviated, as long as the abbreviations uniquely
identify each argument. For example, the vector in Table 1 could be specified as:
vector len=4 nam="m n phi k" \
 lab="'x cycles' 'y cycles' 'y phase' points" \
 val="2 3 0 1000"

 Unlike variable names in R, widget names and their arguments are not case sensitive.
Some users may prefer to write all type variables in upper case or with an initial capital letter.
For example, the names WINDOW, VECTOR, RADIO, and BUTTON could be used to
emphasize the widgets in Table 1.

2.3. Window support functions

 PBSmodelling includes functions designed to connect R code with GUI windows. Every
window has a name argument (with default name=window), and windows with different names
can coexist. Window names must use only letters and numbers; they cannot contain a period
(dot) or any other punctuation. When running a program with multiple windows, only one
window will be current (i.e., selected by the user) at any particular time. Normally, a user selects
a window by clicking on it, but the function focusWin allows program control of the window
currently in focus. Thus, activity in one window might be used to shift the focus to another.

The function createWin uses a description file to generate one or more windows, where
each window has a distinct name (perhaps the default) taken from the file. If a window with the
specified name already exists, it will be closed before the new window is opened. When
designing and testing a GUI, this feature ensures that a new version automatically replaces the
previous one. The function closeWin, which takes a vector of window names, closes all
windows named in the vector. With no arguments, closeWin() closes all windows that are
currently open.

 Although createWin normally builds a GUI from a description file, it will also accept a
vector of strings equivalent to such a file. Thus, a file of R source code can define a GUI directly,
without the need for a separate description file. illustrates how this can be done in a simple case.

 – 9 –

To see the character vectors equivalent to a given description file (say, winDesc.txt), type the
R command:
 scan("winDesc.txt",what=character(),sep="\n")
In particular, if the description file includes a backslash or double quote character, the
corresponding R string must represent it as \\ or \", respectively. Despite this alternative of
embedding window descriptions in R source files, we recommend writing separate files to define
GUIs, except perhaps for very simple models.

Table 2. A simple file of R source code with character strings that define a GUI. No separate

window description file is required.

File: Simple.r
window description strings
winStr=c(
 "window title=Simple",
 "entry name=n value=5",
 "button function=myPlot text=\"Plot sinusoid\"");

function to plot a sinusoid
myPlot <- function() {
 getWinVal(scope="L");
 x <- seq(0,500)*2*n*pi/500;
 plot(x,sin(x),type="l"); };

commands to create the window
require(PBSmodelling); createWin(winStr,astext=TRUE)

 Internally, PBSmodelling converts a description file into a list object that is used to
generate the corresponding GUI. The functions compileDescription and parseWinFile
give lists that correspond to description files. Just as createWin can act directly on a character
vector, it can also act on a suitably defined list, rather than a file. This feature makes it possible
to replace a description file with R code that defines the corresponding list, although we
recommend against this practice in most cases.

 R programs need to share data with a GUI window. PBSmodelling provides seven
functions that deal with values of R variables named in a description file:

getWinVal................returns values from the current window;
setWinVal................sets values in the current window;
getWinAct................returns all actions (to a maximum of 50) invoked in the current window;
setWinAct................adds an action to the action vector for the current window;
getWinFun................returns the names of all R functions referenced in the current window;
clearWinValclears global values associated with the current window;
updateGUI................updates the currently active GUI with values from R’s memory.

 – 10 –

 Some models make use of a single parameter vector. In such cases the function
createVector generates a GUI directly, without the need for a corresponding description file.
We also offer a few “choosing” functions – getChoice and chooseWinVal – that invoke a
prompting GUI offering string choices. The latter writes the choice to a variable in a GUI
specified by the user.

 After using createWin to produce a GUI, the functions getWinVal and getWinFun
provide useful summaries of names declared in the current project. Furthermore, the function
getWinAct provides a record of GUI actions taken by the user, starting with the most recent and
working backwards. By default, the action associated with a widget is its type; for example a
button has default action=button. In general, however, the description file could give a
unique action name to each potential action, so that the vector would give an unambiguous
record of user actions.

 Alternatively, GUI widgets that support function arguments can take the
PBSmodelling function doAction, which evaluates code specified as a string in the widget’s
action argument. This code string can be a simple expression or a multi-line set of R-code. In
essence, doAction allows the user to implement subroutines by clicking a widget (such as a
button):

winStr=c("window title=\"doAction Demo\"",
"button text=\"See attached libraries\" width=30 pady=10 \
function=doAction action=\"x=search(); N=length(x);
mess=paste(paste(pad0(1:N,2),x), collapse=`\n`); resetGraph();
addLabel(.2,.5,mess,adj=0)\"")
createWin(winStr,astext=TRUE)

Within the action string, substitute double quotation marks "..." with bactick characters
`...`, and the function doAction will replace them with interpretable quotation marks. In
most cases (not all), escaping the quotation marks \"...\" will also work.

 The package provides a function called selectFile for opening and saving files to
directories using a GUI menu. Earlier functions (promptOpenFile, promptSaveFile) remain
available, but should be deprecated in favour of selectFile. Files opened using programs
external to R depend on file name extensions:

openFileopens a file using the default program for the file extension;
setPBSext................overrides the default program associated with an extension;
getPBSext................shows the overridden file extension and associated program.
clearPBSextclears file extensions added by setPBSext.

 If a widget invokes the function openFile, the associated action should be the file
name. By definition, openFile has the default argument getWinAct()[1].

 On a Windows platform, the native R function shell.exec (called by openFile)
automatically chooses a default from the registry. For this reason, our distribution specifies an

 – 11 –

empty list: getPBSext() returns list(). The default can, however, be overwritten by
specifying explicit list components, such as:

 setPBSext('html',
 '"c:/Program Files/Mozilla Firefox/firefox.exe" file://%f')

where %f denotes the file name in the string passed to the operating system. Unix platforms
typically lack such generic file associations, and thus require a user to specify defaults this way.

 PBSmodelling includes a history widget designed to collect interesting choices of GUI
variables so that they can be redisplayed later, rather like a slide show. This widget has buttons
to add and remove GUI settings from the current collection, to scroll backward and forward, and
to clear all entries from the collection. Other buttons allow entire history files to be saved or
loaded. The history widget defines and uses the list PBS.history in the global environment
to store a saved history.

 Normally, a user would invoke a history widget simply by including a reference to it in
the description file. However, PBSmodelling includes some support functions for customized
applications:

initHistoryinitializes data structures for holding a collection of history data;
addHistory..............saves the current window settings to the current history record;
rmHistory................removes the current record from the history;
backHistoryand
forwHistorymove backward and forward between successive history records;
firstHistoryand
lastHistorymove to the first and last records in the history;
jumpHistorymoves to a specified record in the history;
exportHistoryand
importHistorysave and load histories from files;
clearHistoryremoves all records from the current collection.

The help file for initHistory shows an example that uses these functions directly.

 Since version 2.50, we have incorporated additional functionality for GUIs stemming
from experience using this package in multi-stakeholder workshops. In particular, a new widget
called notebook now allows tabbed pages within one GUI, where each page can contain
whatever grid and widget combination the programmer wishes to present. This removes the
problem of having too many GUIs on screen when situations require multiple inputs and outputs.

 Other new widgets include drop lists and spin boxes (droplist, spinbox), scrollable
objects for data with dimensions too large to fit on screen (object), a spreadsheet-like widget
that can display and edit data in tabular format (table), an animated progress indicator
(progressbar), and an image widget to add illustrations, logos, and other visual cues (GIF
format only).

 – 12 –

2.4. Internal data

 PBSmodelling uses the hidden list variable .PBSmod in a temporary working
environment called .PBSmodEnv to store current settings and internal information needed to
communicate with the tcl/tk interface. This variable is intended for exclusive use by
PBSmodelling, and users should not alter or delete it while PBSmodelling is active. We include
the material in this section for advanced users and developers interested in further details about
the internal data used to manage GUI windows.

 The list .PBSmod contains a named component for each open window, where the
component name matches the window name. Recall that, if a window is not named explicitly, it
receives the default name=window. In addition to window names, .PBSmod contains two other
named components: $.activeWin and $.options. These names do not conflict with the
window names, because the latter cannot include a dot (.).The $.activeWin component
stores the name of the window that has most recently received user input. The $.options
component saves key values of interest to PBSmodelling, such as a component $openfile
with information that links programs to file extensions for the function openFile. See
Section 2.3 for further information.

 Any named component of .PBSmod that does not start with a dot stores information
related to the corresponding window. Each window uses a list with the following named
components:
• widgetPtrs

A list containing widget pointers. Each component has a name that matches widget name.
Only widgets with a name argument and a corresponding tk widget will appear in this list.

• widgets
A list containing information from the window description file relevant to each widget. This
list includes every widget that has a name or names argument. Widgets without names will
never be referenced again after the window has been created; consequently, information
about them is not stored for later usage.

• tkwindow
A pointer to the window created by tktoplevel().

• functions
A vector of all function names referenced in the window description.

• actions
A vector containing action strings corresponding to the most recent user actions in the
window, up to a maximum of 50. (The internal constant .maxActionSize sets this upper
limit. See the file defs.R in the distribution source code.)

Users can explore the contents of .PBSmod with the R structure command str.

Remember that an accessor function is also needed to “see” this object. For example, from the R
console, type runExamples() and select the example “CalcVor”. Then type the command
str(tcall(.PBSmod),2) to shows the list structure to a depth of 2. This reveals all the list

 – 13 –

components discussed above. Further details appear by exploring the structure to depths 3, 4, or
more. Notice also how the contents change as different examples are selected.

 The functions getWinVal, setWinVal, getWinAct, setWinAct, getWinFun,
getPBSext, and setPBSext (discussed in Section 2.3) provide methods for manipulating and
retrieving variables stored in .PBSmod. Use these, rather than direct access, to alter the internal
data. Future design modifications to PBSmodelling might change the architecture for storing the
data components, but the methods functions will continue to have their current effect.

Table 3. Sample data file for PBSmodelling. The function readList converts this file to a
list object with six components: a scalar $x, a logical vector $y, two matrices ($z,$a), and
two data frames ($b1,$b2). The matrix $a is read by column, and $b1=$b2.
———————————————————————————————————————

$x
0

$y
T F TRUE FALSE

$z
11.1 12.2 13.3 14.4
15.5 16.6 17.7 1.88e+01

$a
$$matrix ncol=2 byrow=FALSE colnames="a b"
5 1 2 3

$b1
$$data ncol=3 modes="numeric logical character" \
 byrow=TRUE colnames="N L C"
5 T aa
3 F bb
8 T cc
10.5 F dd

$b2
$$data ncol=3 modes="numeric logical character" \
 byrow=FALSE colnames="a b c"
5 3 8 10.5
T F T F
aa bb cc dd

———————————————————————————————————————

3. Functions for data exchange

 Computer models usually require data exchange between model components. For
example, as described above, the functions getWinVal and setWinVal move data between an
R program and the GUI. Other applications, such as those written separately in C, may have the

 – 14 –

ability to write data to files that R can read. In cases like this, it would be convenient to have
variable names in the C code correspond to variables with the same names in R. PBSmodelling
can facilitate this process with the functions readList and writeList, which convert a text
file to an R list and vice-versa. Another function unpackList creates local or global variables
with names that match the list components. Similarly a global or local list can be populated with
objects by name through the function packList.

 Table 3 illustrates a data file in PBS format, legible by readList. The file contains lines
with an initial dollar sign (like $x in Table 3) that specify a list component name in R, followed
by one or more lines of data. Data items are separated by white space. A single item of data
corresponds to a scalar in R, multiple items on a single line correspond to a vector, and multiple
lines of data correspond to a matrix with the number of columns determined by the first line of
data. Thus, in Table 3, $x is a scalar, $y is a vector of length 4, and $z is a 2×4 matrix. The
format also supports four possible data type definitions on a line preceded by $$:

$$ vector mode=numeric names=""
$$ matrix mode=numeric ncol rownames="" colnames="" byrow=TRUE
$$ data modes=numeric ncol rownames="" colnames byrow=TRUE
$$ array mode=numeric dim fromright=TRUE dimnames

Table 3 illustrates their use in specifying $a, $b1, and $b2. Matrices and data frames can be read
by row or column. This choice determines the order of reading the data, and white space
(including line breaks) merely signifies breaks between data items. Array objects with three or
more dimensions can be read in two ways, with indices varying first from the right or from the
left. For example, data for an array indexed by [i,j,k] are read by varying i first with fixed j
and k if fromright=TRUE. Similarly, k varies first if fromright=FALSE.

 As in widget descriptions, arguments may be omitted in favour of their defaults, and the
$$ line may be continued across multiple lines by using a backslash character \. For a matrix,
the argument ncol is required. Similarly, a data object (i.e., a data frame) must specify ncol
and a vector colnames of length ncol. Also, modes must have length 1 (so that all entries in
the data frame have the same mode) or length ncol. An array must have a complete dim
argument, a vector giving the number of dimensions for each index, and a dimnames argument,
which is a collapsed vector; the first element is the name of the first dimension, followed by each
index label in that dimension; each dimension is appended to end of the vector.

 As indicated earlier, PBSmodelling can use this specialized data format as a convenient
means of capturing data from other programs. For example, to export data from an external C
program, write C code that generates a data file in PBS format, where component names in the
file match the C variable names. Then read the resulting file into an R session with the function
readList, and use unpackList to produce local or global R variables. At this point, both R
and C share data with the same variable names. This method works well with programs written
for AD Model Builder (http://otter-rsch.ca/admodel.htm), a package used extensively in fishery
research and other fields. It uses reverse automatic differentiation (AD; Griewank 2000) for
highly efficient calculation of maximum likelihood estimates.

 – 15 –

 To considerable extent, R has native support for reading and writing a variety of text
files, including the functions scan, cat, source, dump, dget, dput, read, write,
read.table, and write.table. External programs sometimes utilize R formats for their input
data. For example, the program WinBUGS (Speigelhalter et al., 2004), which implements
Bayesian inference using Gibbs sampling, uses data files written in a list format closely related to
the R syntax produced by the dput function. If the file myData.txt has dput format, then
either of the two R commands

myData <- dget("myData.txt");
myData <- eval(parse("myData.txt"));

produces a corresponding R list object named myData.

 We should, however, add a word of caution here. When R saves array data in dput
format, it converts the array to a vector by varying the indices from left to right. For example, a
matrix with indices [i,j] is saved as a vector in which i varies for each fixed j. In effect, the
data are stored by column. This sometimes gives an unnatural visual appearance. In English, the
eye reads naturally from left to right, then down. Matrices are normally displayed by row, with
column index j varying for each fixed i. WinBUGS, supported by the R package BRugs
(Thomas 2004), requires input data formatted in this visually meaningful way. More generally,
WinBUGS reads arrays by varying the indices from right to left. The BRugs function bugsData
writes data in this format, but users must take special care in reading WinBUGS data with the
dget function.

4. Support functions for graphics and analysis

 As mentioned in the preface, we have devised a number of functions that make it easier
for us to work in R. Some of them, such as plotBubbles, relate to techniques discussed in our
published work (e.g., Richards et al. 1997; Schnute and Haigh 2007). Others just provide
convenient utilities. For example, testCol("red") shows all colours in the palette colors()
that contain the string "red". We also provide support for a few analytical methods, such as
function minimization. This section gives a brief description of PBSmodelling support
functions. See the help files for further information.

4.1. Graphics utilities

 In many of the graphical functions, we utilize a PBSmodelling function called
evalCall. The functionality of evalCall is similar to that of do.call in the base package;
however, we have geared our function towards rationalising arguments passed through the dots
(...) argument so that no conflicts occur with formal arguments. This way the user can override
predefined arguments in functions embedded within functions without the parent function having
to recognize all the arguments in the embedded function.

resetGraph..............Reset various graphics parameters to defaults, with mfrow=c(1,1).

 – 16 –

expandGraphSet various graphics parameters to make graphs fill out available space.

drawBarsDraw a linear bar plot on the current graph.
genMatrix................Generate a test matrix for use in plotBubbles.
plotACFPlot autocorrelation bars (ACF) from a data frame, matrix, or vector.
plotAspPlot a graph with a prescribed aspect ratio, preserving xlim and ylim.
plotBubblesConstruct a bubble plot for a matrix.
plotCsum..................Plot cumulative sum of a vector, with value added.
plotDensPlot density curves from a data frame, matrix, or vector.
plotFriedEggsRender a pairs plot as fried eggs (density contours) and beer (correlations).
....................................(Code courtesy of Dr. Steve Martell, Fisheries Science Centre, UBC.)
plotTrace................Plot trace lines from a data frame, matrix, or vector.

addArrows................Call the arrows function using relative (0:1) coordinates.
addLegend................Add a legend using relative (0:1) coordinates.
addLabelAdd a panel label using relative (0:1) coordinates.

pickColPick a colour from a complete palette and get the hexadecimal code.
testAlpha................Display various alpha transparency values.
testColDisplay named colours available based on a set of strings.
testLtyDisplay line types available.
testLwdDisplay line widths.
testPchDisplay plotting symbols and backslash characters.

4.2. Data management

clearAllFunction to clear all data in the global environment.
pad0...........................Pad numbers with leading zeroes (string).
show0.........................Show decimal places including zeroes (string).
unpackList..............Unpack the objects in a list and make them available locally or globally.
view...........................View the first/last/random n rows of a data frame or matrix.

4.3. Function minimization and maximum likelihood

Three functions in the stat package support function minimization in R: nlm, nlminb,
and optim. These tend to perform slowly compared with other software alternatives, due partly
to R’s interpretive function evaluation. Nevertheless, for small problems they offer a convenient
means of analysis, based entirely on code written in R. Our examples illustrate some of the
possibilities. For large problems coded in other software, we still like to write independent code
for a function in R, based only on the model documentation. If both versions of the software
produce the same function values at selected values of the function arguments, then we have
greater confidence that we have represented our model correctly in code. In that context, R
serves as a valuable debugging tool.

 – 17 –

PBSmodelling provides a support function calcMin that can use any method available
in the stat package to find the vector nx x

1̂
ˆ(, ,)� of length n that minimizes the function

ny f x x
1
(, ,)� � . In practice, we usually apply this to the negative log likelihood for a statistical

model, where the variables ix are parameters. We define a new class parVec, which is a data
frame with four columns:
• val – the actual value of parameter ix ;

• min – a minimum allowable value of ix ;

• max – a maximum allowable value of ix ; and
• active – a logical value that determines whether or not the minimization algorithm should

vary the value of ix . If active=F, then ix remains unchanged at the value val.

Internally, calcMin scales active variables x to surrogate variable s in the range [0,1],
where x and s are related by the inverse formulas (Schnute and Richards 1995, p. 2072):

� � � �s sx x x x x x x 2
min max min min max min

1 cos()
sin

2 2
� �� �� �	 ��
 � �
 � 	 �	 �	� �

, (4.3a)

x x x x x

s
x x x x

max min min

max min max min

21 2
acos asin

� �

� �
 � ��	 �	� ��	 ��	 � �� �
. (4.3b)

All these formulas represent equivalent forms of a one-to-one relationship x s , where
x x x
min max
� � and s0 1� � . Readers may find the second versions of (4.3a) and (4.3b) more

intuitive (with a familiar “arc sine square root” transformation in (4.3b)), but the code uses the
first versions for a possible improvement in computational efficiency by avoiding square and
square root functions. The minimization algorithm works entirely with surrogate variables,
which may have dimension smaller than n if some variables ix are not active. The function
scalePar scales an object x of class parVec x to a vector s of surrogates via the formula (4.3b).
Similarly, restorePar recovers x from s via (4.3a).

We also provide a convenient function GT0 that restricts a numeric variable x to a
positive value defined by

GT0

2

,

(,) 1 , 0
2

, 0
2

�

�
� �

�

�

���� ���� � �� � �� � ��� 	 ��
 � �	� � ��	 �� 	� �� �� � ����� �����

x x

x
x x

x

 . (4.3c)

 – 18 –

The notation GT0 denotes “greater than zero”. This function preserves the value of x if x �� ,

and for smaller values x it is always true that GT0(,)
2
�

� �x . The function (4.3c) also has a

continuous first derivative that makes sense locally on a small scale of size � . This property
makes it useful for avoiding unrealistic numbers that might be negative or zero, particularly
when the minimization algorithm uses derivatives of the objective function.

In summary, PBSmodelling has four functions that facilitate function minimization.
calcMinCalculate the minimum of a user-defined function.
scaleParScale parameters to surrogates in the range [0,1].
restorePar..............Restore actual parameters from surrogate values.
GT0Restrict a numeric variable to a positive value (“Greater Than 0”).

4.4. Handy utilities

calcFibCalculate Fibonacci numbers (included to illustrate the use of C code).
calcGMCalculate the geometric mean of a vector of numbers.
clearRcon................Clear the R console (code that executes ‘Ctrl L’).
convSlashesConvert pathway slashes from UNIX ‘/’ to DOS ‘\\’. format.
findPatFind all strings that include any string in a vector of patterns.
getYesPrompt the user with a GUI to choose yes or no.
isWhatIdentify an object by its class and attributes
pause.........................Pause, typically between graphics displays.
showAlert................Display a message in an alert window.
showArgsShow the arguments for a specified widget in Appendix A.
showHelpDisplay the Help Page for specified packages installed on user’s system.
showPacks................Show packages required, but not installed on a user’s system.
testWidgetsGUI to test all widgets listed in Appendix A.
view...........................View the first/last/random n lines of a (potentially large) object.
viewCodeView R code for all functions in a specified package on the user’s system.

5. Functions for project management

 A project to design and write software typically involves keeping track of numerous
component files that contain material at various stages of progress. Some contain input, such as
source code, data, or documentation. Others contain various stages of output, such as compiled
code, processed documents, graphs, and other analytic results. Specialized software, such as C
compilers, text processors (like TeX), database utilities, and R itself play a role in converting the
input to the output. Along the way, intermediate files often get created that ultimately need to be
removed to give a clean result. GUI tools in PBSmodelling can assist a user in managing such
projects.

For simplicity, we envisage a project as a collection of files in the current working
directory that typically share a common prefix but also have various possible extensions, such as

 – 19 –

.c, .h, .o, .so, .dll, and .exe. We provide a GUI that illustrates a special case of project
management. It allows a user to create and compile a C function, load it into R, run it, and
compare the results with a similar function coded entirely in R. See the companion functions:

loadC.........................Launch a GUI for compiling and loading C code.
compileCCompile a C file into a shared library object.

5.1. Project options

Projects commonly involve specific paths and filenames associated with applications and
binary libraries. To preserve information about these and other settings, PBSmodelling provides
an S4 class PBSoptions for defining options, editing them in a GUI, and saving them to a local
file. Instances of PBSoptions are independent of each other. We recommend that users create a
distinct PBSoptions object for each distinct project.

Internally, an object of class PBSoptions contains (1) the options themselves as a
(possibly empty) list, (2) a default file name in which to save the options, and (3) a default prefix
for recognizing entries in a GUI that correspond to options. For example, the following code
creates and displays a PBSoptions object called myOpts:

> # Create myOpts
> myOpts <- new("PBSoptions",filename="myOpts.txt",
+ initial.options=list(a="a",b="b"),gui.prefix="PBSopt")

> # Display myOpts
> myOpts
filename: myOpts.txt
gui.prefix: PBSopt
Options:
 $ a: chr "a"
 $ b: chr "b"

 More generally, the new command (via the initialize method for class PBSoptions)
first attempts to load previously saved values from the file filename. If the attempt fails or any
options are missing, new assigns default options from initial.options. Users should
generally save the newly created PBSoptions object in the global environment to facilitate the
retrieval and modification of options from various functions in different scopes. For more details
on object initialization, consult the PBSoptions class documentation.

 The following functions allow users to retrieve or modify the values stored in a
PBSoptions object:

getOptions..........................retrieve options from the object;
setOptions..........................add or modify options in the object;

getOptionsPrefixretrieve the prefix that identifies widget variable names;
setOptionsPrefixmodify the prefix value;

 – 20 –

getOptionsFileNameretrieve the default filename;
setOptionsFileNamemodify the default filename.

 Potentially, options can exist at three levels: a GUI window, internal R memory, or a file.
They become active when they exist in internal memory as part of a PBSoptions object. In a
GUI window with numerous entry fields, the gui.prefix identifies those fields that correspond
to options. In the example above, where gui.prefix="PBSopt", an entry field with
name=PBSoptCpath would correspond to the option Cpath in a PBSoptions object. This
naming convention allows options to be displayed and modified in a GUI. The following support
functions allow a user to move options between a PBSoptions object and GUIs or files:

loadOptionsGUI.................load options from the object into a GUI;
saveOptionsGUI.................save options from a GUI in the object;

loadOptionsload options from a file into the object;
saveOptionssave options from the object into a file.

 The structures and methods described above make it easy to prescribe options, modify
them in a GUI, and save their values in files. A user typically develops a project in a directory
where a particular file preserves the options between R sessions. More generally, files with
distinct names can preserve distinct sets of options. An R function can automatically initialize
the project by creating PBSoptions objects from the corresponding files.

 From a technical perspective, PBSoptions objects have a single slot instance. This
contains a hidden environment that is created on object initialization and preserved when objects
are copied. Effectively, the class definition allows objects to be passed by reference, rather than
by value. The methods can manipulate the original object and avoid the need for returning a new
modified PBSoptions object.

5.2. Project management utilities

 Sometimes projects have an association with an R package. For this reason, we include
functions that can open files and examples from an R package installed on the user’s computer:

openPackageFile...............Open a file from a package subdirectory
.. (deprecated, use openFile);
openExamplesOpen files from the examples subdirectory of a package.

 As discussed above, a project typically includes multiple files with the same prefix and a
potential set of suffixes. (A suffix doesn’t necessarily have to be a file extension. For example,
you can use the prefix foo and the suffix -bar.xxx to match the file foo-bar.xxx where the
extension is .xxx.) We provide a utility to open these files, provided that their extensions have
associated applications. We also allow a user to search the current working directory for
potential prefixes, or to browse for a working directory and find such prefixes. Furthermore, a
project can be “cleaned” by removing files with specified suffixes. See the functions:

 – 21 –

openProjFilesopen files with a common prefix;
findPrefix..........................find a prefix based on names of existing files;
findSuffix..........................find suffix of system files with specified prefix;
setwdGUIbrowse for a working directory;
cleanProj............................launch a GUI for project file deletion;
cleanWDlaunch a GUI to delete files from the current working directory.

6. Support for lectures and workshops

 Speakers giving lectures and workshops about R often want their audience to experience
the consequences of running some R code. Participants sometimes find themselves scrambling to
copy code from the visual presentation, related web sites, or files distributed by the speaker.
During this process, the actual point of the lecture can get lost. Focus shifts from R concepts to
typing, other mechanical issues, and a struggle to keep up with the speaker’s activity.

 PBSmodelling offers a potential solution to this problem that preserves an interactive
spirit while ensuring that participants easily see the results from planned segments of R code. We
encapsulate our approach in the two functions:

showResdisplay a string of R code and show results on the R console;
presentTalkpresent a talk on the R console, based on a talk description file.

 The first provides a minor tool that sometimes comes in handy. The second implements a
much more general idea. Just as a window description file defines a GUI window, a talk
description file defines a talk that runs on the R console. A small GUI makes it easy to step
through the talk interactively, with easy movement forward or backward. Planned results appear
on the R console, and yet the console remains available for additional spontaneous code entry.

 The author of a talk writes a text file that contemplates a sequence of actions, such as
displaying text, running R code, and opening files. If audience members receive this file in
advance, they can readily follow every step during the talk by simple mouse clicks on the GUI.
The file also gives them an opportunity to review the concepts at a convenient later time. We
anticipate R tutorials written as talk description files, and we may eventually add some to
PBSmodelling.

 For simplicity, our talk description files conform to the XML specifications
(http://en.wikipedia.org/wiki/XML), and the R package XML is required to read them. We
support the following five XML elements:

<talk> ... </talk> to delimit an entire talk;
<section> ... </section> to delimit a section within a talk;
<text> ... </text> to delimit text that should appear in the R console;
<file> ... </file> to delimit names of files that should be opened;
<code> ... </code> to delimit code that should run in the R console.

 – 22 –

Consistent with the standard format, each element has an initial tag in angle brackets,
intermediate material (indicated here by ...), and a final tag with a backslash character (/)
prefixed to the initial tag. Each initial tag must be closed with a corresponding final tag.

 Initial tags can include arguments, for which the values must appear in double or single
quotes. Appendix B lists the complete syntax for all five tags. For example, the element

<code show="TRUE" print="TRUE" break="all"> plot(cars) </code>

would show the string plot(cars) on the R console, pause (i.e., break), generate the plot, print
any related output on the R console, and then pause again.

 As illustrated in Table 1, a talk description file must contain exactly one <talk> element
as the root of a branching tree. The <talk> can contain one or more <section> branches. In
turn, each <section> can contain any mixture of leaf nodes: <text>, <file>, or <code>.
The <talk> and <section> elements play organizational roles, whereas the leaf nodes
correspond to concrete actions. A <text> element specifies ordinary text, such as lecture notes,
that should appear in the R console. A <file> element causes one or more files to open at this
point of the talk. For example, it might be desirable to display a file of R code or open a
PowerPoint file. A <code> element causes code to be displayed and run in the R console.
Appendix B gives complete syntax details for talk description files.

 Comments within a talk description file follow the standard XML format:

<!-- ... -->

where ... denotes the text of the comment. XML has five standard reserved characters as
shown in the list below, where “&” serves as an escape character that allows these characters to
be interrupted as ordinary text.

Character Escaped Character Description
< < Less-than character starts an element tag
> > Greater-than character ends an element tag
& & Ampersand is used for escaping characters
" " Used for argument values in a leading tag
' ' Used for argument values in a leading tag

If <text> or <code> elements contain numerous characters that must be escaped, then the
syntax:

<![CDATA[...]]>

allows any raw character data (...) to be included.

 – 23 –

Table 4. A talk description file swisstalk.xml designed for use with the PBSmodelling

function presentTalk. This talk examines method dispatch for the summary function and
illustrates how it applies to the swiss data set, which has class data.frame.

———————————————————————————————————————
File: swisstalk.xml

<!-- We will use xml comments. There must be only ONE document root. -->
<talk name="Swiss">

<!-- SECTION 1. summary method -->
<section name="Methods" button="TRUE">

<text break="T">
This short talk examines the "summary" method
and applies it to the "swiss" dataset.</text>.
<text break="T">
The talk itself comes from a talk description file.
The next step should open that file (swisstalk.xml),
provided that a program is associated with xml files. </text>

<file name="swisstalk" button="TRUE">swisstalk.xml</file>

<text break="F">
"summary" is a function (class function). </text>

<code break="print">
isWhat(summary) # isWhat() from PBSmodelling</code>
<text break="F">"summary" is generic:</text>
<code break="print">summary</code>
<text break="F">"summary" has many methods:</text>
<code break="print"> methods(summary)</code>

</section>

<!-- SECTION 2. The "swiss" data -->
<section name="Data" button="TRUE">

<text break="F"> "swiss" is a data frame (class data.frame):</text>
<code> isWhat(swiss)</code>
<text break="F"> You can read about the data here:</text>
<code> help(swiss) # open the help file</code>
<text break="F"> Apply "summary" to Swiss:</text>
<code break="print"> summary(swiss)</code>
<text break="F"> Print the first 3 records:</text>
<code break="print"> head(swiss,3)</code>
<text break="F"> Display the data with the "plot" method . . .</text>
<code print="F"> plot(swiss,gap=0)</code>
<text> THE END .. THANKS FOR WATCHING!</text>

</section>
</talk>

———————————————————————————————————————

 – 24 –

Figure 5. The GUI generated by presentTalk from the talk description file in Table 4.

 The “Swiss Talk” example in PBSmodelling allows a user to view the results from the
short talk description file in Table 4. The first section (named “Methods”) starts with a brief text
message in the R console. The next step displays the description file itself (swisstalk.xml), as
an illustration of how presentTalk works. Then the audience sees aspects of R’s polymorphic
function summary. The isWhat function (from PBSmodelling) shows its properties, and the
methods function reveals the diverse ways in which summary has been overloaded. The second
section (named “Data”) shows properties of the data frame swiss, as well as the consequences
of applying summary and plot to this object. The talk closes with a classic message showing
“THE END”.

 The code elements supported by presentTalk give an author considerable scope for
introducing breaks and other features into the presentation. Furthermore, the root <talk> block
in the description file produces a corresponding GUI, similar to the one shown in Figure 5. This
enables the speaker to move stepwise through the presentation, via the “Go” button, analogous to
moving through slides in a conventional talk. After each step, the R console remains open for
additional code written on the spur of the moment. Furthermore, the menu items (“Sections”,
“Files”) allow for quick movement among sections, as well as spontaneous opening of files. For
example, the speaker might choose to open and close the same file several times during a
presentation. This can be programmed into the talk description or done spontaneously through
the “Files” menu.

 In addition to the automatic menu items, a user can add buttons to the GUI that
accomplish similar purposes. For example, Figure 5 shows buttons that will move to the start of
the sections “Methods” and “Data” or open the “swisstalk” description file. The “Back” button
moves back to the previous slide, and individual slides can be selected via a droplist widget. The
blue buttons allow movement among sections – “Prev” to the previous section, “Restart” to the
start of the current section, and “Next” to the next section.

 Code executed during a talk presentation potentially changes objects in the current global
environment. Although the GUI allows quick jumps among slide and sections of talks, the
speaker needs to remain aware of objects currently in the global environment. For example, if the
first section of the talk creates objects needed by the second section, it makes no sense to skip to
the second before the first has done its work. In some cases, it may help to start a talk or section

 – 25 –

with <code> clearAll() </code> to ensure that previous objects in the environment don’t
conflict with those now being created. On the other hand, depending on the author’s intent, this
could be entirely the wrong thing to do.

 In practice, a speaker would present his or her talk from a laptop connected to a digital
projector. In this context, it is almost essential to choose large fonts in the R console. When
writing a talk, it helps to view it with font sizes and R console dimensions chosen with the final
presentation in mind.

7. Examples

 As mentioned in the Preface, PBSmodelling includes a variety of examples that illustrate
applications based on this and other packages. Generally, each example contains documentation,
R code, a window description file, and (if required) other supporting files. All relevant files
appear in the R library directory PBSmodelling\Examples. An example named xxx typically
has corresponding files xxxDoc.txt or xxxDoc.pdf (documentation), xxx.r (R code), and
xxxWin.txt (a window description). In the GUI for each example, buttons labelled Docs, R
Code, and Window open these files provided that suitable programs have been associated
with the file extensions *.txt, *.pdf, and *.r. In particular, a suitable program (such as the
Acrobat Reader) must be installed for reading *.pdf files, and you may need to associate a text
file editor with *.r. On some systems, it may be necessary to use the function setPBSext to
define these associations, as discussed earlier in Section 2.3.

 Use the function runExamples() to view all examples currently available in
PBSmodelling. This procedure copies all relevant files to a temporary directory located on the
path defined by the environment variable Temp. It then opens a window in which radio buttons
allow you to select any particular case. Closing the menu window causes the temporary files and
related data to be cleaned up, and returns to the initial working directory.

Alternatively, you can copy all the files from PBSmodelling\Examples to a directory
of your choice and open R in that working directory. To run example xxx, type
source("xxx.r") on the R command line. For instance, source("LissFig.r") creates a
window (from the description file LissFigWin.txt) that can be used to draw the Lissajous
figures described in Section 2.1. The built-in example also includes a history widget for
collecting settings that the user wishes to retain.

 The examples documented here illustrate only some of those available in version 1 of
PBSmodelling. For instance, we also include a TestFuns GUI that we have used as a tool for
debugging various functions in the package. In future versions, we plan to add more examples
that illustrate important modelling concepts and provide convenient supplementary materials for
university courses in fisheries, biology, ecology, statistics, and mathematics. The function
runExamples() should always represent the complete list currently available, and the Docs
button for each case should link to the appropriate documentation.

 – 26 –

The nine examples presented in this section illustrate some of the possibilities available
in PBSmodelling, although the documentation may be somewhat out of date. For example, the
figures in this report may not correctly represent current versions of the GUIs and their
associated graphical output. Use the Docs button to read the most current information for each
example. If this seems rather primitive, please wait for improvements in future versions.

7.1. Random variables

7.1.1. RanVars – Random variables

-2 0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

pd
f

Normal
Lognormal
Gamma

Figure 6. RanVars GUI (left) and density plot (right). Simulations are based on 500 random

draws with mean =1 and SD = 1.

 The RanVars example draws samples from three continuous random distributions
(normal, lognormal, and gamma) with a common mean μ and standard deviation σ . The
documentation (“Docs” button) shows relevant formulas that connect distribution parameters
with the moments μ and σ Estimated parameter values from a simulation (invoked by
“Simulate”) are displayed in the GUI alongside the true values (Figure 6). We use only the
straightforward moment formulas in the documentation, without sample bias correction formulas
like those described by Aitchison and Brown (1969). Three buttons at the bottom of the GUI
portray the data visually as density curves, cumulative proportions, and paired scatter plots.

 – 27 –

7.1.2. RanProp – Random proportions

p1

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

p2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

p3

Figure 7. RanProp GUI (left) and pairs plot (right). Simulations are based on 200 random

draws where n = 10 for the multinomial and Dirichlet distributions and σ = 0.1 for the
logistic-normal distribution. The pairs plot portrays results for the Dirichlet.

 The RanProp example simulates up to five random proportions drawn from one of three
distributions – multinomial, Dirichlet, and logistic-normal. The observed proportion means and
standard deviations are reported in the GUI (Figure 7), and a graphical display renders the points
as a paired scatter plot. After defining options in the GUI, including the vector “pvec” of true
underlying proportions, press “Go”. Schnute and Haigh (2007) provide further technical details
about these three distributions.

 – 28 –

7.1.3. SineNorm – Sine normal

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

x (xm = 0, xs = 0.1)

y

Figure 8. SineNorm GUI (left) and plot (right). Simulations are based on 500 random draws of

sin(2)y xπ= , where x is normal with mean 0μ = and standard deviation 0.1σ = . Blue
points portray jittered values of x, and red points show corresponding values of y.

 The SineNorm example illustrates a somewhat unconventional random variable

sin(2)y xπ= , where x is normal. The GUI allows you to specify the mean μ and standard
deviation σ of x. If 0μ = and σ is small, the transformation is nearly linear, so that y is
approximately normal. If σ is large, the transformation concentrates y near -1 and 1. Figure 8
illustrates the transformation when σ has the moderate value 0.1. Try 10σ = to see how values
y tend to occur near the peaks and troughs of the sine function, where the slope is relatively flat.

 – 29 –

7.1.4. CalcVor – Calculate Voronoi tessellations

-2 -1 0 1 2

2
4

6
8

X

Y

Figure 9. CalcVor GUI (left) and plot (right). Tessellation of random points (red) that are

normally distributed on the x-axis (mean=0, sd=1) and gamma-distributed on the y-axis
(shape=8, rate=2).

 The CalcVor example calls PBSmapping’s calcVoronoi function, which calculates
the Voronoi (Dirichlet) tessellation for a set of points using the deldir function in the CRAN
package deldir. The GUI accepts two arguments for each random distribution represented on
each axis. The underlying functions and their arguments are:

Distribution Function Argument 1 Argument 2
Uniform runif min max
Normal rnorm mean sd
Gamma rgamma shape rate
Log normal rlnorm meanlog sdlog
Logistic rlogis location scale
Poisson rpois lambda ---

 – 30 –

7.2. Statistical analyses

7.2.1. LinReg – Linear regression

5 10 15 20 25

0
50

10
0

speed

di
st

a = -17.6
b = 3.93

Figure 10. LinReg GUI (left) and regression plot (right). The linear regression uses the cars

dataset (n=50) to predict dist vs. speed. The plot shows observations (green circles), fitted
line (solid blue line), the 95% confidence limits of the fitted model (solid red lines), the 95%
CL of the data (dashed purple lines), and the fits using the Bayes posterior estimates of (a,b)
(gold lines).

 The example LinReg estimates parameters in a linear regression y a bx= + using either
simulated data or data objects that come with the R-package. We compare a classical frequentist
regression with results from Bayesian analysis, using the BRugs package to interface with the
program WinBUGS. After selecting various data options, “Pairs Plot” shows a pairs plot (,)x y
and “Classic Regression” adds confidence limits (at “p-level”) from regression theory. Red and
violet curves show bounds for a prediction or a new observation, respectively, each conditional
on x. If the data came from simulation, a blue line portrays the truth, with specified values a and
b, that must be estimated from the data.

 A corresponding Bayesian analysis uses the WinBUGS model shown by pressing
“Model”. Choose parameters to monitor (normally all of them): the intercept a, the slope b, and
the predictive standard deviation σ . After specifying a number of sample chains for the MCMC
sample, press “Compile” to compile the model with these settings. “Update” generates samples
in “Length” increments. Additional buttons at the bottom of the GUI allow you to explore the
MCMC output. Posterior samples of (,)a b correspond to sample lines. The “Regression” button
illustrates these in relationship to confidence limits from a frequentist analysis (Figure 10).

 – 31 –

7.2.2. MarkRec – Mark-recovery

0 500000 1000000 1500000 2000000 2500000

0.
0

e+
00

1.
5

e-
06

'N'

0.000 0.001 0.002 0.003 0.004

0
20

0
60

0
'p'

Figure 11. MarkRec GUI (left) and density plots (right). A low recovery of marked fish can

lead to fat tails in N due to occasional large spikes in the population estimate.

 The example MarkRec performs a Bayesian analysis of a mark-recovery experiment in
which M fish are marked and allowed to disperse randomly in the population. Later, a sample of
size S is removed from the population and R marks are recovered. Both the total population N
and the marked proportion p are unknown, where

M Rp
N S

= ≅ .

In one version of the theory, R is binomially distributed with probability p in a sample of size S,
and the above approximation suggests the estimate
ˆ S MN M S

R R
= = .

When recoveries are low (0R ≈), the posterior distribution of N exhibits a fat tail (Figure 11).

 As in LinReg, “Model” shows the MarkRec model for WinBUGS, which (deliberately)
includes an illegitimate prior that depends on the data. By increasing an initially small quantity
ε , this fake prior allows the tail of N values to be arbitrarily clipped. Schnute (2006) gives some
historical perspective to this analysis, in the context of work by W.E. Ricker.

 – 32 –

7.2.3. CCA – Catch-curve analysis

Figure 12. CCA GUI (left) and parameter pairs plot (right). Comparison of Bayes posterior

distribution of CCA model parameter estimates from chain 1 (N=100). Symbols indicate
means (blue squares) and modes (red triangles). Diagonal shows parameter estimate
distributions.

 The example CCA illustrates a catch-curve model proposed by Schnute and Haigh (2007).
It incorporates effects of survival, selectivity, and recruitment anomalies on age structure data
from a single year. After making various model choices, press “Set”, “NLM” (which may take
several seconds), and “Plot” to view the maximum likelihood estimates and their relationship
with the data. A WinBUGS model (“Model”) allows us to calculate posterior distributions.
(See the last few lines of “Model”.) As in MarkRec, select parameters to monitor, specify a
number of chains, and “Compile” the model. “Update”s may be slow, but eventually they
produce interesting posterior samples (Figure 12). “Docs” gives details of the deterministic
model, and the Dirichlet distribution is used to describe error in the observed proportion.

 We include this example to illustrate a somewhat realistic WinBUGS model that can be
used to estimate parameters for a population dynamics model. Further information can be found
in Schnute and Haigh (2007). PBSmodelling includes the data for this example as the matrix
CCA.qbr.

 – 33 –

7.3. Other applications

7.3.1. FishRes – Fishery reserve

0 20 40 60 80

0

10

20

30

40

50

N

Reserve Fishery Total

0 20 40 60 80

-15

-10

-5

0

dN
/d

t

0 20 40 60 80

0.0

0.1

0.2

0.3

0.4

0.5

0.6

F

0 20 40 60 80

0

5

10

15

20

25

C

time
Figure 13. FishRes – Recovery of a heavily fished population after establishing a reserve. The

GUI (left) shows all input values (parameters and controls). The selected continuous time
model uses input values common to both models (white background) and values specific to
the continuous model (blue background). Corresponding values are computed for the discrete
model (yellow background). Output trajectories (right) trace various results (N = population,
dN/dt = instantaneous change in population, F = instantaneous fishing mortality,
C = instantaneous catch) for the reserve and fishery. Fishing mortality follows a sinusoid
determined by minF , maxF , and the cycle length n .

 The example FishRes (Figure 13) models a fish population associated with a marine
reserve in continuous or discrete time (delay differential or difference equations, respectively).
For details see Schnute et al. (2007), which can be viewed by pressing the Docs button in the
GUI. The R packages akima, PBSddesolve, and odesolve are required.

 – 34 –

7.3.2. FishTows – Fishery tows

0 20 40 60 80 100
0

20

40

60

80

100

0 20 40 60 80 100
0

20

40

60

80

100

Figure 14. FishTows GUI (left) and simulated tow track (right). Tow track plots show 40

random tows in a square with side length 100. Each tow has width 2, and the rectangle
encompasses 10,000 square units. Top: The individual rectangles, with 160 vertices, have
areas that sum to 4,445 square units. Bottom: The union includes a complex polygon (red)
and three isolated rectangles (blue, green, yellow) that cover only 3,455 square units. The
complex polygon (red) has 547 vertices and 91 holes.

 The example FishTows provides a simulator of fishery tow tracks using the
PBSmapping package. The example demonstrates the difference between swept area and area
impacted by trawls that often cover the same ground repeatedly. This application can be regarded
an exotic random number generator, where tows initially join two points picked from a uniform
random distribution within a square of a given side length. Three parameters (the number of
tows, the tow width, the side length) determine several random variables, including the mean tow
length, the areas swept and impacted, the numbers of polygons and holes in the union set of
tows, and the number of vertices in the union. Each of these would also have a variance and an
overall distribution generated by many runs of this example.

 – 35 –

References

Aitchison, J., and Brown, J.A.C. 1969. The lognormal distribution, with special reference to its

uses in economics. Cambridge University Press. Cambridge, UK. xviii + 176 p.

Chambers, J.M. 2008. Software for data analysis: Programming with R. Springer Science +

Business Media, LLC. New York, NY. xiv + 498 p.

Daalgard, P. 2001. A primer on the R Tcl/Tk package. R News 1 (3): 27–31, September 2001.

URL: http://CRAN.R-project.org/doc/Rnews/

Daalgard, P. 2002. Changes to the R Tcl/Tk package. R News 2 (3): 25–27, December 2002.

URL: http://CRAN.R-project.org/doc/Rnews/

Griewank A. (2000) Evaluating derivatives: principles and techniques of algorithmic

differentiation. Frontiers in Applied Mathematics 19. Society for Industrial and Applied
Mathematics

Kronlund, A.R., Cox, S.P., and Cleary, J.S. 2010. mseR: Management Strategy Evaluation in R,

Version 2.0. Canadian Technical Report of Fisheries and Aquatic Sciences. In press.

Ligges, U. 2003. R Help Desk: Package Management. R News 3 (3), 37–39. URL:

http://CRAN.R-project.org/doc/Rnews/

Ligges, U, and Murdoch, D. 2005. R Help Desk: Make 'R CMD' work under Windows – an

example. R News 5 (2), 27–28. URL: http://CRAN.R-project.org/doc/Rnews/

Mittertreiner, A., and Schnute, J. 1985. Simplex: a manual and software package for easy

nonlinear parameter estimation and interpretation in fishery research. Canadian Technical
Report of Fisheries Aquatic Sciences 1384: xi + 90 p.

Ousterhout, J.K. 1994. Tcl and the Tk toolkit. Addison-Wesley, Boston, MA. 458 p.

R Development Core Team (RDCT) (2011a). R: A language and environment for statistical

computing. R Foundation for Statistical Computing, Vienna, Austria.
ISBN 3-900051-07-0. URL http://www.R-project.org/.

R Development Core Team (RDCT) (2011b). Writing R extensions. Version 2.13.1 (2011-07-

08). R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-11-9.

Raymond, E. 2000. The cathedral and the bazaar. Available online at:

http://catb.org/~esr/writings/homesteading/cathedral-bazaar/

Richards, L.J., Schnute, J.T., and Olsen, N. 1997. Visualizing catch-age analysis: a case study.

Canadian Journal of Fisheries and Aquatic Sciences 54: 1646–1658.

 – 36 –

Schnute, J. 1982. A manual for easy nonlinear parameter estimation in fishery research with
interactive microcomputer programs. . Canadian Technical Report of Fisheries and
Aquatic Sciences 1140. xvi + 115 pp.

Schnute, J.T. 2006. Curiosity, recruitment, and chaos: a tribute to Bill Ricker’s inquiring mind.

Environmental Biology of Fishes 75: 95–110.

Schnute, J.T., Boers, N.M., and Haigh, R. 2003. PBS software: maps, spatial analysis, and other

utilities. Canadian Technical Report of Fisheries and Aquatic Sciences 2496. viii+82 pp.

Schnute, J.T., Boers, N.M., and Haigh, R. 2004. PBS Mapping 2: user’s guide. Canadian

Technical Report of Fisheries and Aquatic Sciences 2549. viii + 126 pp.

Schnute, J.T., and Haigh, R. 2007. Compositional analysis of catch curve data with an

application to Sebastes maliger. ICES Journal of Marine Science 64: 218-233.
Available at http://icesjms.oxfordjournals.org/content/vol64/issue2/index.dtl, reference
number doi:10.1093/icesjms/fsl024.

Schnute, J.T., Haigh, R., and Couture-Beil, A. 2007. Mathematical models of fish populations in

marine reserves. Report on a Collaborative Project between Malaspina University-
College and the Pacific Biological Station. February 2007, 24 pp.
(File FishResDoc.pdf available in the package PBSmodelling.)

Schnute, J.T., and Richards, L.J. 1995. The influence of error on population estimates from

catch-age models. Canadian Journal of Fisheries and Aquatic Sciences, 52: 2063–2077.

Spiegelhalter, D., Thomas, A., Best, N., and Lunn, D. 2004. WinBUGS User Manual, version

2.0. Available at http://mathstat.helsinki.fi/openbugs/.

Thomas, N. 2004. BRugs User Manual (the R interface to BUGS), version 1.0. Available at

http://mathstat.helsinki.fi/openbugs/.

 – 37 –

Appendix A. Widget descriptions

 This appendix lists PBSmodelling widgets in alphabetical order, except for “Window”
which must exist before other widgets can be placed within it. Following a Tcl/Tk standard, we
use a recursive grid design that allows grids within grids for flexible widget arrangement. The
grid widget makes this possible. Furthermore, the notebook widget allows parts of a window
to be selected by tabs, as in many other GUI applications.

For each widget, we include a brief description, a usage line showing the default
arguments, a detailed list of arguments, and an illustrated example. In specifying a widget, the
user can arrange named arguments in any order. If arguments are not named, they must appear in
the order specified by the argument list, similar to named arguments in an R function.

 The particular argument sticky needs a bit of explanation. It must be a string with zero
or more of the characters N, E, W, or S that ‘stick’ the widget to the top, right, left, or bottom of its
grid cell. These letters can have either upper or lower case and can appear in any order. The
empty string (sticky="") puts the widget in a central position of the cell. A string of length 1
binds the widget to the corresponding side (north, east, west, or south). The combinations NE, SE,
SW, or NW will bind the widget to one of the corners. The combinations NS or EW will stretch the
widget vertically or horizontally to the limits of its grid cell, while NEWS will stretch the widget
in all directions to fill the cell.

Window

Description
Create a new window. Windows are used as a palette upon which widgets are placed. Each
open window has a unique name. The function closeWin closes all windows unless a
specific name (or vector of names) is provided by the user. Also, if createWin opens a
window with a name already in use, the older window is closed before the new window is
opened.

Usage
type=window name="window" title="" vertical=TRUE bg="#D4D0C8"

fg="#000000" onclose="" remove=FALSE

Arguments

name.....................unique name identifying an open window
title...................text to display in the window’s title line
verticalif TRUE, arrange widgets vertically, top to bottom, within the window
bgbackground colour for window
fgcolour for label fonts
onclosename of function called when user closes the window by pressing
removeif TRUE, remove from .PBSmod on closing

 – 38 –

Example
window title="Widget = window (upon which all other widgets are

placed)"

Button

Description
A button linked to an R function that runs a particular analysis and generates a desired
output, perhaps including graphics.

Usage
type=button text="Calculate" font="" fg="black" bg="" disablefg=NULL

width=0 name=NULL function="" action="button" sticky="" padx=0
pady=0

Arguments
text.....................text to display on the button
font.....................font for labels – specify family (Times, Helvetica, or Courier), size

(as point size), and style (bold, italic, underline, overstrike), in
any order

fgcolour for label fonts
bgbackground colour for widget
disablefg..........colour for label fonts when state is disabled
width...................button width, the default 0 will adjust the width to the minimum required
name.....................unique name to identify button for use with setWidgetState
functionR function to call when the button is pushed (i.e., clicked by the mouse)
actionstring value associated whenever this widget is engaged
stickyoption for placing the widget in its available space, as discussed in the

introductory paragraphs for Appendix A on page 37
padx.....................space used to pad the widget on the left and right; two values can be used

to specify padding on the left and right separately
pady.....................space used to pad the widget on the top and bottom; two values can be

used to specify padding on the top and bottom separately

Example
window title="Widget = button"
button text="Push Me"

 – 39 –

Check

Description

A check box to turn a variable off or on, with corresponding values FALSE or TRUE (0 / 1).

Usage
type=check name mode="logical" checked=FALSE text="" font=""

fg="black" bg="" disablefg=NULL function="" action="check"
edit=TRUE sticky="" padx=0 pady=0

Arguments

name.....................name of R variable altered by this check box (required)
mode.....................R mode for the associated variable, where valid modes are

logical or numeric
checkedif TRUE, the box is checked initially and the variable is set to TRUE or 1
text.....................identifying text placed to the right of this check box
font.....................font for labels – specify family (Times, Helvetica, or Courier), size

(as point size), and style (bold, italic, underline, overstrike), in
any order

fgcolour for label fonts
bgbackground colour for widget
disablefg..........colour for label fonts when state is disabled
functionR function to call when the check box is changed
actionstring value associated whenever this widget is engaged
edit.....................if TRUE, the box’s state can be modified by the user; if FALSE, the box is

read-only
stickyoption for placing the widget in its available space, as discussed in the

introductory paragraphs for Appendix A on page 37
padx.....................space used to pad the widget on the left and right; two values can be used

to specify padding on the left and right separately
padyspace used to pad the widget on the top and bottom; two values can be

used to specify padding on the top and bottom separately

Example
window title="Widget = check"
check name=junk checked=T text="Check Me"

 – 40 –

Data

Description

An aligned set of entry fields for all components of a data frame. The data widget can
accept a variety of modes. The user must keep in mind that rowlabels and collabels
should conform to R naming conventions (no spaces, no special characters, etc.). If mode is
logical, fields appear as a set of check boxes that can be turned on or off using mouse clicks.

Usage
type=data nrow ncol names modes="numeric" rowlabels="" collabels=""

rownames="X" colnames="Y" font="" fg="black" bg=""
entryfont="" entryfg="black" entrybg="white" noeditfg="black"
noeditbg="gray" values="" byrow=TRUE function="" enter=TRUE
action="data" edit=TRUE width=6 borderwidth=0 sticky="" padx=0
pady=0

Arguments

nrow.....................number of rows (required)
ncol.....................number of columns(required)
names...................either one name or a set of nrow*ncol names used to store the data frame

in R (required)
modes...................R modes for the data frame, where valid modes are:

numeric, integer, complex, logical, character
rowlabels..........one of NULL, a single label, or a vector of nrow labels. The NULL label

displays no labels and minimizes space. A single label displays a label to
the left of the widget, and numbers each row (an empty label "" only
numbers each row). A vector of nrow labels is used to specify a label for
each row.

collabels..........one of NULL, a single label, or a vector of ncol labels. The NULL label
displays no labels and minimizes space. A single label displays a label
above the widget, and numbers each column (an empty label "" only
numbers each column). A vector of ncol labels is used to specify a label
for each column.

rownamesstring scalar or vector of length nrow to name the rows of the data frame
colnamesstring scalar or vector of length ncol to name the columns of the data

frame
font.....................font for labels – specify family (Times, Helvetica, or Courier), size

(as point size), and style (bold, italic, underline, overstrike), in
any order

fgcolour for label fonts
bg.........................background colour for widget
entryfont..........font of entries appearing in input/output boxes
entryfgfont colour of entries appearing in input/output boxes
entrybgbackground colour of input/output boxes
noeditfgfont colour of entries appearing in input/output boxes when edit=FALSE

 – 41 –

noeditbgbackground colour of input/output boxes when edit=FALSE
valuesdefault values (either one value for all data frame components or a set of

nrow*ncol values)
byrow...................if TRUE and nrow*ncol names are used, interpret the names by row;

otherwise by column. Similarly, interpret nrow*ncol initial values.
functionR function to call when any entry in the data frame is changed
enter...................if TRUE, call the function only after the Enter� � key is pressed
actionstring value associated whenever this widget is engaged
edit.....................if TRUE, the values can be modified by the user; if FALSE, the values are

read-only
width...................character width to reserve for the each entry in the data frame
borderwidtha non-negative value specifying the amount of space to use for drawing a

border (or margin) around the widget; the background colour of the space
is determined by the bg value

stickyoption for placing the widget in its available space, as discussed in the
introductory paragraphs for Appendix A on page 37

padx.....................space used to pad the widget on the left and right; two values can be used
to specify padding on the left and right separately

pady.....................space used to pad the widget on the top and bottom; two values can be
used to specify padding on the top and bottom separately

Example
window title="Widget = data"
data nrow=3 ncol=3 names=Census byrow=FALSE \

modes="character logical numeric" width=10 \
rowlabels="Rec1 Rec2 Rec3" collabels="City Smell Popn" \
values="Nanaimo Vancouver Spuzzum T T F 80000 600000 50"

 – 42 –

Droplist

Description
A field in which a scalar variable (number or string) can be selected from a drop-down list.

Usage
type=droplist name values=NULL choices=NULL labels=NULL selected=1

add=FALSE font="" fg="black" bg="white" function="" enter=TRUE
action="droplist" edit=TRUE mode="character" width=20
sticky="" padx=0 pady=0

Arguments

name.....................name (required) of the R variable that will receive the selected choices
from either values or choices

valuesvector of values to populate the drop-down selection; if NULL the values
are taken from the R object named in choices

choicesname of an R character vector object where elements will be the choices to
populate the drop-down selection; if NULL the values are taken from the
character vector specified by names

labelsif supplied, labels is a vector with the same length as values, and is
used as the contents of the drop-down list; however, values are return by
getWinVal

selectedthe index of the pre-selected item in drop-down list
addif TRUE, the user can type in any text in addition to selecting a pre-defined

item
font.....................font for drop-down list items – specify family (Times, Helvetica, or

Courier), size (as point size), and style (bold, italic, underline,
overstrike), in any order

fgcolour for drop-down list items
bgbackground colour for widget
functionR function to call when the entry is changed
enter...................if TRUE, call the function only after the Enter� � key is pressed when

add=TRUE; enter=FALSE, is not implemented.
actionstring value associated whenever this widget is engaged
edit.....................if TRUE, the selected item can be changed by the user; if FALSE, the

selected value is read-only and no other items can be selected
mode.....................R mode for the value entered, where valid modes are:

numeric, integer, complex, logical, character
width...................character width to reserve for the droplist
stickyoption for placing the widget in its available space, as discussed in the

introductory paragraphs for Appendix A on page 37
padx.....................space used to pad the widget on the left and right; two values can be used

to specify padding on the left and right separately
pady.....................space used to pad the widget on the top and bottom; two values can be

used to specify padding on the top and bottom separately

 – 43 –

Note
To facilitate retrieving the index of the selected item, two additional variables are created by
suffixing ".id" and ".values" to the given name. The "name.id" variable is only
returned by getWinVal; the "name.values" variable can be retrieved with getWinVal,
and can be set with setWinVal to change the selectable values dynamically after window
creation.

Limitation: when setWinVal is used to modify the droplist "name.values", the labels are
reset to NULL

Example
window title="Widget = droplist"
droplist name=junk values="one two 'thirty three'" mode=character

selected=3 width=30
droplist name=punk choices=state.name

Entry

Description
A field in which a scalar variable (number or string) can be altered.

Usage
type=entry name value="" width=20 label=NULL font="" fg="" bg=""

entryfont="" entryfg="black" entrybg="white" noeditfg="black"
noeditbg="gray" edit=TRUE password=FALSE function=""
enter=TRUE action="entry" mode="numeric" sticky="" padx=0
pady=0

Arguments

name.....................name of R variable corresponding to this entry (required)
value...................default value to display in the entry
width...................character width to reserve for the entry
label...................text to display above the entry box
font.....................font for labels – specify family (Times, Helvetica, or Courier), size

(as point size), and style (bold, italic, underline, overstrike), in
any order

fgcolour for label fonts
bgbackground colour for widget

 – 44 –

entryfont..........font of entries appearing in input/output boxes
entryfgfont colour of entries appearing in input/output boxes
entrybgbackground colour of input/output boxes
noeditfgfont colour of input/output boxes when edit=FALSE
noeditbgbackground colour of input/output boxes when edit=FALSE
edit.....................if TRUE, the entry value can be modified by the user; otherwise, the value

is read-only
passwordif TRUE, the value displayed in the GUI is masked with asterisks (****) to

protect sensitive information; otherwise, the value is displayed as normal
text

functionR function to call when the entry is changed
enter...................if TRUE, call the function only after the Enter� � key is pressed
actionstring value associated whenever this widget is engaged
mode.....................R mode for the value entered, where valid modes are:

numeric, integer, complex, logical, character
stickyoption for placing the widget in its available space, as discussed in the

introductory paragraphs for Appendix A on page 37
padx.....................space used to pad the widget on the left and right; two values can be used

to specify padding on the left and right separately
pady.....................space used to pad the widget on the top and bottom; two values can be

used to specify padding on the top and bottom separately

Example
window title="Widget = entry"
entry name=junk value="Enter something here" width=20 mode=character

 – 45 –

Grid

Description
Creates space for a rectangular block of widgets. Spaces must be filled. Widgets can be any
combination of available widgets, including grid.

Usage
type=grid nrow=1 ncol=1 toptitle="" sidetitle="" topfont=""

sidefont="" topfg=NULL sidefg=NULL fg="black" topbg=NULL
sidebg=NULL bg="" byrow=TRUE borderwidth=1 relief="flat"
sticky="" padx=0 pady=0

Arguments

nrow.....................number of rows in the grid
ncol.....................number of columns in the grid
toptitletitle to place above grid
sidetitle..........title to place on the left side of the grid
topfontfont for top labels – specify family (Times, Helvetica, or Courier),

size (as point size), and style (bold, italic, underline,
overstrike), in any order

sidefontfont for side labels – specify family (Times, Helvetica, or Courier),
size (as point size), and style (bold, italic, underline,
overstrike), in any order

topfg...................colour for top title font
sidefgcolour for side title font
fgcolour for both top and side title fonts if topfg and sidefg are NULL
topbg...................background color of the top title
sidebgbackground color of the side title
bgbackground colour of grid including top and side titles when topbg and

sidebg are NULL
byrow...................if TRUE, create widgets across rows, otherwise down columns
borderwidthwidth of the border around the grid
relieftype of border around the grid, where valid styles are:

raised, sunken, flat, ridge, groove, solid
stickyoption for placing the widget in its available space, as discussed in the

introductory paragraphs for Appendix A on page 37
padx.....................space used to pad the widget on the left and right; two values can be used

to specify padding on the left and right separately
pady.....................space used to pad the widget on the top and bottom; two values can be

used to specify padding on the top and bottom separately

 – 46 –

Example
grid 2 2 relief=groove toptitle=Columns sidetitle=Rows \

topfont="Helvetica 12 bold" sidefont="Helvetica 12 bold"
label text="Cell 1" font="times 8 italic"
label text="Cell 2" font="times 10 italic"
label text="Cell 3" font="times 12 italic"
label text="Cell 4" font="times 14 italic"

History

Description
Allows the user to manage a temporary archive (history) of widget settings (records) through
a panel of buttons:
<< Go directly to the first record of the history.
< Go to the previous record in the history.
> Go to the next record in the history.
>> Go directly to the last record in the history.
Sort Sort the order of the records in the history.
n Display window (white background) shows the current record.
N Display window (grey background) shows total number of records in the history.
Empty Remove all records from the history.
Insert Add a new record (current widget settings) to the history, either before, after or

overtop the current record.
Delete Remove the current record from the history.
Import Import a previously saved history (text file) to the history, either before or after

the current record.
Export Export the history to a text file.

Usage
type=history name="default" function="" import="" fg="black" bg=""

entryfg="black" entrybg="white" text=NULL textsize=0 sticky=""
padx=0 pady=0

Arguments

name.....................name of history archive
functionR function to call when the history record counter is changed
importfile name of a saved history to load when the widget is called

 – 47 –

fgcolour for label fonts
bgbackground colour for widget
entryfgfont colour of entries appearing in input/output boxes
entrybgbackground colour of input/output boxes
text.....................embed a text box for captions in the widget; the location of the text box is

controlled by one of the following values: N, E, S, W or NULL for none
textsizesize of text box to display; if text=N or S, textsize controls the

height; if text=E or W, the width is adjusted
stickyoption for placing the widget in its available space, as discussed in the

introductory paragraphs for Appendix A on page 37
padx.....................space used to pad the widget on the left and right; two values can be used

to specify padding on the left and right separately
pady.....................space used to pad the widget on the top and bottom; two values can be

used to specify padding on the top and bottom separately

Example
window title="Widget = history"
vector length=3 names="alpha beta gamma" values="2 5 15"

history padx=20 pady=5

Image

Description
Embeds a graphics image in the current window. Support for GIF files only.

Usage
type=image file=NULL varname=NULL subsample=1 sticky="" padx=0

pady=0

Arguments

file.....................filename and path (if required) of GIF image to embed
varnameinterpret the value of an R variable, identified by varname, as the

filename of the image to embed; only one of the file or varname
arguments can be supplied

 – 48 –

subsample..........reduce the size of the image by subsampling every subsampleth pixel,
where subsample is an integer less than the width of the image

stickyoption for placing the widget in its available space, as discussed in the
introductory paragraphs for Appendix A on page 37

padx.....................space used to pad the widget on the left and right; two values can be used
to specify padding on the left and right separately

pady.....................space used to pad the widget on the top and bottom; two values can be
used to specify padding on the top and bottom separately

Note
Image only supports GIF file formats

Example
window title="Pacific Biological Station"
image file="pbs.gif"

Include

Description
Includes the specified window description file in the current window description file.

Usage
type=include file=NULL name=NULL

Arguments

file.....................file to include
name.....................indirectly include a file by interpreting the value of an R variable,

identified by name, as the file to be included

Note
The window widget definition from the included file is ignored.

Example
window title="include - parent"
label "hello world"

 – 49 –

include file=child.txt

child.txt contents:
window title="include - child"
vector name="a b c d e"

Label

Description

Creates a text label. If the text argument is left blank, label emulates the null widget.

Usage
type=label text="" name="" mode="character" font="" fg="black" bg=""

sticky="" justify="left" anchor="center" wraplength=0 width=0
padx=0 pady=0

Arguments

text.....................text to display in the label
name.....................name of R variable corresponding to the label value; if name="", label is

static and cannot be changed with setWinVal
mode.....................R mode for the label value where valid modes are:

numeric, integer, complex, logical, character
font.....................font for labels – specify family (Times, Helvetica, or Courier), size

(as point size), and style (bold, italic, underline, overstrike), in
any order

fgcolour for label fonts
bgbackground colour for widget
stickyoption for placing the widget in its available space, as discussed in the

introductory paragraphs for Appendix A on page 37
justifyif there are multiple lines, then text is aligned to the left, center, or

right.
anchorif a width is specified, anchor the text to the one of n, ne, e, se, s, sw, w,

nw, or center locations of the widget. "w" for example, would anchor
the text on the left side of the widget.

wraplength........maximum number of characters to fit per line; text which is longer is split
over multiple lines.

width...................width of the label widget
padx.....................space used to pad the widget on the left and right; two values can be used

to specify padding on the left and right separately

 – 50 –

pady.....................space used to pad the widget on the top and bottom; two values can be
used to specify padding on the top and bottom separately

Example
window title="Widget = label"
label text="Information Label"

Matrix

Description
An aligned set of entry fields for all components of a matrix. If the mode is logical, the
matrix appears as a set of check boxes that can be turned on or off using mouse clicks.

Usage
type=matrix nrow ncol names rowlabels="" collabels="" rownames=""

colnames="" font="" fg="black" bg="" entryfont=""
entryfg="black" entrybg="white" noeditfg="black"
noeditbg="gray" values="" byrow=TRUE function="" enter=TRUE
action="matrix" edit=TRUE mode="numeric" width=6 borderwidth=0
sticky="" padx=0 pady=0

Arguments

nrow.....................number of rows (required)
ncol.....................number of columns(required)
names...................either one name or a set of nrow*ncol names used to store the matrix in

R (required)
rowlabels..........one of NULL, a single label, or a vector of nrow labels. The NULL label

displays no labels and minimizes space. A single label displays a label to
the left of the widget, and numbers each row (an empty label "" only
numbers each row). A vector of nrow labels is used to specify a label for
each row.

collabels..........one of NULL, a single label, or a vector of ncol labels. The NULL label
displays no labels and minimizes space. A single label displays a label
above the widget, and numbers each column (an empty label "" only
numbers each column). A vector of ncol labels is used to specify a label
for each column.

rownamesstring scalar or vector of length nrow to name the rows of the matrix
colnamesstring scalar or vector of length ncol to name the columns of the matrix
font.....................font for labels – specify family (Times, Helvetica, or Courier), size

(as point size), and style (bold, italic, underline, overstrike), in
any order

 – 51 –

fgcolour for label fonts
bgbackground colour for widget
entryfont..........font of entries appearing in input/output boxes
entryfgfont colour of entries appearing in input/output boxes
entrybgbackground colour of input/output boxes
noeditfgfont colour of entries appearing in input/output boxes when edit=FALSE
noeditbgbackground colour of input/output boxes when edit=FALSE
valuesdefault values (either one value for all matrix components or a set of

nrow*ncol values)
byrow...................if TRUE and nrow*ncol names are used, interpret the names by row;

otherwise by column. Similarly, interpret nrow*ncol initial values.
functionR function to call when any entry in the matrix is changed
enter...................if TRUE, call the function only after the Enter� � key is pressed
actionstring value associated whenever this widget is engaged
edit.....................if TRUE, matrix value can be modified by the user; if FALSE, the matrix is

read-only
mode.....................R mode for the matrix, where valid modes are:

numeric, integer, complex, logical, character
width...................character width to reserve for the each entry in the matrix
borderwidthwidth of the border around the matrix widget
stickyoption for placing the widget in its available space, as discussed in the

introductory paragraphs for Appendix A on page 37
padx.....................space used to pad the widget on the left and right; two values can be used

to specify padding on the left and right separately
pady.....................space used to pad the widget on the top and bottom; two values can be

used to specify padding on the top and bottom separately

Example
window title="Widget = matrix"
matrix nrow=2 ncol=3 rowlabels="'Row A' 'Row B'" \

collabels="'Col 1' 'Col 2' 'Col 3'" names="a b c d e f" \
values="10 20 30 100 200 300" font="times 10 italic"

Menu

Description

A menu grouping. Submenus can either be menu or menuitem.

 – 52 –

Usage
type=menu nitems=1 label font="" fg="" bg=""

Arguments

nitemsnumber of items or submenus to include in the menu
label...................text to display as the menu label (required)
font.....................font for labels – specify family (Times, Helvetica, or Courier), size

(as point size), and style (bold, italic, underline, overstrike), in
any order

fgcolour for menu fonts (only applicable for sub-menus)
bgbackground colour for menu (only applicable for sub-menus)

Example (assuming that the R functions have been defined)
window title="Widget = menu"
menu nitems=1 label="Widgets"

menuitem label="Show arguments" func=showArgs
menu nitems=3 label="Test functions"

menuitem label="Colours" func=testCol
menuitem label="Line types" func=testLty

 menu nitems=2 label="Line functions"
 menuitem label="Line widths" func=testLwd
 menuitem label="Point symbols" func=testPch

MenuItem

Description

One of nitems following a menu command.

Usage
type=menuitem label font="" fg="" bg="" function action="menuitem"

Arguments

label...................text to display as the menu item label (required)
font.....................font for labels – specify family (Times, Helvetica, or Courier), size

(as point size), and style (bold, italic, underline, overstrike), in
any order

fgcolour for menu item fonts

 – 53 –

bgbackground colour for menu items
functionR function to call when the menu item is clicked (required)
actionstring value associated whenever this widget is engaged

Notebook

Description
Creates a notebook widget comprising a set of pages that can be selected by tabs, where each
page is visible when the corresponding tab is selected.

The number of notebook pages is determined by the length of the tabs vector argument.
Each page of the notebook is specified by the widgets that immediately follow the
declaration of a notebook widget. For example, if the notebook has three pages, tabs is a
character vector of length three. Each of three widgets that follow notebook will be
assigned to the pages in sequence. A collection of widgets can be embedded on each page by
the use of grid.

A bug in an underlying Tcl/Tk library for notebook prevents combining font family and
font style specifications for the font argument. For example, font="Times italic 12"
cannot be specified but font="Times 12" or font="italic" can be specified.
Specifying font with combinations of family and style will not cause an error but will not
have the desired effect.

Usage
type= notebook tabs name=NULL selected=1 tabpos="top" font=""

fg="" bg="" width=0 height=0 homogeneous=FALSE arcradius=2
tabbevelsize=0 function=NULL action="notebook" sticky="we"
padx=0 pady=0

Arguments

tabs.....................a character vector of names for each tab – the length of the vector
determines the number of tabs to use

name.....................if specified, the index of the raised tab can be queried with getWinVal;
other tabs can be raised programmatically with setWinVal.

selecteddefault page to display
tabposposition tabs on the "top" or "bottom" of the notebook widget
font.....................font for tab labels – specify family (Times, Helvetica, or Courier),

size (as point size), or style (bold, italic, underline, overstrike)
fgcolour of arrow used to horizontally scroll tabs (only applicable when the

horizontal space required to display all tabs exceeds the width of the
notebook widget)

bgbackground colour of the notebook page (but not tabs)
width...................width of the notebook

 – 54 –

heightheight of the notebook
homogeneousif TRUE, all tabs have the same width, otherwise, each tab has a width

determined by the length of the tab name
arcradius..........an integer in the range 0 to 8, specifying the rounding effect of the tab

corners
tabbevelsize ...an integer in the range 0 to 8, specifying the amount of bevel the tabs

should have; 0 effectively draws a rectangle, otherwise tabs have a
trapezoidal look

functionR function to call when a page is raised by selecting a tab
actionstring value associated whenever this widget is engaged
stickyoption for placing the widget in its available space, as discussed in the

introductory paragraphs for Appendix A on page 37
padx.....................space used to pad the widget on the left and right; two values can be used

to specify padding on the left and right separately
pady.....................space used to pad the widget on the top and bottom

Note

Colour support is limited due to the underlying Tk/Tcl library implementation. It is not
possible to specify colours for the tab font or background.

Example
window title="Widget = notebook"
notebook tabs="iris vector grid" name=nb width=380 height=150
 object iris rowshow=5
 vector length=5 name=vec
 grid 2 1
 label "use a grid to include"
 label "multiple widgets on a page"

 – 55 –

Null

Description

Creates a null widget, useful for padding a grid with blank cells that appear as empty space.

Usage
type=null bg="" padx=0 pady=0

Arguments

bgbackground colour
padx.....................space used to pad the widget on the left and right; two values can be used

to specify padding on the left and right separately
pady.....................space used to pad the label on the top and bottom

Example
grid 2 2 relief=raised toptitle=Top sidetitle=Side \

topfont="Courier 10 bold" sidefont="courier 10 bold"
label text="Here" font="courier 8"
null
null
label text="There" font="courier 8"

 – 56 –

Object

Description

A widget that represents the R-object specified – a vector becomes a vector widget, a
matrix becomes a matrix widget, and a data frame becomes a data widget.

Usage
type=object name rowshow=0 font="" fg="black" bg="" entryfont=""

entryfg="black" entrybg="white" noeditfg="black"
noeditbg="gray" vertical=FALSE collabels=TRUE rowlabels=TRUE
function="" enter=TRUE action="data" edit=TRUE width=6
borderwidth=0 sticky="" padx=0 pady=0

Arguments

name.....................name of object (vector, matrix, or data frame) to convert to a widget
(required)

rowshownumber of rows to display on the screen; if rowshow=0 or
rowshow>=rows(name) then all rows will be displayed

font.....................font for labels – specify family (Times, Helvetica, or Courier), size
(as point size), and style (bold, italic, underline, overstrike), in
any order

fgcolour for label fonts
bgbackground colour for widget
entryfont..........font of entries appearing in input/output boxes
entryfgfont colour of entries appearing in input/output boxes
entrybgbackground colour of input/output boxes
noeditfgfont colour of entries appearing in input/output boxes when edit=FALSE
noeditbgbackground colour of input/output boxes when edit=FALSE
verticalonly applicable when the R-object is a vector; if TRUE , display the vector

as a vertical column with labels on the left; otherwise display it as a
horizontal row with labels above

collabels..........if TRUE, display the object’s column names, if FALSE, no column labels
are displayed

rowlabels..........if TRUE, display the object’s row names, if FALSE, no row labels are
displayed

functionR function to call when any entry in the vector is changed
enter...................if TRUE, call the function only after the Enter� � key is pressed
actionstring value associated whenever this widget is engaged

 – 57 –

edit.....................if TRUE, the object’s values can be changed by the user; otherwise, the
values are read-only

width...................character width to reserve for the each entry in the vector
borderwidthwidth of the border around the text box
stickyoption for placing the widget in its available space, as discussed in the

introductory paragraphs for Appendix A on page 37
padx.....................space used to pad the widget on the left and right; two values can be used

to specify padding on the left and right separately
pady.....................space used to pad the widget on the top and bottom; two values can be

used to specify padding on the top and bottom separately

Note

When scrolling is enabled, the up, down, page up, and page down keys can be used to scroll.
The keys are only enabled when some entry box in the object is selected.

Example
window bg="#ffd2a6" title="Object: longley"
label text="Longley\'s Economic Regression Data" font="bold 12" \

fg="#400080" pady=0 sticky=S
object name=longley rowshow=5 width="5 27 6 6 7 4 6" pady=5

Progressbar

Description

A progress indicator widget. The progressbar status can be animated by updating the
widget state using setWinVal.

Usage
type=progressbar name value=0 maximum=100 style="normal" width=NULL
 height=NULL vertical=FALSE fg=NULL bg=NULL relief="sunken"
 borderwidth=2 sticky="" padx=0 pady=0

 – 58 –

Arguments

name.....................name of the progressbar
value...................initial value of the widget variable
maximumthe maximum value of the widget variable (must be greater than zero)
style...................one of normal, incremental, infinite or

nonincremental_infinite

if normal, a bar is displayed within a framed area with length
proportional to value scaled to maximum. Updates of the widget state
using setWinVal adjust the bar length to the passed positive value

if incremental, the widget behaves like the normal style with one
exception: the positive value passed with setWinVal is added to the bar
length rather than being used to set the bar length

if infinite, a bar segment is displayed within a framed area. Updating
of the bar value using setWinVal advances the bar segment first from
left to right and then from right to left by the specified positive integer
increment.

if nonincremental_infinite, the widget behaves like the infinite
style with one exception: the positive integer value passed with
setWinVal is used to set the position of the bar segment. The bar
segment moves from left to right if variable value (modulo maximum) is
less than maximum/2 and from right to left if value is greater than
maximum/2

width...................the width of the progressbar widget
heightthe height of the progressbar widget
verticalif TRUE, orient the progressbar vertically starting at the bottom for

zero, moving upwards until maximum is reached, otherwise, orient the
widget horizontally and move from left to right

fgforeground colour of the progress indicator
bgbackground colour for widget
relieftype of border around the text, where valid styles are:

raised, sunken, flat, ridge, groove, solid
borderwidthwidth of the border around the widget
stickyoption for placing the widget in its available space, as discussed in the

introductory paragraphs for Appendix A on page 37
padx.....................space used to pad the widget on the left and right; two values can be used

to specify padding on the left and right separately
pady.....................space used to pad the widget on the top and bottom; two values can be

used to specify padding on the top and bottom separately

 – 59 –

Note

Animation of the progressbar widget to indicate the state of ongoing calculations can be
achieved by repeated calls to setWinVal that reference the progressbar name.

If the value set with setWinVal is negative the progressbar is not displayed (i.e., it is
hidden by drawing it “flat” using the background color), if the value is 0, the progressbar
is reinitialized. Positive values work as described by the style argument and infinite and
nonincremental_infinite styles only accept integers.

Run the testWidgets() function and select "progressbar" for an example of how to
programmatically manipulate the progressbar widget for each of the style options.

Example
window title="75%"
progressbar name=status fg=blue value=0.75 maximum=1.0

window title="infinite"
progressbar name=status style=infinite fg=blue value=80

window title="incremental progressbar"
progressbar name=status style=incremental \

value=20 maximum=100 fg=blue width=200
button text="add 10" function=doAction \

action=setWinVal(c(status=10))

 – 60 –

Radio

Description
One of a set of mutually exclusive radio buttons for making a particular choice. Buttons with
the same value for name act collectively to define a single choice among the alternatives.

Usage
type=radio name value text="" font="" fg="black" bg="" function=""

action="radio" edit=TRUE mode="numeric" selected=FALSE
sticky="" padx=0 pady=0

Arguments
name.....................name of R variable altered by this radio button, where radio buttons with

the same name define a mutually exclusive set (required)
value...................value of the variable when this radio button is selected (required)
text.....................identifying text placed to the right of this radio button
font.....................font for labels – specify family (Times, Helvetica, or Courier), size

(as point size), and style (bold, italic, underline, overstrike), in
any order

fgcolour for label fonts
bgbackground colour for widget
functionR function to call when this radio button is selected
actionstring value associated whenever this widget is engaged
edit.....................if TRUE, the selected radio options can be changed; otherwise, the radio

values are read-only
mode.....................R mode for the value associated with this button, where valid modes are:

numeric, integer, complex, logical, character
selectedif TRUE, the radio button is selected (switched on)
stickyoption for placing the widget in its available space, as discussed in the

introductory paragraphs for Appendix A on page 37
padx.....................space used to pad the widget on the left and right; two values can be used

to specify padding on the left and right separately
pady.....................space used to pad the widget on the top and bottom; two values can be

used to specify padding on the top and bottom separately

Example
window title="Widget = radio"
grid 1 4

radio name=junk value=0 text="None"
radio name=junk value=1 text="Option A"
radio name=junk value=2 text="Option B"
radio name=junk value=3 text="Option C"

 – 61 –

Slide

Description
A slide bar that sets the value of a variable. This widget only accepts integer values.

Usage
type=slide name from=0 to=100 value=NA showvalue=FALSE

orientation="horizontal" font="" fg="black" bg="" function=""
action="slide" sticky="" padx=0 pady=0

Arguments

name.....................name of the numeric R variable corresponding to this slide bar (required)
from.....................minimum value of the variable (must be an integer)
tomaximum value of the variable (must be an integer)
value...................initial slide value, where the default is the specified from value
showvalue..........if TRUE, display the current slide value above the slide bar
orientationdirection for orienting the slide bar: horizontal or vertical
font.....................font for labels – specify family (Times, Helvetica, or Courier), size

(as point size), and style (bold, italic, underline, overstrike), in
any order

fgcolour for label fonts
bgbackground colour for widget
functionR function to call when the slide value is changed
actionstring value associated whenever this widget is engaged
stickyoption for placing the widget in its available space, as discussed in the

introductory paragraphs for Appendix A on page 37
padx.....................space used to pad the widget on the left and right; two values can be used

to specify padding on the left and right separately
pady.....................space used to pad the widget on the top and bottom; two values can be

used to specify padding on the top and bottom separately

Example
window title="Widget = slide"
slide name=junk from=1 to=1000 value=225 showvalue=T

 – 62 –

SlidePlus

Description
An extended slide bar that also displays a minimum, maximum, and current value. This
widget accepts real numbers.

Usage
type=slideplus name from=0 to=1 by=0.01 value=NA font="" fg="black"

bg="" entryfont="" entryfg="black" entrybg="white" function=""
enter=FALSE action="slideplus" sticky="" padx=0 pady=0

Arguments

name.....................name of the numeric R variable corresponding to this slide bar (required)
from.....................minimum value of the variable
tomaximum value of the variable
byminimum amount for changing the variable’s value
value...................initial slide value, where the default is the specified from value
font.....................font for min/max labels – specify family (Times, Helvetica, or

Courier), size (as point size), and style (bold, italic, underline,
overstrike), in any order

fgcolour for min/max label fonts
bgbackground colour for widget
entryfont..........font for entry widgets – specify family (Times, Helvetica, or

Courier), size (as point size), and style (bold, italic, underline,
overstrike), in any order

entryfgcolour for entry widget fonts
entrybgbackground colour for entry widgets
functionR function to call when the slide value is changed
enter...................if TRUE, call the function only after the Enter� � key is pressed while the

focus is within one of the text boxes
actionstring value associated whenever this widget is engaged
stickyoption for placing the widget in its available space, as discussed in the

introductory paragraphs for Appendix A on page 37
padx.....................space used to pad the widget on the left and right; two values can be used

to specify padding on the left and right separately
pady.....................space used to pad the widget on the top and bottom; two values can be

used to specify padding on the top and bottom separately

Note
To facilitate retrieving and setting the minimum and maximum values, two additional
variables are created by suffixing ".max" and ".min" to the given name.

Example
window title="Widget = slideplus"
slideplus name=junk from=0 to=1 by=0.01 value=0.75

 – 63 –

Spinbox

Description
A field in which a scalar variable can be incremented or decremented by a fixed value within
a range of values.

Usage
type=spinbox name from to by=1 value=NA label="" font="" fg="black"

bg="" entryfont="" entryfg="black" entrybg="white" function=""
enter=TRUE edit=TRUE action="spinbox" width=20 sticky=""
padx=0 pady=0

Arguments

name.....................name of the R variable containing the text (required)
from.....................minimum value of the variable
tomaximum value of the variable
byminimum amount for changing the variable’s value
value...................initial value; if NA, set the initial value to from
label...................text to display to the right of this spinbox
font.....................font for labels – specify family (Times, Helvetica, or Courier), size

(as point size), and style (bold, italic, underline, overstrike), in
any order

fgcolour for label fonts
bgbackground colour for label
entryfont..........font for labels – specify family (Times, Helvetica, or Courier), size

(as point size), and style (bold, italic, underline, overstrike), in
any order

entryfgcolour for spinbox entry value and arrows
entrybgbackground colour for spinbox
functionR function to call when the slide value is changed
enter...................if TRUE, call the function only after the Enter� � key is pressed while the

focus is within the text box
edit.....................if TRUE, the value can be changed by the user; otherwise, the value is

read-only
actionstring value associated whenever this widget is engaged
width...................character width to reserve for the entry

 – 64 –

stickyoption for placing the widget in its available space, as discussed in the
introductory paragraphs for Appendix A on page 37

padx.....................space used to pad the widget on the left and right; two values can be used
to specify padding on the left and right separately

pady.....................space used to pad the widget on the top and bottom; two values can be
used to specify padding on the top and bottom separately

Note

The values of the spinbox can be adjusted up and down with the up and down arrows on the
keyboard.

Example
window title="Widget = spinbox"
spinbox name=spun from=0 to=100 by=12.5 value=50 label="Showcase

showdown" bg=lightyellow font=bold entryfg=purple

Table

Description
A spreadsheet-like widget that can display and edit data in tabular format.

Usage
type=table name rowshow=0 font="" fg="black" bg="white" rowlabels=""

collabels="" function="" action="table" edit=TRUE width=10
sticky="" padx=0 pady=0

Arguments

name.....................name of object (vector, matrix, or data frame) to convert to a widget
(required)

rowshownumber of rows to display on the screen; if rowshow=0 then the table
height is maximized and the number is determined automatically

font.....................font for labels – specify family (Times, Helvetica, or Courier), size
(as point size), and style (bold, italic, underline, overstrike), in
any order

fgcolour for label fonts
bgbackground colour for widget
rowlabels..........a vector of nrow labels used to label rows; if rowlabels="", then the

object’s row names are used; if NULL, no labels are displayed
collabels..........a vector of ncol labels used to label columns; if collabels="", then the

object’s column names are used; if NULL, no labels are displayed

 – 65 –

functionR function to call when any entry in the vector is changed
actionstring value associated whenever this widget is engaged
edit.....................if TRUE, the object’s values can be changed by the user; otherwise, the

values are read-only
width...................character width to reserve for the each entry; if a vector of widths is given,

then each element corresponds to a different column
stickyoption for placing the widget in its available space, as discussed in the

introductory paragraphs for Appendix A on page 37
padx.....................space used to pad the widget on the left and right; two values can be used

to specify padding on the left and right separately
pady.....................space used to pad the widget on the top and bottom; two values can be

used to specify padding on the top and bottom separately

Example
window bg="#ffd2a6" title="table: iris"
label text="Longley\'s Economic Regression Data" font="bold 12" \
fg="#400080" pady=0 sticky=S
table name=iris rowshow=5 rowlabels=NULL

Text

Description
An information text box that can display messages, results, or whatever the user desires. The
displayed information can be either fixed or editable.

Usage
type=text name height=8 width=30 edit=FALSE scrollbar=TRUE

fg="black" bg="white" mode="character" font="" value=""
borderwidth=1 relief="sunken" sticky="" padx=0 pady=0

Arguments

name.....................name of the R variable containing the text (required)
heighttext box height
width...................text box width
edit.....................if TRUE, the user can edit the value stored in name

 – 66 –

scrollbar..........if TRUE, a scroll bar is added to the right of the text box
fgcolour for label fonts
bgbackground colour specified in hexadecimal format; e.g.,

rgb(255,209,143,maxColorValue=255) yields "#FFD18F"
mode.....................R mode for the value associated with this widget, where valid modes are:

numeric, integer, complex, logical, character
font.....................font for labels – specify family (Times, Helvetica, or Courier), size

(as point size), and style (bold, italic, underline, overstrike), in
any order

value...................default value to display in the text
borderwidthwidth of the border around the text box
relieftype of border around the text, where valid styles are:

raised, sunken, flat, ridge, groove, solid
stickyoption for placing the widget in its available space, as discussed in the

introductory paragraphs for Appendix A on page 37
padx.....................space used to pad the widget on the left and right; two values can be used

to specify padding on the left and right separately
pady.....................space used to pad the widget on the top and bottom; two values can be

used to specify padding on the top and bottom separately

Example
window title="Widget = text"
text name=mytext height=2 width=55 bg="#FFD18F" font="times 11"

borderwidth=1 relief="sunken" edit=TRUE \
value="You can edit text here & change value of \"mytext\""

 – 67 –

Vector

Description
An aligned set of entry fields for all components of a vector. If the mode is logical, the vector
appears as a set of check boxes that can be turned on or off using mouse clicks.

Usage
type=vector names length=0 labels="" values="" vecnames="" font=""

fg="black" bg="" entryfont="" entryfg="black" entrybg="white"
noeditfg="black" noeditbg="gray" vertical=FALSE function=""
enter=TRUE action="vector" edit=TRUE mode="numeric" width=6
borderwidth=0 sticky="" padx=0 pady=0

Arguments

names...................either one name (for a whole vector) or a vector of names for individual
variables used to store the values in R (required)

lengthrequired only if a single name is given for a vector of length greater than 1
labelsone of "", NULL, a single label, or a vector of length labels. The ""

label uses the value of names as labels, if names only contains a single
name, then elements are numbered. The NULL label displays no labels and
minimizes space. A single label displays a label for the entire widget, and
numbers elements. A vector of labels displays a label for each element of
the array.

valuesdefault values (either one value for all vector components or a vector of
length values)

vecnamesstring vector of length length to name the scalars or vector
font.....................font for labels – specify family (Times, Helvetica, or Courier), size

(as point size), and style (bold, italic, underline, overstrike), in
any order

fgcolour for label fonts
bgbackground colour for widget
entryfont..........font of entries appearing in input/output boxes
entryfgfont colour of entries appearing in input/output boxes
entrybgbackground colour of input/output boxes
noeditfgfont colour of entries appearing in input/output boxes when edit=FALSE
noeditbgbackground colour of input/output boxes when edit=FALSE
verticalif TRUE, display the vector as a vertical column with labels on the left;

otherwise display it as a horizontal row with labels above
functionR function to call when any entry in the vector is changed
enter...................if TRUE, call the function only after the Enter� � key is pressed
actionstring value associated whenever this widget is engaged
edit.....................if TRUE, the vector’s values can be changed by the user; otherwise, the

values are read-only
mode.....................R mode for the vector, where valid modes are:

numeric, integer, complex, logical, character

 – 68 –

width...................character width to reserve for the each entry in the vector
borderwidtha non-negative value specifying the amount of space to use for drawing a

border (or margin) around the widget; the background colour of the space
is determined by the bg value

stickyoption for placing the widget in its available space, as discussed in the
introductory paragraphs for Appendix A on page 37

padx.....................space used to pad the widget on the left and right; two values can be used
to specify padding on the left and right separately

pady.....................space used to pad the widget on the top and bottom; two values can be
used to specify padding on the top and bottom separately

Example
window title="Widget = vector"
vector length=4 names="a b g d" labels="alpha beta gamma delta" \

values="100 0.05 1 5" font="times italic" width=6
vector length=5 mode=logical names=chosen labels=choose \

values="F T F T T"

 – 69 –

Appendix B. Talk description files

 This appendix specifies the structure and syntax for talk description files
discussed in Section 6. Formally, such a file contains the five code elements listed there. A valid
file must have one root <talk> element that contains one or more <section> elements. One
<talk> element defines the root and the name of the corresponding GUI. This can include one
or more <section> elements. Each <section> contains a mixture of the three primitive
elements <text>, <file>, and <code>. These primitive elements occur in isolation; they
cannot contain any other elements. Thus, we support only two levels of nesting: sections within a
talk and primitives within a section. (Think of a talk root with section branches and primitive
leaves.)

When presentTalk() runs a description file, it produces a control GUI like the one
shown in Figure 5. Any declared <section>s, or <file>s automatically generate menu items
in the GUI. These links can also appear as buttons within columns of the GUI’s lower section.
By default, <section> buttons appear in the first column, and <file> buttons in the second
column, although an author can overwrite these defaults. In this way, a talk description file
allows an author to design both the talk’s content and the GUI used to present it.

 Some tags allow the presentation to break at specified places. Specifically, a break
produces a message in the R console indicating that the speaker must press the “Go” button in
the GUI to continue on to the next step of the presentation. During a break, the speaker can
spontaneously type code into the R console to illustrate points of immediate interest. A
conceptual slide consists of all material between one break and the next.

 We end this appendix with a precise description of the purpose and syntax for each code
element. Instead of alphabetical order, we use the more logical order: <talk>, <section>,
<text>, <file>, and <code>. In particular, we identify the arguments (also called attributes in
the XML literature) that are supported in the initial tag.

<talk> ... </talk>

Description
A code element that constitutes a talk

Usage
<talk name=(required)>

Arguments

name.....................A string giving the name of the talk (required). It appears as the title of the
control GUI. It must start with a letter and contain only alphanumeric
characters and underscores.

Notes

A file must have exactly one <talk> element that contains at least one <section> element.

 – 70 –

<section> ... </section>

Description
A code element that defines a section of a talk

Usage
<section name=(required) button="FALSE" col="1">

Arguments

name.....................A string giving the name of the section (required). It appears in the control
GUI as a menu item (under “Sections”) and possibly also as a button. It
must start with a letter and contain only alphanumeric characters and
underscores.

buttonA Boolean variable (TRUE or FALSE) that determines whether or not the
GUI should add a button that selects the section, in addition to access by
the menu.

colIf a button is used, the column within which to place it in lower section of
the GUI.

Notes

A <talk> must include at least one <section>, and each section must have a unique name.
Although a <talk> tag is commonly followed by a <section> tag (the first section), this
may not always be true. See the description of <file> below.

<text> ... </text>

Description
A primitive that specifies text to be printed (displayed) on the R console

Usage
<text break="TRUE">

Arguments

break...................A Boolean value (TRUE or FALSE) that specifies whether or not to break
the presentation after displaying the text specified.

Notes
Line breaks in the description file correspond to line breaks in the displayed text. Keep lines
short enough that they will fit into the R console with the large font size required for
presentation (Section 6).

 – 71 –

<file> ... </file>

Description

A primitive that specifies files to be opened by the operating system with openFile()

Usage
<file name=(required) button="FALSE" col="2" break="TRUE">

Arguments

name.....................A string giving the name for this group of files (required). It appears in the
control GUI as a menu item (under “Files”) and possibly also as a button.
It must start with a letter and contain only alphanumeric characters and
underscores.

buttonA Boolean variable (TRUE or FALSE) that determines whether or not the
GUI should add a button that opens this group of files, in addition to the
available menu item.

colIf a button is used, the column within which to place it in lower section of
the GUI.

break...................A Boolean value (TRUE or FALSE) that specifies whether or not to break
the presentation after opening the group of files.

Notes

File names between <file> and </file> must appear as individual strings (separated by
spaces or line breaks) that are suitable arguments for openFile(). Files without explicit
paths are presumed to lie in the user’s working directory. As usual, the operating system
must have an associated application or the PBSmodelling options must be set to associate
extensions and applications (Sections 2.3 and 5.1 above).
Although a speaker may commonly introduce only one file at a time, it can sometimes be
convenient to open several files in a single step. For example, they may all appear in a single
text editor window, with tabs for selecting individual files.
If a <file> element appears between <talk> and the talk’s first <section>, the file group
name will be added to the talk’s GUI. However, because the segment doesn’t belong to any
section, it will not cause files to be opened at this point. The feature allows files to become
part of a talk without having to open them at an explicit point.

<code> ... </code>

Description
A primitive that specifies R code to be executed on the R console

Usage
<code show="TRUE" print="TRUE" break="print">

 – 72 –

Arguments

show.....................A Boolean value (TRUE or FALSE) that specifies whether or not to show
the code snippet in the R console. If shown, each line of the intended code
will be prefixed by the usual R command prompt “> ”.

print...................A Boolean value (TRUE or FALSE) that specifies whether or not to print
the results of running the R code.

break...................A string (show, print, all, or none) describing where to introduce
breaks in the code segment:
show – break only after showing the R code;
print – break only after printing the results;
all – break after showing the R code and again after printing the results;
none – do not break during this code segment.

Notes

The text between <code> and </code> normally consists of valid R code, although a
speaker may choose to demonstrate the consequences of invalid code.
Line breaks in the text correspond to individual lines of R code. Keep lines short enough that
they will fit into the R console with the large font size required for presentation, as discussed
in Section 6.
Implementing a <code> element involves a two-step process. First, if show=TRUE, the code
is shown on the R console. Second, regardless of argument settings, the code is executed. If
print=TRUE, the results are printed on the R console. Notice particularly that code
execution takes place in the second step.
The break argument acts independently from the show and print arguments. For example,
an author might use both print=FALSE and break=print if the R calculation takes
notable time and produces extensive output that should be suppressed. In this case, the break
would indicate that the calculation is complete. Similarly, the arguments show=FALSE and
break=show allow an author to suppress the display of a large block of R code, but still to
introduce a break before the code is executed.

* Reminder: XML characters must be ‘escaped’ (i.e., ‘<’ becomes ‘<’). Since this is ugly,
users will probably want to wrap code with <![CDATA[...]]>

 – 73 –

Appendix C. Building PBSmodelling and other packages

 The R project defines a standard for creating a package of functions, data, and
documentation. You can obtain a comprehensive guide to “Writing R Extensions”
(R Development Core Team 2011b, R-exts.pdf) from the CRAN web site or the R GUI
(see the References above). Ligges (2003) and Ligges and Murdoch (2005) provide useful
introductions. We have designed PBSmodelling and a very simple enclosed package PBStry as
prototypes for package development. This Appendix summarizes the steps needed to:

C.1. install the required software;
C.2. build PBSmodelling from source materials;
C.3. write source materials for a new package and compile them;
C.4. include C code in a package.

 Our discussion applies only to package development on a computer running Microsoft
Windows 2000, XP, or (maybe) later. We particularly highlight issues that have proved
troublesome for us. The R library directory PBSmodelling\PBStools contains batch files
that can assist the process. For example, you might locate this directory as
C:\Utils\R\R-2.15.3\library\PBSmodelling\PBStools.

C.1. Installing required software

 Building R packages requires four pieces of free software. Duncan Murdoch currently
maintains their availability and installation instructions at:
http://www.murdoch-sutherland.com/Rtools/
Users should periodically check this website for changes to the various software packages. We
recommend installing each package on a path that does not include spaces. For example, avoid
using C:\Program Files, even if that happens to be part of a package’s default path. In this
appendix, we use C:\Utils as a root directory for all required software. The list below gives a
brief summary of the required software (Murdoch provides links to these products).

1. R itself, currently version 2.15.3 (C:\Utils\R\R-2.15.3). We assume that R is already

installed from the CRAN web site http://cran.r-project.org/ and that it runs correctly on your
computer. (See ‘Upgrading to the latest version of R’ below.) We also assume that the
package PBSmodelling is installed in R.

2. Rtools installer: Command line tools, GCC compilers, etc. (C:\Utils\Rtools\).
Download and run the file Rtools30.exe. The installation should create the subdirectories
\bin for command line programs and \gcc-4.6.3 for the GNU C compiler for Windows.
These tools are essential. DO NOT plan to use programs with the same name in an
installation of Cygwin or any other UNIX emulator that happens to be installed on your
computer.

3. MiKTeX: a LaTeX and pdftex package (C:\Utils\MiKTeX). The link takes the user to
http://www.miktex.org/. This processor for TeX and LaTeX files helps typeset help files
within a package. Download the “basic” installation file, and install these components only.
You can add more LaTeX packages from the Internet later, as required. (MiKTeX often does

 – 74 –

this automatically.) Take some time to investigate the MiKTeX package manager (mpm.exe
or go to the “Programs” menu and select “MiKTeX 2.9”, “Browse Packages”).

We recommend enhancing MiKTeX slightly, so that it can independently process the LaTeX
files produced from R documentation files.

a) Create a new subdirectory \R under the MiKTeX’s directory for storing LaTeX styles and
font definitions (e.g., C:\Utils\MiKTeX\tex\latex).

b) Copy into it all files from \texmf in the R installation tree (e.g., C:\WinApps\R\R-
2.15.2\share\texmf). These should include Rd.sty.

c) Go to the “Start” menu, select “Programs” then “MiKTeX 2.9”, and run the program
“Settings”. In the “General” tab, click the button marked “Refresh FNDB”. This refreshes
MiKTeX’s file name database, so that it recognizes files in the new \R subdirectory.

 Every user has a preferred editor; however, if you are still using Notepad.exe, you may
wish to explore the freely available, open-source software called Notepad++ available at
http://notepad-plus-plus.org/. Notepad++ is described as “a free (as in ‘free speech’ and also as
in ‘free beer’) source code editor ... that supports several languages.” Alternatively, the text
editor WinEdt (available from http://www.winedt.com/) provides a convenient GUI for editing
LaTeX files and operating MiKTeX. Combined with the R package RWinEdt, it can also serve
as an editor and interface for R. However, it is available only as shareware that requires a fee for
long-term use, unlike any other software mentioned here.

Upgrading to the latest version of R

1. Download the new R-x.y.z binary from a local CRAN mirror, such as the one at SFU:

http://cran.stat.sfu.ca/bin/windows/base/
2. Uninstall the old version R-a.b.c (Start� � , Programs� � , R� � , Uninstall� R-a.b.c �). If

you cannot find an uninstall program in the Programs� � menu, use the Control Panel in the
usual way (slightly different between Windows XP and Windows VISTA).

3. Install the new version R-x.y.z to a new folder. Our default would be:
C:\Utils\R\R-x.y.z\

4. Find the library files for both versions of R in the directories:
C:\Utils\R\R-a.b.c\library\
C:\Utils\R\R-x.y.z\library\
Copy all subdirectories (packages) from version a.b.c to version x.y.x; but press
Shift No� � � � to avoid overwriting packages just installed as part of the new version. You

want to copy the optional packages, but not those that come with the standard installation.
5. Run the new GUI for R-x.y.z. From the menu, click Packages� � , Update packages ...� � ,

select a local mirror, and wait for any installed packages to be updated. To stay current,
repeat this update step every week or two.

6. Remove the old R installation directory (C:\Utils\R\R-a.b.c\).

 At the time of writing, the program to uninstall R-a.b.c has a small bug, because it does
not actually remove all of the packages that come with the base distribution.

 – 75 –

PBStools for building R packages

 After the above pieces of software are installed, you’re ready to start building R
packages. For this purpose, create a new directory (e.g., D:\Rdevel\) that will contain your
packages. Within the R library directory (C:\Utils\R\R-2.15.3\library\), find the
subdirectory PBSmodelling\PBStools (not to be confused with the R package PBStools).
Copy all the batch files there into your new packages directory. You should have these 11 files:

• RPaths.bat, RPathCheck.bat related to the installation;
• unpackPBS.bat, checkPBS.bat, buildPBS.bat, packPBS.bat, related to

PBSmodelling;
• Runpack.bat, Rcheck.bat, Rbuild.bat, Rpack.bat, RmakePDF.bat related to the

construction of new packages.

IMPORTANT: You need to change RPaths.bat so that it reflects the paths you chose in the
above six installations. For example, your version of this batch file might contain the lines

set R_PATH=C:\Utils\R\R-2.15.3\bin\i386
 or

set R_PATH=C:\Utils\R\R-2.15.3\bin\x64
set TOOLS_PATH=C:\Utils\Rtools\bin
set GCC_PATH=C:\Utils\Rtools\gcc-4.6.3\bin
set TEX_PATH=C:\Utils\MiKTeX\miktex\bin

Notice that each path, except R_Path, ends in a bin subdirectory.

 Hopefully, your installation is now complete. In your new packages directory, run
RPathCheck.bat from a command line or double-click the icon. This script verifies that a few
essential files lie on the indicated paths. If everything is correct, you should see the message “All
program paths look good”. Otherwise, you’ll see a warning about software that doesn’t appear on
your specified paths.

 If you view all the batch files with a text editor, you will see that they don’t use your
system PATH environment variable. Instead, each one defines a new local path appropriate for
building R packages (via RPathCheck.bat). A SETLOCAL command ensures that this change
doesn’t alter your system’s permanent environment.

C.2. Building PBSmodelling

 Once all the required software is installed, the batch files discussed above make it fairly
easy to build PBSmodelling. We assume that you have already created the directory discussed in
Appendix C.1, say D:\Rdevel, for building R packages and that it contains the relevant eight
batch files. In particular, RPaths.bat should reflect your installation paths and
RPathCheck.bat should report the message that “All program paths look good”. Then follow
these steps:

 – 76 –

1. On the CRAN web site http://cran.r-project.org/, go to “Packages” on the left and find
PBSmodelling. Download the file PBSmodelling_x.xx.tar.gz into D:\Rdevel. Then
rename this file (or copy it and rename the copy) so that the version number is removed. You
should now have the file PBSmodelling.tar.gz in D:\Rdevel.

2. In the development directory D:\Rdevel, double-click the icon for unpackPBS.bat or
type the command unpackPBS in a corresponding command window. This should extract
the contents of PBSmodelling.tar.gz, preserving directory structure, into a subdirectory
\PBSmodelling with five sudirectories: \data, \inst, \man, \R, and \src.

3. Our batch file uses the command tar -xzvf PBSmodelling.tar.gz, where tar.exe
appears in the \Rtools directory (Section C.1, step 3). The command line parameters
specify a verbose (v) extraction (x) of the given file (f), after filtering with gzip(z).

If you use other software for this extraction, please ensure that it is configured to handle
UNIX files correctly. For example, “WinZip” has an option to extract a “TAR file with smart
CR/LF conversion”. This must be turned off.

4. In the base directory D:\Rdevel, double-click the icon for checkPBS.bat or type the
command checkPBS in a corresponding command window. If all software is installed
correctly and D:\Rdevel\PBSmodelling correctly represents the contents of the .tar.gz
file, you should see a series of DOS messages reporting “OK” to various tests. A distinct
pause might accompany the message: “checking whether package 'PBSmodelling' can be
installed ...”.

5. You might also encounter a delay as MiKTeX downloads the LaTeX package lmodern, part
of a larger package lm. If this is really slow, you can abort the process and install lm with the
MiKTeX package manager, as discussed in step 5 of Section C.1. Choose a remote server
near you. You only need to do this once. When it’s finished, run checkPBS.bat again.

6. Examine the new directory D:\Rdevel\PBSmodelling.Rcheck created by the check
process in step 2. The text files 00check.log and 00install.out show detailed results.

7. In the base directory D:\Rdevel, double-click the icon for buildPBS.bat or type the
command buildPBS in a corresponding command window. This creates the file
D:\Rdevel\PBSmodelling.zip, which could be used to install PBSmodelling from a
local zip file.

8. Again in the base directory D:\Rdevel, double-click the icon for packPBS.bat or type the
command packPBS in a corresponding command window. This creates a new package
distribution file PBSmodelling_x.xx.tar.gz that replaces the one downloaded from
CRAN in step 1.

9. Finally, type the command RmakePDF PBSmodelling in a command window for
D:\Rdevel. This generates an indexed documentation file PBSmodelling.pdf.
See Appendix D.2 for further details about the use of this file for producing this report.

If these steps all work without problems, you can feel confident that the requisite software is
installed correctly and that you understand the basic steps needed to build R packages.

 – 77 –

C.3. Creating a new R package

 R packages require a special directory structure. The R function package.skeleton
automatically creates this structure, but (without further work) it does not produce a package that
can be compiled. Although PBSmodelling has the requisite structure, it is perhaps too
complicated to serve as a convenient prototype. For this reason, we include a small subset
PBStry that illustrates the key details. You can make a new package simply by editing the files
in PBStry. You need a suitable editor (e.g., Notepad++, WinEdt, or UltraEdit) to view and
change various text files.

1. Start by locating the file PBStry_x.xx.tar.gz in the R library directory
\PBSmodelling\PBStools. Copy this file into your development directory
(D:\Rdevel), and rename it (or copy and rename the copy) to obtain the file
PBStry.tar.gz.

2. Remove any previous traces of PBStry in your development directory, such as subdirectories
PBStry , PBStry.Rcheck, and .Rd2pdf$, along with the documentation file
PBStry.pdf.

3. Follow steps similar to those in Section C.2 to unpack, check, build, re-package, and
document PBStry. You must now use a DOS command window in D:\Rdevel to issue the
five commands
Runpack PBStry
Rcheck PBStry
Rbuild PBStry
Rpack PBStry
RmakePDF PBStry
which invoke the batch files Runpack.bat, Rcheck.bat, Rbuild.bat, Rpack.bat and
RmakePDF.bat. The first command should give you a new subdirectory \PBStry, along
with its five subdirectories: \data, \inst, \man, \R, and \src.

4. Use your editor to open the file DESCRIPTION in the root directory \PBStry. This file,
essential in every R package, contains key information in a special format (RDCT 2011b,
Section 1.1.1). The following example illustrates a minimal set of required fields.

5. Package: MyPack
Version: 1.00
Date: 2008-12-31
Title: My R Package
Author: User of PBS Modelling
Maintainer: User of PBS Modelling
Depends: R (>= 2.6.0)
Description: My customized R functions
License: GPL (>= 2)

6. The package name in DESCRIPTION must agree with the directory name in which this file
lies. For example, if you change PBStry to MyPack in DESCRIPTION and rename the
directory from \PBStry to \MyPack, you have effectively changed the package name.

 – 78 –

Similarly, if you change the version to 1.01, you have effectively changed the version
number that appears in the file names for distributing your package.

7. The subdirectory \PBStry\R contains all R code used by the package. For example, PBStry
includes seven R functions (calcFib, calcFib2, calcGM, calcSum, findPat, pause,
and view). The seven files could be combined into a single file (such as PBStry.R), but we
use separate files here for clarity. The functions all have relatively simple code, hopefully
comprehensible to users with limited R experience. Five of them come from PBSmodelling.
Three of them (calcFib, calcFib2, calcSum) call compiled C code, as we discuss more
completely in Section C.4 below.

8. By convention, the distinct file zzz.r defines code for initializing the package. In this case
the function .First.lib, calls library.dynam to load a dynamic link library
(PBStry.dll) created from compiled C code during the build process.

9. When a version number changes, the DESCRIPTION file must be changed accordingly. We
also like to make a corresponding change in zzz.r, so that the version number appears on
the R console when the library is loaded. PBStry illustrates this possibility for zzz.r.

10. The subdirectory \PBStry\data contains all data objects that come with the package. Here,
the binary file QBR.rda holds a matrix of quillback rockfish (Sebastes maliger) sample data
used in the CCA example above (Section 7.2.3). The same data matrix is called CCA.qbr.hl
in PBSmodelling.

11. If you want to add data to a new package, first create the object (e.g., myData) in R and then
execute the command:
save(myData,file="myData.rda")
The object name must match the prefix in the file name, and the suffix must be .rda. Include
the resulting file in your package’s \data subdirectory.

12. The subdirectory \PBStry\man contains a documentation file for every object in the
package. PBStry has six functions and one data set, so the \man subdirectory has seven
corresponding R documentation files (*.Rd). An additional file PBStry.Rd documents the
package as a whole. Rd files use a rather complex scripting language (RDCT 2011b,
Section 2) that can be converted to help files in several formats (PDF, HTML, text). For
many packages, the examples in PBStry may provide adequate prototypes. They represent
three distinct cases: functions (e.g., calcGM.Rd, findPat.Rd), data sets (QBR.Rd), and
complete packages (PBStry.Rd).

13. The subdirectory \PBStry\src contains source code for C code to be compiled into the
dynamic link library PBStry.dll. We include sample files to calculate Fibonacci numbers
iteratively (fib.c, fib2.c) and to add the components of a numeric vector (sum.c). In
Section C.4, we discuss the linkage between R code and compiled C functions.

14. Finally, the subdirectory \PBStry\inst contains files that are to be included directly in the
R library tree for PBStry when the package is installed. The file PBStry-Info.txt briefly
describes the context and purpose of the trial package.

 If you have successfully followed the steps above, you have actually built two R
packages, PBSmodelling and PBStry. Furthermore, you’re reasonably familiar with the contents

 – 79 –

of PBStry. You can use the files in that small package as prototypes for writing your own R
package, which might contain R code in the subdirectory \R. data in \data, C source code in
\src, and R documentation in \man.

 The larger package PBSmodelling offers more prototypes and uses a somewhat different
style. The main directory includes the required DESCRIPTION file, plus a second file
NAMESPACE that lists all objects available to a user of the package. Effectively, the namespace
mechanism distinguishes between objects provided by the package and other (hidden) objects
required for the implementation, but not intended for public use. Our NAMESPACE file contains
the rather cryptic instruction: exportPattern("^[^\\.]"). The R string "^[^\\.]"
translates to the regular expression ^[^\.] that designates any pattern not starting with a
period (.). We also export “dot” objects (with names in R that start with a period) using explicit
patterns, for example: exportPattern("^\\.add"). The NAMESPACE file must also import
functions required from other packages. Because PBSmodelling relies on tcltk, the file includes
the command: import(tcltk).

 In PBStry, without a namespace, the file zzz.r defines the initializing function
.First.lib, as mentioned in step 8 above. By contrast, the namespace protocol in
PBSmodelling requires a different name for the initializing function: .onLoad in zzz.r. Note
that all R packages now require a NAMESPACE file.

 In summary, we recommend building a new package by editing, adding, and deleting
prototype files in PBStry. Our batch files can facilitate tests and debugging. For more advanced
work, particularly packages with a namespace protocol, look at PBSmodelling. Have a current
version of RDCT (2011b) available, and consult that manual when necessary. We find it useful
to keep the PDF file open and to use Acrobat’s search feature (Ctrl-F) to find topics of interest.

C.4. Embedding C code

 R provides two functions, .C() and .Call(), for invoking compiled C code. PBStry
includes two simple examples that use .C(), probably the method of choice for simple
packages. The .Call() function uses a more complex interface that offers better support for R
objects, and another example illustrate that calling convention.

Table C1. C representations of R data types.

R Object C Type
logical int *
integer int *
double double *
complex Rcomplex * 1
character char **

1 Rcomplex is defined in Complex.h.

 – 80 –

Calling C functions from R using .C()

The .C() calling convention uses the following key concepts:
• R must allocate the appropriate length and type of variables before calling a C function.
• R objects are transformed into an equivalent C type (Table C1), and a pointer to the value is

passed into the C function. All values are returned by modifying the original values passed in.
• A C function called by .C() must have return type void, because values are returned only by

accessing the predefined R function arguments.
• C code written for the shared DLL must not contain a main function.
• Within a C function, dynamically allocated memory must be de-allocated by the programmer

before the function returns. Otherwise a memory leak will likely occur.
• .C() returns a list similar to the '...' list of arguments passed in, but reflecting any

changes made by the C code. (See the help file for .C)

 The function calcFib in PBStry illustrates an application of these concepts (Table C2).
The R function uses C code to calculate the first n Fibonacci numbers iteratively, where a vector
holds the last len numbers calculated. After ensuring that n and len satisfy obvious constraints,
the R code creates a return array retArr of the appropriate length. The .C call passes n, len,
and retArr by reference to the C function fibonacci. On exit, the vector out contains a list
corresponding to the input variables n, len, and retArr, so that the third component out[[3]]
holds the modified vector of values calculated by fibonacci. We encourage you also to
examine a second example in PBStry , associated the files calcSum.R and sum.c.

 – 81 –

Table C2. Two text files associated with a .C() call in PBStry. R code in the first file calls C
code in the second.

———————————————————————————————————————
File 1: calcFib.R
calcFib <- function(n, len=1) {

 if (n<0) return(NA);

 if (len>n) len <- n;

 retArr <- numeric(len);

 out <- .C("fibonacci", as.integer(n), as.integer(len),

 as.numeric(retArr), PACKAGE="PBStry")

 x <- out[[3]]

 return(x) }

File 2: fib.c
void fibonacci(int *n, int *len, double *retArr) {

 double xa=0, xb=1, xn=-1; int i,j;

 /* iterative loop */

 for(i=0;i<=*n;i++) {

 /* initial conditions: fib(0)=0, fib(1)=1 */

 if (i <= 1) { xn = i; }

 /* fib(n) = fib(n-1) + fib(n-2) */

 else {xn = xa + xb; xa = xb; xb = xn; }

 /* save results if iteration i is within the range from n-len to n */

 j = i - *n + *len - 1;

 if (j >= 0) retArr[j] = xn;

 } /* end loop */

} /* end function */

———————————————————————————————————————

 – 82 –

Table C3. .Call() example adapted from PBStry, with two associated text files. R code in the
first file calls C code in the second.
———————————————————————————————————————

File 1: calcFib2.R
calcFib2 <- function(n, len=1) {

 out <- .Call("fibonacci2", as.integer(n), as.integer(len),
PACKAGE="PBSmodelling")

 return(out) }

File 2: fib2.c
#include <R.h>

#include <Rdefines.h>

SEXP fibonacci2(SEXP sexp_n, SEXP sexp_len) {

 /* ptr to output vector that we will create */

 SEXP retVals;

 double *p_retVals, xa=0, xb=1, xn;

 int n, len, i, j;

 /* convert R variables into C 'int's */

 len = INTEGER_VALUE(sexp_len);

 n = INTEGER_VALUE(sexp_n);

 /* Allocate space for the output vector */

 PROTECT(retVals = NEW_NUMERIC(len));

 p_retVals = NUMERIC_POINTER(retVals);

 /* iterative loop */

 for(i=0; i<=n; i++) {

 /* initial conditions: fib(0)=0, fib(1)=1 */

 if (i <= 1) { xn = i; }

 /* fib(n) = fib(n-1) + fib(n-2) */

 else { xn = xa + xb; xa = xb; xb = xn; }

 /* save results if iteration i is within the range from n-len to n */

 j = i - n + len - 1;

 if (j >= 0) p_retVals[j] = xn;

 } /* end loop */

 UNPROTECT(1);

 return retVals;

} /* end fibonacci2 */

———————————————————————————————————————

 – 83 –

Calling C functions from R using .Call()

The .C() convention requires a fairly simple conversion of R objects into C types
(Table C1). By contrast, .Call() provides extra structure that enables C to handle R objects
directly (RDCT 2011b, Section 4.7). This function uses “S-expression” SEXP types defined in
rinternals.h, a file in the \include directory of the R installation. An SEXP pointer can
reference any type of R object. The .Call() convention uses the following key concepts:

• C functions called by R must accept only SEXP typed arguments. These arguments should be
treated as read only.

• Similarly, C functions called by R must have SEXP return types.
• The Programmer must protect R objects from the R garbage collector, and must release

protected objects before the function terminates. R provides macros for this task.
• C code written for the shared DLL must not contain a main function.
• Within a C function, dynamically allocated memory must be de-allocated by the programmer

before the function returns. Otherwise a memory leak will likely occur.

 The function calcFib2 in Table C3 illustrates an application of these concepts. As
before, the R function uses C code to calculate the first n Fibonacci numbers iteratively, where a
vector holds the last len numbers calculated. (To save space, we’ve removed R code that checks
constraints on n and len). The simple .Call to fibonacci2 looks very natural. Input values n
and len produce the output vector out, where the C code must somehow determine what out
should be. Not surprisingly, it requires more complicated C code to make this happen.

 The C function fibonacci2 (Table C3) first loads header files that include the required
definitions from R. All input and output variables belong to type SEXP. Other internal variables
have the standard C types double and int. Functions like INTEGER_VALUE() convert R types
into C types. The SEXP vector retVals of return values is created by the R constructor
NEW_NUMERIC() and then protected from garbage collection by PROTECT(). After all required
variables are defined and type cast correctly, the iterative loop of calculations follows the earlier
example in Table B2. Finally, the only protected vector retVals is released by
UNPROTECT(1), and the standard closing command return retVals returns the output vector
from fibonacci2.

 Obviously, it takes some time and effort to become familiar with the specialized R types,
constructors, and conversion functions. For this reason, it’s probably easier at first to use .C(),
rather than .Call().

 – 84 –

Appendix D. PBSmodelling functions and data

 Section 1 of this appendix summarises the functions currently available in
PBSmodelling. Additionally, there are possible hidden or ‘dot’ functions (not presented here)
that reside in R’s NAMESPACE. These can be seen either using the triple colon convention on the
command line (e.g., PBSmodelling:::.function) or through our function viewCode, which
gathers function code for a specified package installed on the user’s computer. (R also provides
a utility called fixInNamespace() for modifying NAMESPACE objects.) Section 2 of this
appendix details how a user can generate a standard R manual for PBSmodelling, that includes a
Table of Contents, help pages for all objects, and an index. The manual itself is also appended.

D.1. Objects in PBSmodelling

addArrowsAdd Arrows to a Plot Using Relative (0:1) Coordinates
addHistory........................Create Structures for a New History Widget
addLabelAdd a Label to a Plot Using Relative (0:1) Coordinates
addLegendAdd a Legend to a Plot Using Relative (0:1) Coordinates
backHistoryCreate Structures for a New History Widget
calcFib...............................Calculate Fibonacci Numbers by Several Methods
calcGMCalculate the Geometric Mean, Allowing for Zeroes
calcMin...............................Calculate the Minimum of a User-Defined Function
chooseWinVal...................Choose and Set a String Item in a GUI
cleanProjLaunch a GUI for Project File Deletion
cleanWD...............................Launch a GUI for File Deletion
clearAllRemove all R Objects From the Global Environment
clearHistory...................Create Structures for a New History Widget
clearPBSextClear File Extension Associations
clearRconClear the R Console
clearWinValRemove all Current Widget Variables
clipVector........................Clip a Vector at One or Both Ends
closeWinClose GUI Window(s)
compileCCompile a C File into a Shared Library Object
compileDescriptionConvert and Save a Window Description as a List
convSlashesConvert Slashes from UNIX to DOS
createVector...................Create a GUI with a Vector Widget
createWinCreate a GUI Window
declareGUIoptions.......Declare Option Names that Correspond with Widget Names
doActionExecute Action Created by a Widget
drawBarsDraw a Linear Barplot on the Current Plot
evalCallEvaluate a Function Call
expandGraphExpand the Plot Area by Adjusting Margins
exportHistoryExport a Saved History
findPat...............................Search a Character Vector to Find Multiple Patterns
findPrefix........................Find a Prefix Based on Names of Existing Files

 – 85 –

findProgramLocates a program in the PATH environment variable
findSuffix........................Find a Prefix Based on Names of Existing Files
firstHistory...................Create Structures for a New History Widget
focusRguiFocus on the RGui Window
focusWinSet the Focus on a Particular Window
forwHistoryCreate Structures for a New History Widget
genMatrixGenerate Test Matrices for plotBubbles
getChoiceChoose One String Item from a List of Choices
getGUIoptionsGet PBS Options for Widgets
getOptions........................get and set user options
getOptionsFileNameget and set filename used for saving and loading of options
getOptionsPrefixget and set GUI prefix of options class
getPBSextGet a Command Associated With a File Name
getPBSoptionsRetrieve A User Option
getWinActRetrieve the Last Window Action
getWinFunRetrieve Names of Functions Referenced in a Window
getWinValRetrieve Widget Values for Use in R Code
getYesPrompt the User to Choose Yes or No
GT0 ..Restrict a Numeric Variable to a Positive Value
importHistoryImport a History List from a File
initHistoryCreate Structures for a New History Widget
isWhatIdentify an Object and Print Information
jumpHistoryCreate Structures for a New History Widget
lastHistoryCreate Structures for a New History Widget
lispList Objects in .PBSmodEnv Workspace
loadC....................................Launch a GUI for Compiling and Loading C Code
loadOptionssave and load options to and from disk
loadOptionsGUIload and save options values to and from a GUI
lucentConvert Solid Colours to Translucence
openExamples...................Open Example Files from a Package
openFileOpen a File with an Associated Program
openUGOpen Package User Guide
packListPack a List with Objects
pad0Pad Numbers with Leading Zeroes
parseWinFile...................Convert a Window Description File into a List Object
pause....................................Pause Between Graphics Displays or Other Calculations
pickCol...............................Pick a Colour From a Palette and get the Hexadecimal Code
plotACF...............................Plot Autocorrelation Bars From a Data Frame, Matrix, or Vector
plotAsp...............................Construct a Plot with a Specified Aspect Ratio
plotBubblesConstruct a Bubble Plot from a Matrix
plotCsumPlot Cumulative Sum of Data
plotDensPlot Density Curves from a Data Frame, Matrix, or Vector
plotFriedEggsRender a Pairs Plot as Fried Eggs and Beer

 – 86 –

plotSidebars...................Plot Table as Horizontal Sidebars
plotTracePlot Trace Lines from a Data Frame, Matrix, or Vector
presentTalkRun an R Presentation
promptWriteOptionsPrompt the User to Write Changed Options
readListRead a List from a File in PBS Modelling Format
readPBSoptionsRead PBS Options from an External File
resetGraph........................Reset par Values for a Plot
restorePar........................Get Actual Parameters from Scaled Values
rmHistoryCreate Structures for a New History Widget
runDemosInteractive GUI for R Demos
runExample........................Run a Single GUI Example Included with PBS Modelling
runExamplesRun GUI Examples Included with PBS Modelling
saveOptionssave and load options to and from disk
saveOptionsGUIload and save options values to and from a GUI
scaleParScale Parameters to [0,1]
selectDirDisplay Dialogue: Select directory
selectFile........................Display Dialogue: Open or Save File
setFileOptionSet a PBS File Path Option Interactively
setGUIoptionsSet PBS Options from Widget Values
setOptions........................get and set user options
setOptionsFileNameget and set filename used for saving and loading of options
setOptionsPrefixget and set GUI prefix of options class
setPathOptionSet a PBS Path Option Interactively
setPBSextSet a Command Associated with a File Name Extension
setPBSoptionsSet A User Option
setwdGUIBrowse for Working Directory and Optionally Find Prefix
setWidgetColorUpdate Widget Colour
setWidgetStateUpdate Widget State
setWinActAdd a Window Action to the Saved Action Vector
setWinValUpdate Widget Values
show0....................................Convert Numbers into Text with Specified Decimal Places
showAlertDisplay a Message in an Alert Window
showArgsDisplay Expected Widget Arguments
showHelpDisplay HTML Help Pages for Packages in Browser
showPacksShow Packages Required But Not Installed
showRes...............................Show Results of Expression Represented by Text
showVignettesDisplay Vignettes for Packages
sortHistorySort an Active or Saved History
tcall....................................Call Objects From Temporary Work Environment
testAlphaTest Various Alpha Transparency Values
testCol...............................Display Named Colours Available Based on a Set of Strings
testLty...............................Display Line Types Available
testLwd...............................Display Line Widths

 – 87 –

testPch...............................Display Plotting Symbols and Backslash Characters
testWidgetsDisplay Sample GUIs and their Source Code
tgetGet Objects From Temporary Work Environment
tprintPrint Objects From Temporary Work Environment
tputPut Objects Into Temporary Work Environment
unpackList........................Unpack List Elements into Variables
updateGUIUpdate Active GUI With Local Values
viewView First/Last/Random n Elements/Rows of an Object
viewCodeView Package R Code
writeListWrite a List to a File in PBS Modelling Format
writePBSoptions............Write PBS Options to an External File

D.2. PBSmodelling manual

 The following pages show the standard R manual for PBSmodelling, including help
pages for all objects, a table of contents, and an index. This manual also appears on the CRAN
web site:

http://cran.r-project.org/web/packages/PBSmodelling/index.html

 To generate the pages that follow, the user should first ensure that R’s style and font files
have been copied to MiKTeX (see steps 5a-c in Section C.1). This enhancement may be
necessary for the successful creation of a PDF manual.

 Next we provide a batch file RmakePDF.bat to assist the user in building the manual.
This method uses R’s temporary latex output Rd2.tex and alters it using system and MiKTeX
commands (e.g., sed, latex, makeindex, dvips, ps2pdf). The final result yields a PDF
manual with letter-size (8.5″ × 11″) pages rather than A4, and page numbering beginning at a
specified odd number to ensure that the next page becomes the front of a two-sided copy.
Currently, R CMD Rd2pdf has no way to start page numbering at an arbitrary integer. (Note that
the control file Rd2dvi has been removed by the CRAN mandarins.)

Method: On a command line, type the command:

 RmakePDF PBSmodelling 89

which automatically generates the PDF manual PBSmodelling.pdf from the package’s *.Rd
files. Page numbering for this PDF begins with the number specified by the second argument of
the above command. If the argument is not supplied, it defaults to 1.

The batch file issues the following command:

 %R_PATH%\R CMD Rd2pdf --no-clean --no-preview %1

 – 88 –

This command creates a temporary directory called .Rd2pdfNNNN\ (where NNNN comprise an
arbitrary set of four integers) containing Rd2.tex with the initial lines:

 \documentclass[letterpaper]{book}
 \usepackage[times,inconsolata,hyper]{Rd}
 \usepackage{makeidx}
 \usepackage[utf8,latin1]{inputenc}
 \makeindex{}
 \topmargin -0.25in \oddsidemargin 0in \evensidemargin 0in
 \textheight 9in \textwidth 6.5in
 \begin{document}
 \setcounter{page}{89}

where a boldface red font indicates new lines added by RmakePDF.bat to the file Rd2.tex in
the temporary folder. The altered tex file is saved as PBSmodelling.tex in the current
working directory, and the following MiKTeX commands are issued:

 latex -interaction=nonstopmode %1.tex
 makeindex %1.idx
 latex -interaction=nonstopmode %1.tex
 makeindex %1.idx
 latex -interaction=nonstopmode %1.tex
 latex -interaction=nonstopmode %1.tex
 dvips -q %1.dvi
 ps2pdf %1.ps

The repetitive calls to latex and makeindex are a byproduct of a non-dynamic system where
index references need to be updated several times. You should now have the PDF manual called
PBSmodelling.pdf, which can be appended to the first 88 pages of this report.

The technique presented in this appendix can be applied to any package to produce a manual
based on the *.Rd files. Readers may wish to go further and append their manual to more
detailed instructions to produce a comprehensive User’s Guide such as this one.

Package ‘PBSmodelling’

March 28, 2013

Version 2.65

Date 2013-03-27

Title GUI Tools Made Easy: Interact with Models, Explore Data, Give Dynamic Presentations

Author Jon T. Schnute <schnutej-dfo@shaw.ca>,Alex Couture-

Beil <alex@mofo.ca>,Rowan Haigh <rowan.haigh@dfo-mpo.gc.ca>, and

A.R. (Rob) Kronlund <allen.kronlund@dfo-mpo.gc.ca>

Maintainer Rowan Haigh <rowan.haigh@dfo-mpo.gc.ca>

Depends R (>= 2.15.0), methods, tcltk

Suggests PBSmapping, PBSddesolve, deSolve, KernSmooth, XML

Description PBS Modelling provides software to facilitate the design,testing, and operation of computer mod-

els. It focuses particularly on tools that make it easy to construct and edit a customized graphical

user interface (GUI). Although it depends heavily on the R interface

to the Tcl/Tk package, a user does not need to know Tcl/Tk. The

package contains examples that illustrate models built with other R

packages, including PBSmapping, deSolve, PBSddesolve, and BRugs. It also serves as a convenient proto-

type for building new R packages,along with instructions and batch files to facilitate that process.

The R directory ’.../library/PBSmodelling/doc’ offers a complete user

guide PBSmodelling-UG.pdf. To use this package effectively,please consult the guide.

License GPL (>= 2)

URL http://code.google.com/p/pbs-modelling/, http://code.google.com/p/pbs-tools/

R topics documented:

addArrows . 92

addLabel . 93

addLegend . 93

calcFib . 94

calcGM . 95

calcMin . 95

CCA.qbr . 97

chooseWinVal . 98

cleanProj . 100

cleanWD . 101

clearAll . 102

clearPBSext . 103

89

90 R topics documented:

clearRcon . 103

clearWinVal . 104

clipVector . 104

closeWin . 105

compileC . 106

compileDescription . 107

convSlashes . 107

createVector . 108

createWin . 109

declareGUIoptions . 110

doAction . 111

drawBars . 112

evalCall . 113

expandGraph . 114

exportHistory . 115

findPat . 115

findPrefix . 116

findProgram . 117

focusWin . 117

genMatrix . 118

getChoice . 119

getGUIoptions . 120

getOptions . 121

getOptionsFileName . 122

getOptionsPrefix . 122

getPBSext . 123

getPBSoptions . 124

getWinAct . 124

getWinFun . 125

getWinVal . 125

getYes . 126

GT0 . 127

importHistory . 128

initHistory . 128

isWhat . 130

lisp . 131

loadC . 132

loadOptions . 133

loadOptionsGUI . 133

lucent . 134

openExamples . 135

openFile . 136

openUG . 137

packList . 137

pad0 . 138

parseWinFile . 139

pause . 140

PBSmodelling . 140

PBSoptions-class . 140

pickCol . 142

plotACF . 143

plotAsp . 143

plotBubbles . 144

plotCsum . 145

R topics documented: 91

plotDens . 146

plotFriedEggs . 147

plotSidebars . 148

plotTrace . 149

presentTalk . 150

promptWriteOptions . 151

readList . 152

readPBSoptions . 152

resetGraph . 153

restorePar . 154

runDemos . 155

runExample . 155

runExamples . 156

scalePar . 157

selectDir . 158

selectFile . 159

setFileOption . 160

setGUIoptions . 160

setPathOption . 161

setPBSext . 162

setPBSoptions . 163

setwdGUI . 164

setWidgetColor . 164

setWidgetState . 166

setWinAct . 167

setWinVal . 168

show0 . 169

showAlert . 170

showArgs . 170

showHelp . 171

showPacks . 172

showRes . 172

showVignettes . 173

sortHistory . 173

talk-class . 174

testAlpha . 176

testCol . 177

testLty . 178

testLwd . 178

testPch . 179

testWidgets . 180

tget . 182

unpackList . 183

updateGUI . 184

vbdata . 185

vbpars . 185

view . 186

viewCode . 187

writeList . 188

writePBSoptions . 189

Index 191

92 addArrows

addArrows Add Arrows to a Plot Using Relative (0:1) Coordinates

Description

Call the arrows function using relative (0:1) coordinates.

Usage

addArrows(x1, y1, x2, y2, ...)

Arguments

x1 x-coordinate (0:1) at base of arrow.

y1 y-coordinate (0:1) at base of arrow.

x2 x-coordinate (0:1) at tip of arrow.

y2 y-coordinate (0:1) at tip of arrow.

... additional parameters for the function arrows.

Details

Lines will be drawn from (x1[i],y1[i]) to (x2[i],y2[i])

Author(s)

Jon T. Schnute, Pacific Biological Station, Fisheries and Oceans Canada , Nanaimo BC

See Also

addLabel, addLegend

Examples

local(envir=.PBSmodEnv,expr={

oldpar = par(no.readonly=TRUE)

tt=seq(from=-5,to=5,by=0.01)

plot(sin(tt), cos(tt)*(1-sin(tt)), type="l")

addArrows(0.2,0.5,0.8,0.5)

addArrows(0.8,0.95,0.95,0.55, col="#FF0066")

par(oldpar)

})

addLabel 93

addLabel Add a Label to a Plot Using Relative (0:1) Coordinates

Description

Place a label in a plot using relative (0:1) coordinates

Usage

addLabel(x, y, txt, ...)

Arguments

x x-axis coordinate in the range (0:1); can step outside.

y y-axis coordinate in the range (0:1); can step outside.

txt desired label at (x,y).

... additional arguments passed to the function text.

Author(s)

Jon T. Schnute, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

See Also

addArrows, addLegend

Examples

local(envir=.PBSmodEnv,expr={

oldpar = par(no.readonly=TRUE)

resetGraph()

addLabel(0.75,seq(from=0.9,to=0.1,by=-0.10),c(’a’,’b’,’c’), col="#0033AA")

par(oldpar)

})

addLegend Add a Legend to a Plot Using Relative (0:1) Coordinates

Description

Place a legend in a plot using relative (0:1) coordinates.

Usage

addLegend(x, y, ...)

Arguments

x x-axis coordinate in the range (0:1); can step outside.

y y-axis coordinate in the range (0:1); can step outside.

... arguments used by the function legend, such as lines, text, or rectangle.

94 calcFib

Author(s)

Jon T. Schnute, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

See Also

addArrows, addLabel

Examples

local(envir=.PBSmodEnv,expr={

oldpar = par(no.readonly=TRUE)

resetGraph()

n <- sample(1:length(colors()),15); clrs <- colors()[n]

addLegend(.2,1,fill=clrs,leg=clrs,cex=1.5)

par(oldpar)

})

calcFib Calculate Fibonacci Numbers by Several Methods

Description

Compute Fibonacci numbers using four different methods: 1) iteratively using R code, 2) via the closed function

in R code, 3) iteratively in C using the .C function, and 4) iteratively in C using the .Call function.

Usage

calcFib(n, len=1, method="C")

Arguments

n nth fibonacci number to calculate

len a vector of length len showing previous fibonacci numbers

method select method to use: C, Call, R, closed

Value

Vector of the last len Fibonacci numbers calculated.

Author(s)

Jon T. Schnute, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

calcGM 95

calcGM Calculate the Geometric Mean, Allowing for Zeroes

Description

Calculate the geometric mean of a numeric vector, possibly excluding zeroes and/or adding an offset to compen-

sate for zero values.

Usage

calcGM(x, offset = 0, exzero = TRUE)

Arguments

x vector of numbers

offset value to add to all components, including zeroes

exzero if TRUE, exclude zeroes (but still add the offset)

Value

Geometric mean of the modified vector x + offset

Note

NA values are automatically removed from x

Author(s)

Rowan Haigh, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

Examples

local(envir=.PBSmodEnv,expr={

calcGM(c(0,1,100))

calcGM(c(0,1,100),offset=0.01,exzero=FALSE)

})

calcMin Calculate the Minimum of a User-Defined Function

Description

Minimization based on the R-stat functions nlm, nlminb, and optim. Model parameters are scaled and can be

active or not in the minimization.

Usage

calcMin(pvec, func, method="nlm", trace=0, maxit=1000, reltol=1e-8,

steptol=1e-6, temp=10, repN=0, ...)

96 calcMin

Arguments

pvec Initial values of the model parameters to be optimized. pvec is a data frame comprising four

columns ("val","min","max","active") and as many rows as there are model parameters.

The "active" field (logical) determines whether the parameters are estimated (T) or remain

fixed (F).

func The user-defined function to be minimized (or maximized). The function should return a scalar

result.

method The minimization method to use: one of nlm, nlminb, Nelder-Mead, BFGS, CG, L-BFGS-B, or

SANN. Default is nlm.

trace Non-negative integer. If positive, tracing information on the progress of the minimization is

produced. Higher values may produce more tracing information: for method "L-BFGS-B"

there are six levels of tracing. Default is 0.

maxit The maximum number of iterations. Default is 1000.

reltol Relative convergence tolerance. The algorithm stops if it is unable to reduce the value by a

factor of reltol*(abs(val)+reltol) at a step. Default is 1e-8.

steptol A positive scalar providing the minimum allowable relative step length. Default is 1e-6.

temp Temperature controlling the "SANN" method. It is the starting temperature for the cooling

schedule. Default is 10.

repN Reports the parameter and objective function values on the R-console every repN evaluations.

Default is 0 for no reporting.

... Further arguments to be passed to the optimizing function chosen: nlm, nlminb, or optim.

Beware of partial matching to earlier arguments.

Details

See optim for details on the following methods: Nelder-Mead, BFGS, CG, L-BFGS-B, and SANN.

Value

A list with components:

Fout The output list from the optimizer function chosen through method.

iters Number of iterations.

evals Number of evaluations.

cpuTime The user CPU time to execute the minimization.

elapTime The total elapsed time to execute the minimization.

fminS The objective function value calculated at the start of the minimization.

fminE The objective function value calculated at the end of the minimization.

Pstart Starting values for the model parameters.

Pend Final values estimated for the model parameters from the minimization.

AIC Akaike’s Information Criterion

message Convergence message from the minimization routine.

Note

Some arguments to calcMin have no effect depending on the method chosen.

Author(s)

Jon T. Schnute, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

CCA.qbr 97

See Also

scalePar, restorePar, calcMin, GT0

In the stats package: nlm, nlminb, and optim.

Examples

local(envir=.PBSmodEnv,expr={

Ufun <- function(P) {

Linf <- P[1]; K <- P[2]; t0 <- P[3]; obs <- afile$len;

pred <- Linf * (1 - exp(-K*(afile$age-t0)));

n <- length(obs); ssq <- sum((obs-pred)^2);

return(n*log(ssq)); };

oldpar = par(no.readonly = TRUE)

afile <- data.frame(age=1:16,len=c(7.36,14.3,21.8,27.6,31.5,35.3,39,

41.1,43.8,45.1,47.4,48.9,50.1,51.7,51.7,54.1));

pvec <- data.frame(val=c(70,0.5,0),min=c(40,0.01,-2),max=c(100,2,2),

active=c(TRUE,TRUE,TRUE),row.names=c("Linf","K","t0"),

stringsAsFactors=FALSE);

alist <- calcMin(pvec=pvec,func=Ufun,method="nlm",steptol=1e-4,repN=10);

print(alist[-1]); P <- alist$Pend;

#resetGraph();

expandGraph();

xnew <- seq(afile$age[1],afile$age[nrow(afile)],len=100);

ynew <- P[1] * (1 - exp(-P[2]*(xnew-P[3])));

plot(afile); lines(xnew,ynew,col="red",lwd=2);

addLabel(.05,.88,paste(paste(c("Linf","K","t0"),round(P,c(2,4,4)),

sep=" = "),collapse="\n"),adj=0,cex=0.9);

par(oldpar)

})

CCA.qbr Data: Sampled Counts of Quillback Rockfish (Sebastes maliger)

Description

Count of sampled fish-at-age for quillback rockfish (Sebastes maliger) in Johnstone Strait, British Columbia, from

1984 to 2004.

Usage

data(CCA.qbr)

Format

A matrix with 70 rows (ages) and 14 columns (years). Attributes “syrs” and “cyrs” specify years of survey and

commercial data, respectively.

[,c(3:5,9,13,14)] Counts-at-age from research survey samples

[,c(1,2,6:8,10:12)] Counts-at-age from commercial fishery samples

All elements represent sampled counts-at-age in year. Zero-value entries indicate no observations.

98 chooseWinVal

Details

Handline surveys for rockfish have been conducted in Johnstone Strait (British Columbia) and adjacent waterways

(126◦37’W to 126◦53’W, 50◦32’N to 50◦39’N) since 1986. Yamanaka and Richards (1993) describe surveys

conducted in 1986, 1987, 1988, and 1992. In 2001, the Rockfish Selective Fishery Study (Berry 2001) targeted

quillback rockfish Sebastes maliger for experiments on improving survival after capture by hook and line gear.

The resulting data subsequently have been incorporated into the survey data series. The most recent survey in 2004

essentially repeated the 1992 survey design. Fish samples from surveys have been supplemented by commercial

handline fishery samples taken from a larger region (126◦35’W to 127◦39’W, 50◦32’N to 50◦59’N) in the years

1984-1985, 1989-1991, 1993, 1996, and 2000 (Schnute and Haigh 2007).

Note

Years 1994, 1997-1999, and 2002-2003 do not have data.

Source

Fisheries and Oceans Canada - GFBio database:

http://www-sci.pac.dfo-mpo.gc.ca/sa-mfpd/statsamp/StatSamp_GFBio.htm

References

Berry, M.D. (2001) Area 12 (Inside) Rockfish Selective Fishery Study. Science Council of British Columbia,

Project Number FS00-05.

Schnute, J.T. and Haigh, R. (2007) Compositional analysis of catch curve data with an application to Sebastes

maliger. ICES Journal of Marine Science 64, 218–233.

Yamanaka, K.L. and Richards, L.J. (1993) 1992 Research catch and effort data on nearshore reef-fishes in British

Columbia Statistical Area 12. Canadian Manuscript Report of Fisheries and Aquatic Sciences 2184, 77 pp.

Examples

local(envir=.PBSmodEnv,expr={

oldpar = par(no.readonly=TRUE)

Plot age proportions (blue bubbles = survey data, red = commercial)

data(CCA.qbr,envir=.PBSmodEnv); clrs=c("cornflowerblue","orangered")

z <- CCA.qbr; cyr <- attributes(z)$cyrs;

z <- apply(z,2,function(x){x/sum(x)}); z[,cyr] <- -z[,cyr];

x <- as.numeric(dimnames(z)[[2]]); xlim <- range(x) + c(-.5,.5);

y <- as.numeric(dimnames(z)[[1]]); ylim <- range(y) + c(-1,1);

expandGraph(mgp=c(2,.5,0),las=1)

plotBubbles(z,xval=x,yval=y,powr=.5,size=0.15,clrs=clrs,

xlim=xlim,ylim=ylim,xlab="Year",ylab="Age",cex.lab=1.5)

addLegend(.5,1,bty="n",pch=1,cex=1.2,col=clrs,

legend=c("Survey","Commercial"),horiz=TRUE,xjust=.5)

par(oldpar)

})

chooseWinVal Choose and Set a String Item in a GUI

Description

Prompts the user to choose one string item from a list of choices displayed in a GUI, then sets a specified variable

in a target GUI.

chooseWinVal 99

Usage

chooseWinVal(choice, varname, winname="window")

Arguments

choice vector of strings from which to choose

varname variable name to which choice is assigned in the target GUI

winname window name for the target GUI

Details

chooseWinVal activates a setWinVal command through an onClose function created by the getChoice com-

mand and modified by chooseWinVal.

Value

No value is returned directly. The choice is written to the PBS options workspace, accessible through

getPBSoptions("getChoice"). Also set in PBS options is the window name from which the choice was acti-

vated.

Note

Microsoft Windows users may experience difficulties switching focus between the R console and GUI windows.

The latter frequently disappear from the screen and need to be reselected (either clicking on the task bar or pressing

<Alt><Tab>. This issue can be resolved by switching from MDI to SDI mode. From the R console menu bar,

select <Edit> and <GUI preferences>, then change the value of “single or multiple windows” to SDI.

Author(s)

Rowan Haigh, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

See Also

getChoice, getWinVal, setWinVal

Examples

Not run:

local(envir=.PBSmodEnv,expr={

dfnam <-

c("airquality","attitude","ChickWeight","faithful","freeny",

"iris","LifeCycleSavings","longley","morley","Orange",

"quakes","randu","rock","stackloss","swiss","trees")

wlist <- c(

"window name=choisir title=\"Test chooseWinVal\"",

"label text=\"Press <ENTER> in the green entry box

\nto choose a file, then press <GO>\" sticky=W pady=5",

"grid 1 3 sticky=W",

"label text=File: sticky=W",

"entry name=fnam mode=character width=23 value=\"\"

func=chFile entrybg=darkolivegreen1 pady=5",

"button text=GO bg=green sticky=W func=test",

"")

chFile <- function(ch=dfnam,fn="fnam")

100 cleanProj

{chooseWinVal(ch,fn,winname="choisir")};

#-- Example 1 GUI test

test <- function() {

oldpar = par(no.readonly=TRUE); on.exit(par(oldpar))

getWinVal(winName="choisir",scope="L")

if (fnam!="" && any(fnam==dfnam)) {

file <- get(fnam);

pairs(file,gap=0); }

else {

resetGraph();

addLabel(.5,.5,"Press <ENTER> in the green entry box

\nto choose a file, then press <GO>", col="red",cex=1.5)

}

}

#-- Example 2 Non-GUI test

#To try the non-GUI version, type ’test2()’ on the command line

test2 <- function(fnames=dfnam) {

oldpar = par(no.readonly=TRUE); on.exit(par(oldpar))

frame();resetGraph()

again <- TRUE;

while (again) {

fnam <- sample(fnames,1); file <- get(fnam);

flds <- names(file);

xfld <- getChoice(paste("Pick x-field from",fnam),flds,gui=FALSE);

yfld <- getChoice(paste("Pick y-field from",fnam),flds,gui=FALSE)

plot(file[,xfld],file[,yfld],xlab=xfld,ylab=yfld,

pch=16,cex=1.2,col="red");

again <- getChoice("Plot another pair?",gui=FALSE)

}

}

require(PBSmodelling)

createWin(wlist,astext=TRUE); test();

})

End(Not run)

cleanProj Launch a GUI for Project File Deletion

Description

Launches a new window which contains an interface for deleting junk files associated with a prefix and a set of

suffixes (e.g., PBSadmb project) from the working directory.

Usage

cleanProj(prefix, suffix, files)

Arguments

prefix default prefix for file names.

suffix character vector of suffixes used for clean options.

files character vector of file names used for clean options.

cleanWD 101

Details

All arguments may contain wildcard characters ("*" to match 0 or more characters, "?" to match any single

character).

The GUI includes the following:

1 An entry box for the prefix.

The default value of this entry box is taken from prefix.

2 Check boxes for each suffix in the suffix argument and

for each file name in the files argument.

3 Buttons marked "Select All" and "Select None" for

selecting and clearing all the check boxes, respectively.

4 A "Clean" button that deletes files in the working directory

matching one of the following criteria:

(i) file name matches both an expansion of a concatenation of a

prefix in the entry box and a suffix chosen with a check box; or

(ii) file name matches an expansion of a file chosen with a check box.

Author(s)

Anisa Egeli, Vancouver Island University, Nanaimo BC

Examples

Not run:

local(envir=.PBSmodEnv,expr={

cleanProj(prefix="foo",suffix=c(".a*",".b?",".c","-old.d"),files=c("red","blue"))

})

End(Not run)

cleanWD Launch a GUI for File Deletion

Description

Launches a new window which contains an interface for deleting specified files from the working directory.

Usage

cleanWD(files)

Arguments

files character vector of file names used for clean options.

Details

All arguments may contain wildcard characters ("*" to match 0 or more characters, "?" to match any single

character).

The GUI includes the following:

1 Check boxes for each suffix in the suffix argument and

for each file name in the files argument.

102 clearAll

2 Buttons marked "Select All" and "Select None" for

selecting and clearing all the check boxes, respectively.

3 A "Clean" button that deletes files in the working directory

matching file name expansion of files chosen with a check box.

Author(s)

Rowan Haigh, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

Examples

Not run:

local(envir=.PBSmodEnv,expr={

cleanWD(c("*.bak","*.tmp","junk*"))

})

End(Not run)

clearAll Remove all R Objects From a Specified Environment

Description

Generic function to clear all objects from .RData in R

Usage

clearAll(hidden=TRUE, verbose=TRUE, PBSsave=TRUE, pos=".PBSmodEnv")

Arguments

hidden if TRUE, remove variables that start with a dot(.).

verbose if TRUE, report all removed items.

PBSsave if TRUE, do not remove .PBSmod.

pos The pos argument can specify the environment in which to look for the object in any of several

ways: as an integer (the position in the search list); as the character string name of an element

in the search list; or as an environment (including using sys.frame to access the currently

active function calls).

Author(s)

Jon T. Schnute, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

clearPBSext 103

clearPBSext Clear File Extension Associations

Description

Disassociate any number of file extensions from commands previously saved with setPBSext.

Usage

clearPBSext(ext)

Arguments

ext optional character vector of file extensions to clear; if unspecified, all associations are removed

Author(s)

Alex Couture-Beil, Vancouver Island University, Nanaimo BC

See Also

setPBSext, getPBSext, openFile

clearRcon Clear the R Console / Focus on the RGui Window

Description

Clear the R console window or focus on the RGui window using Visual Basic shell scripts.

Usage

clearRcon(os=.Platform$OS.type)

focusRgui(os=.Platform$OS.type)

Arguments

os operating system (e.g., "windows", "unix").

Details

Creates a VB shell script file called clearRcon.vbs or focusRgui.vbs in R’s temporary working directory, then

executes the script using the shell command.

While clearRcon clears the R console, focusRgui returns the desktop focus back to the RGui window.

These commands will only work on Windows operating platforms, using the system’s executable

%SystemRoot%\system32\cscript.exe.

Author(s)

Norm Olsen, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

104 clipVector

See Also

cleanWD, clearPBSext, clearWinVal

Examples

Not run:

local(envir=.PBSmodEnv,expr={

createWin(c("window title=Focus",

"button text=\"Go to RGui\" width=20 bg=aliceblue func=focusRgui"), astext=T)

})

End(Not run)

clearWinVal Remove all Current Widget Variables

Description

Remove all global variables that share a name in common with any widget variable name defined in

names(getWinVal()). Use this function with caution.

Usage

clearWinVal()

Author(s)

Alex Couture-Beil, Vancouver Island University, Nanaimo BC

See Also

getWinVal

clipVector Clip a Vector at One or Both Ends

Description

Clip a vector at one or both ends using the specified clip pattern to match.

Usage

clipVector(vec, clip, end=0)

Arguments

vec vector object to clip

clip value or string specifying repeated values to clip from ends

end end to clip clip from: 0=both, 1=front, 2=back

closeWin 105

Details

If the vector is named, the names are retained. Otherwise, element positions are assigned as the vector’s names.

Value

Clipped vector with names.

Author(s)

Rowan Haigh, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

See Also

createVector

Examples

local(envir=.PBSmodEnv,expr={

x=c(0,0,0,0,1,1,1,1,0,0)

print(clipVector(x,0))

x=c(TRUE,TRUE,FALSE,TRUE)

print(clipVector(x,TRUE))

x=c("red","tide","red","red")

print(clipVector(x,"red",2))

})

closeWin Close GUI Window(s)

Description

Close (destroy) one or more windows made with createWin.

Usage

closeWin(name)

Arguments

name a vector of window names that indicate which windows to close. These names appear in the

window description file(s) on the line(s) defining WINDOW widgets. If name is omitted, all

active windows will be closed.

Author(s)

Alex Couture-Beil, Vancouver Island University, Nanaimo BC

See Also

createWin

106 compileC

compileC Compile a C File into a Shared Library Object

Description

This function provides an alternative to using R’s SHLIB command to compile C code into a shared library object.

Usage

compileC(file, lib="", options="", logWindow=TRUE, logFile=TRUE)

Arguments

file name of the file to compile.

lib name of shared library object (without extension).

options linker options (in one string) to prepend to a compilation command.

logWindow if TRUE, a log window containing the compiler output will be displayed.

logFile if TRUE, a log file containing the compiler output will be created.

Details

If lib="", it will take the same name as file (with a different extension).

If an object with the same name has already been dynamically loaded in R, it will be unloaded automatically for

recompilation.

The name of the log file, if created, uses the string value from lib concatenated with ".log".

Author(s)

Anisa Egeli, Vancouver Island University, Nanaimo BC

See Also

loadC

Examples

Not run:

local(envir=.PBSmodEnv,expr={

cwd = getwd()

edir <- system.file("examples", package = "PBSmodelling")

file.copy(paste(edir,"fib.c",sep="/"), tempdir(), overwrite=TRUE)

setwd(tempdir())

compileC("fib.c", lib="myLib", options="myObj.o", logWindow=FALSE)

print(list.files())

setwd(cwd)

})

End(Not run)

compileDescription 107

compileDescription Convert and Save a Window Description as a List

Description

Convert a window description file (ASCII markup file) to an equivalent window description list. The output list

(an ASCII file containing R-source code) is complete, i.e., all default values have been added.

Usage

compileDescription(descFile, outFile)

Arguments

descFile name of window description file (markup file).

outFile name of output file containing R source code.

Details

The window description file descFile is converted to a list, which is then converted to R code, and saved to

outFile.

Author(s)

Alex Couture-Beil, Vancouver Island University, Nanaimo BC

See Also

parseWinFile, createWin

convSlashes Convert Slashes from UNIX to DOS

Description

Convert slashes in a string from ‘/’ to ‘\\’ if the operating system is ‘windows’. Do the reverse if the OS is

‘unix’.

Usage

convSlashes(expr, os=.Platform$OS.type, addQuotes=FALSE)

Arguments

expr String value (usually a system pathway).

os operating system (either "windows" or "unix").

addQuotes logical: if TRUE, enclose the string expression in escaped double quotation marks.

Value

Returns the input string modified to have the appropriate slashes for the specified operating system.

108 createVector

Author(s)

Rowan Haigh, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

createVector Create a GUI with a Vector Widget

Description

Create a basic window containing a vector and a submit button. This provides a quick way to create a window

without the need for a window description file.

Usage

createVector(vec, vectorLabels=NULL, func="",

windowname="vectorwindow", env=NULL)

Arguments

vec a vector of strings representing widget variables. The values in vec become the default values

for the widget. If vec is named, the names are used as the variable names.

vectorLabels an optional vector of strings to use as labels above each widget.

func string name of function to call when new data are entered in widget boxes or when "GO" is

pressed.

windowname unique window name, required if multiple vector windows are created.

env an environment in which to evaluate widget callback functions.

Author(s)

Alex Couture-Beil, Vancouver Island University, Nanaimo BC

See Also

createWin

Examples

Not run:

local(envir=.PBSmodEnv,expr={

#user defined function which is called on new data

drawLiss <- function() {

oldpar = par(no.readonly=TRUE); on.exit(par(oldpar))

getWinVal(scope="L");

tt <- 2*pi*(0:k)/k; x <- sin(2*pi*m*tt); y <- sin(2*pi*(n*tt+phi));

plot(x,y,type="p"); invisible(NULL); };

#create the vector window

createVector(c(m=2, n=3, phi=0, k=1000), func="drawLiss",

vectorLabels=c("x cycles","y cycles", "y phase", "points"));

})

End(Not run)

createWin 109

createWin Create a GUI Window

Description

Create a GUI window with widgets using instructions from a Window Description File (aka mark-up file) .

Usage

createWin(fname, astext=FALSE, env=NULL)

Arguments

fname name of window description file or list returned from parseWinFile.

astext logical: if TRUE, interpret fname as a vector of strings with each element representing a line in

a window description file.

env an environment in which to evaluate widget callback functions; see example.

Details

Generally, the markup file contains a single widget per line. However, widgets can span multiple lines by including

a backslash (’\’) character at the end of a line, prompting the suppression of the newline character.

For more details on widget types and markup file, see “PBSModelling-UG.pdf” in the R directory

.../library/PBSmodelling/doc.

It is possible to use a Window Description List produced by compileDescription rather than a file name for

fname.

Another alternative is to pass a vector of characters to fname and set astext=T. This vector represents the file

contents where each element is equivalent to a new line in the window description file.

Note

Microsoft Windows users may experience difficulties switching focus between the R console and GUI windows.

The latter frequently disappear from the screen and need to be reselected (either clicking on the task bar or pressing

<Alt><Tab>. This issue can be resolved by switching from MDI to SDI mode. From the R console menu bar,

select <Edit> and <GUI preferences>, then change the value of “single or multiple windows” to SDI.

Author(s)

Alex Couture-Beil, Vancouver Island University, Nanaimo BC

See Also

parseWinFile, getWinVal, setWinVal

closeWin, compileDescription, createVector

initHistory for an example of using astext=TRUE

environment

110 declareGUIoptions

Examples

Not run:

See file .../library/PBSmodelling/testWidgets/LissWin.txt

Calculate and draw the Lissajous figure

local(envir=.PBSmodEnv,expr={

drawLiss <- function() {

oldpar = par(no.readonly=TRUE); on.exit(par(oldpar))

getWinVal(scope="L"); ti=2*pi*(0:k)/k;

x=sin(2*pi*m*ti); y=sin(2*pi*(n*ti+phi));

plot(x,y,type=ptype); invisible(NULL); };

createWin(system.file("testWidgets/LissWin.txt",package="PBSmodelling"));

})

##

Environment example:

function in global

local(envir=.PBSmodEnv,expr={

hello <- function() {

stop("I shouldn’t be called")

}

newNameGreeter <- function(name) {

method to display window

greet <- function() {

createWin(c("button \"Say hello\" func=hello"), astext=TRUE,

env=parent.env(environment()))

}

hello method will refer to the name in this local scope

hello <- function() {

cat("Hello", name, "\n")

}

return functions which the user can call directly

return(list(greet=greet, hello=hello))

}

alex <- newNameGreeter("Alex")

jon <- newNameGreeter("Jon")

alex$hello() # prints hello Alex

jon$hello() # prints hello Jon

alex$greet() # creates a GUI with a button, which will print "hello Alex" when pushed

})

End(Not run)

declareGUIoptions Declare Option Names that Correspond with Widget Names

Description

This function allows a GUI creator to specify widget names that correspond to names in PBS options. These

widgets can then be used to load and set PBS options using getGUIoptions and setGUIoptions.

Usage

declareGUIoptions(newOptions)

doAction 111

Arguments

newOptions a character vector of option names

Details

declareGUIoptions is typically called in a GUI initialization function. The option names are remembered and

used for the functions getGUIoptions, setGUIoptions, and promptSave.

Author(s)

Anisa Egeli, Vancouver Island University, Nanaimo BC

See Also

getGUIoptions, setGUIoptions, promptWriteOptions

Examples

Not run:

local(envir=.PBSmodEnv,expr={

declareGUIoptions("editor")

})

End(Not run)

doAction Execute Action Created by a Widget

Description

Executes the action expression formulated by the user and written as an ‘action’ by a widget.

Usage

doAction(act)

Arguments

act string representing an expression that can be executed

Details

If act is missing, doAction looks for it in the action directory of the window’s widget directory in .PBSmod. This

action can be accessed through getWinAct()[1].

Due to parsing complications, the expression act translates various symbols.

The function translates:

1. The back tick character ‘‘’ to a double quote ‘"’ character. For example,

"openFile(paste(getWinVal()$prefix,‘.tpl‘,sep=‘‘))"

2. Underscore period ‘_.’ to four back slashes and one period ‘\\\\.’. For example,

"poop=strsplit(‘some.thing.else‘,split=‘_.‘)"

112 drawBars

Value

Invisibly returns the string expression expr.

Author(s)

Rowan Haigh, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

See Also

createWin, evalCall, getWinAct

Examples

local(envir=.PBSmodEnv,expr={

createWin("button text=\"list objects\" func=doAction action=print(ls(all.names=TRUE))",

astext=TRUE)

})

drawBars Draw a Linear Barplot on the Current Plot

Description

Draw a linear barplot on the current plot.

Usage

drawBars(x, y, width, base = 0, ...)

Arguments

x x-coordinates

y y-coordinates

width bar width, computed if missing

base y-value of the base of each bar

... further graphical parameters (see par) may also be supplied as arguments

Author(s)

Jon T. Schnute, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

Examples

local(envir=.PBSmodEnv,expr={

oldpar = par(no.readonly=TRUE)

plot(0:10,0:10,type="n")

drawBars(x=1:9,y=9:1,col="deepskyblue4",lwd=3)

par(oldpar)

})

evalCall 113

evalCall Evaluate a Function Call

Description

Evaluates a function call after resolving potential argument conflicts.

Usage

evalCall(fn, argu, ..., envir = parent.frame(),

checkdef=FALSE, checkpar=FALSE)

Arguments

fn R function

argu list of explicitly named arguments and their values to pass to fn.

... additional arguments that a user might wish to pass to fn.

envir environment from which the call originates (currently has no use or effect).

checkdef logical: if TRUE, gather additional formal arguments from the functions default function.

checkpar logical: if TRUE, gather additional graphical arguments from the list object par.

Details

This function builds a call to the specified function and executes it. During the build, optional arguments (. . .) are

checked for

(i) duplication with explicit arguments argu: if any are duplicated, the user-supplied arguments supersede the

explicit ones;

(ii) availability as usable arguments in fn, fn.default if checkdef=TRUE, and par if checkpar=TRUE.

Value

Invisibly returns the string expression of the function call that is passed to eval(parse(text=expr)).

Author(s)

Rowan Haigh, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

See Also

doAction, plotAsp

Examples

local(envir=.PBSmodEnv,expr={

oldpar = par(no.readonly=TRUE)

A user may have a function that calls other functions

using specific defaults (e.g., blue triangles)

#--

pbsfun = function(..., use.evalCall=TRUE) {

plotAsp(0,0,type="n",xlim=c(-1.5,1.5),ylim=c(-1.5,1.5),

axes=FALSE, frame.plot=TRUE, xlab="",ylab="")

if (use.evalCall)

evalCall(polygon, ...,

114 expandGraph

argu=list(x=c(-1,1,0),y=c(1,1,-1), col="dodgerblue", border="grey"))

else

polygon(x=c(-1,1,0),y=c(1,1,-1),col="dodgerblue",border="grey",...)

}

par(mfrow=c(2,1))

pbsfun(lwd=4,use.evalCall=FALSE)

#--

But what if the user wants pink triangles?

pbsfun(col="pink",lwd=4,use.evalCall=TRUE,checkpar=TRUE)

par(oldpar)

})

Without ’evalCall’ an error occurs due to duplicated arguments

Not run: pbsfun(col="pink",lwd=4,use.evalCall=FALSE)

expandGraph Expand the Plot Area by Adjusting Margins

Description

Optimize the plotting region(s) by minimizing margins.

Usage

expandGraph(mar=c(4,3,1.2,0.5), mgp=c(1.6,.5,0),...)

Arguments

mar numerical vector of the form ’c(bottom, left, top, right)’ specifying the margins of the plot

mgp numerical vector of the form ’c(axis title, axis labels, axis line)’ specifying the margins for

axis title, axis labels, and axis line

... additional graphical parameters to be passed to par

Author(s)

Jon T. Schnute, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

See Also

resetGraph

Examples

local(envir=.PBSmodEnv,expr={

oldpar = par(no.readonly=TRUE)

expandGraph(mfrow=c(2,1));

tt=seq(from=-10, to=10, by=0.05);

plot(tt,sin(tt), xlab="this is the x label", ylab="this is the y label",

main="main title", sub="sometimes there is a \"sub\" title")

plot(cos(tt),sin(tt*2), xlab="cos(t)", ylab="sin(2 t)", main="main title",

sub="sometimes there is a \"sub\" title")

par(oldpar)

})

exportHistory 115

exportHistory Export a Saved History

Description

Export the current history list.

Usage

exportHistory(hisname="", fname="")

Arguments

hisname name of the history list to export. If set to "", the value from getWinAct()[1] will be used

instead.

fname file name where history will be saved. If it is set to "", a <Save As> window will be displayed.

Author(s)

Alex Couture-Beil, Vancouver Island University, Nanaimo BC

See Also

importHistory, initHistory

findPat Search a Character Vector to Find Multiple Patterns

Description

Use all available patterns in pat to search in vec, and return the matched elements in vec.

Usage

findPat(pat, vec)

Arguments

pat character vector of patterns to match in vec

vec character vector where matches are sought

Value

A character vector of all matched strings.

Author(s)

Rowan Haigh, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

116 findPrefix

Examples

local(envir=.PBSmodEnv,expr={

#find all strings with a vowel, or that start with a number

print(findPat(c("[aeiou]", "^[0-9]"), c("hello", "WORLD", "1over")))

})

findPrefix Find a Prefix Based on Names of Existing Files

Description

Find the prefixes or suffixes of files with a given suffix or prefix in a directory.

Usage

findPrefix(suffix,path=".")

findSuffix(prefix,path=".")

Arguments

suffix character vector of suffixes

prefix character vector of prefixes

path directory to look for files in

Details

The function findPrefix locates all files in a directory that end with one of the provided suffixes; where as

findSuffix locates all files that start with the given prefixes.

Value

A character vector of all the prefixes or sufixes of files in the working directory that matched to one of the given

suffixes.

Author(s)

Anisa Egeli, Vancouver Island University, Nanaimo BC

Examples

local(envir=.PBSmodEnv,expr={

edir = system.file("examples", package="PBSmodelling")

print(findPrefix(suffix=c(".txt", ".r"),path=edir)); cat("\n")

#or use R’s dir for similar functionality

print(dir(pattern="txt$",path=edir)); cat("\n")

print(dir(pattern="^[a-h]",path=edir)); cat("\n")

})

findProgram 117

findProgram Locates a program in the PATH environment variable

Description

Returns the complete filename and path of a program in the PATH environment variable. This is a wrapper for

Sys.which, and may be deprecated in the future.

Usage

findProgram(name, includename=FALSE)

Arguments

name name of a program to locate

includename boolean: if true, include the filename in the path returned, otherwise just the directory.

Value

A string containing the location of the program. NULL is returned if the program is not located.

Author(s)

Alex Couture-Beil, Vancouver Island University, Nanaimo BC

See Also

Sys.which

Examples

local(envir=.PBSmodEnv,expr={

print(list(

gcc = findProgram("gcc"),

notepad = findProgram("notepad"),

R = findProgram("R", includename=TRUE)))

})

focusWin Set the Focus on a Particular Window

Description

Bring the specified window into focus, and set it as the active window. focusWin will fail to bring the window

into focus if it is called from the R console, since the R console returns focus to itself once a function returns.

However, it will work if focusWin is called as a result of calling a function from the GUI window. (i.e., pushing

a button or any other widget that has a function argument).

Usage

focusWin(winName, winVal=TRUE)

118 genMatrix

Arguments

winName name of window to focus

winVal if TRUE, associate winName with the default window for setWinVal and getWinVal

Author(s)

Alex Couture-Beil, Vancouver Island University, Nanaimo BC

Examples

Not run:

local(envir=.PBSmodEnv,expr={

focus <- function() {

winName <- getWinVal()$select;

focusWin(winName);

mess = paste("Calling focusWin(\"", winName, "\")\n",

"getWinVal()$myvar = ", getWinVal()$myvar, "\n\n", sep="",collapse="")

cat(mess); invisible()

}

#create three windows named win1, win2, win3

#each having three radio buttons, which are used to change the focus

for(i in 1:3) {

winDesc <- c(

paste(’window onclose=closeWin name=win’,i,’ title="Win’,i,’"’, sep=’’),

paste(’entry myvar ’, i, sep=’’),

’radio name=select value=win1 text="one" function=focus mode=character’,

’radio name=select value=win2 text="two" function=focus mode=character’,

’radio name=select value=win3 text="three" function=focus mode=character’);

createWin(winDesc, astext=TRUE); };

})

End(Not run)

genMatrix Generate Test Matrices for plotBubbles

Description

Generate a test matrix of random numbers (mu = mean and signa= standard deviation), primarily for plotBubbles.

Usage

genMatrix(m,n,mu=0,sigma=1)

Arguments

m number of rows

n number of columns

mu mean of normal distribution

sigma standard deviation of normal distribution

Value

An m by n matrix with normally distributed random values.

getChoice 119

Author(s)

Jon T. Schnute, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

See Also

plotBubbles

Examples

local(envir=.PBSmodEnv,expr={

plotBubbles(genMatrix(20,6))

})

getChoice Choose One String Item from a List of Choices

Description

Prompts the user to choose one string item from a list of choices displayed in a GUI. The simplest case getChoice()

yields TRUE or FALSE.

Usage

getChoice(choice=c("Yes","No"), question="Make a choice: ",

winname="getChoice", horizontal=TRUE, radio=FALSE,

qcolor="blue", gui=FALSE, quiet=FALSE)

Arguments

choice vector of strings from which to choose.

question question or prompting statement.

winname window name for the getChoice GUI.

horizontal logical: if TRUE, display the choices horizontally, else vertically.

radio logical: if TRUE, display the choices as radio buttons, else as buttons.

qcolor colour for question.

gui logical: if TRUE, getChoice is functional when called from a GUI, else it is functional from

command line programs.

quiet logical: if TRUE, don’t print the choice on the command line.

Details

The user’s choice is stored in .PBSmod$options$getChoice (or whatever winname is supplied).

getChoice generates an onClose function that returns focus to the calling window (if applicable) and prints out

the choice.

Value

If called from a GUI (gui=TRUE), no value is returned directly. Rather, the choice is written to the PBS options

workspace, accessible through getPBSoptions("getChoice") (or whatever winname was supplied).

If called from a command line program (gui=FASLE), the choice is returned directly as a string scalar (e.g.,

answer <- getChoice(gui=F)).

120 getGUIoptions

Note

Microsoft Windows users may experience difficulties switching focus between the R console and GUI windows.

The latter frequently disappear from the screen and need to be reselected (either clicking on the task bar or pressing

<Alt><Tab>. This issue can be resolved by switching from MDI to SDI mode. From the R console menu bar,

select <Edit> and <GUI preferences>, then change the value of “single or multiple windows” to SDI.

Author(s)

Rowan Haigh, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

See Also

chooseWinVal, getWinVal, setWinVal

Examples

Not run:

#-- Example 1

local(envir=.PBSmodEnv,expr={

getChoice(c("Fame","Fortune","Health","Beauty","Lunch"),

"What do you want?",qcolor="red",gui=FALSE)

})

#-- Example 2

local(envir=.PBSmodEnv,expr={

getChoice(c("Homer Simpson","Wilberforce Humphries","Miss Marple","Gary Numan"),

"Who‘s your idol?",horiz=FALSE,radio=TRUE,gui=FALSE)

})

End(Not run)

getGUIoptions Get PBS Options for Widgets

Description

Get the PBS options declared for GUI usage and set their corresponding widget values.

Usage

getGUIoptions()

Details

The options declared using declareGUIoptions are copied from the R environment into widget values. These

widgets should have names that match the names of their corresponding options.

Author(s)

Anisa Egeli, Vancouver Island University, Nanaimo BC

See Also

declareGUIoptions, setGUIoptions, promptWriteOptions, readPBSoptions

getOptions 121

Examples

Not run:

local(envir=.PBSmodEnv,expr={

getPBSoptions() #loads from default PBSoptions.txt

})

End(Not run)

getOptions Get and Set User Options

Description

Functions to get and set user options within an option class object.

Usage

getOptions(option.object, key)

setOptions(option.object, ...)

Arguments

option.object options class object used for storing package options

... any number of user options to set where either (a) the named argument is the option key and

the value is the option value or (b) the single unnamed argument is a list object where each

named list element is the option key and the value is the element’s value

key name of option to retrieve; if missing, all options are returned

Value

Value of the option specified by key (if specified) or a list of all options (if missing).

Author(s)

Alex Couture-Beil, Vancouver Island University, Nanaimo BC

See Also

See PBSoptions-class for more details and an example that uses PBSmodelling’s option management functions.

122 getOptionsPrefix

getOptionsFileName Get and Set File Name for Saving and Loading of Options

Description

Functions for retrieving and setting the default file name used by loadOptions and saveOptions.

Usage

getOptionsFileName(option.object)

setOptionsFileName(option.object, name)

Arguments

option.object options class object used for storing package options

name new name for default file name

Value

getOptionsFileName: the default file name

Author(s)

Alex Couture-Beil, Vancouver Island University, Nanaimo BC

See Also

loadOptions, saveOptions

See PBSoptions-class for more details and an example using PBSmodelling’s option management functions.

getOptionsPrefix Get and Set GUI Prefix of Options Class

Description

The GUI prefix is used for determining which GUI variables are associated with a user option.

Usage

getOptionsPrefix(option.object)

setOptionsPrefix(option.object, prefix)

Arguments

option.object options class object used for storing package options

prefix new prefix to use

Value

getOptionsPrefix: a prefix string used to reference GUI variables

getPBSext 123

Author(s)

Alex Couture-Beil, Vancouver Island University, Nanaimo BC

See Also

See PBSoptions-class for more details and an example using PBSmodelling’s option management functions.

Examples

local(envir=.PBSmodEnv,expr={

For the example, the options object is saved to the temporary environment;

however, a user would normally create the object in his/her workspace.

.mypkg <- new("PBSoptions", filename="my_pkg.txt",

initial.options=list(pi=3.14), gui.prefix="opt")

#prefix the option "pi" with "opt" to get "optpi"

createWin("entry name=optpi", astext = TRUE)

#the GUI variable "optpi" will be loaded with the option "pi"

loadOptionsGUI(.mypkg)

})

getPBSext Get a Command Associated With a File Name

Description

Display all locally defined file extensions and their associated commands, or search for the command associated

with a specific file extension ext.

Usage

getPBSext(ext)

Arguments

ext optional string specifying a file extension.

Value

Command associated with file extension.

Note

These file associations are not saved from one PBS Modelling session to the next unless explicitly saved and

loaded (see writePBSoptions and readPBSoptions).

Author(s)

Alex Couture-Beil, Vancouver Island University, Nanaimo BC

See Also

setPBSext, openFile, clearPBSext

124 getWinAct

getPBSoptions Retrieve A User Option

Description

Get a previously defined user option.

Usage

getPBSoptions(option)

Arguments

option name of option to retrieve. If omitted, a list containing all options is returned.

Value

Value of the specified option, or NULL if the specified option is not found.

Author(s)

Alex Couture-Beil, Vancouver Island University, Nanaimo BC

See Also

getPBSext, readPBSoptions

getWinAct Retrieve the Last Window Action

Description

Get a string vector of actions (latest to earliest).

Usage

getWinAct(winName)

Arguments

winName name of window to retrieve action from

Details

When a function is called from a GUI, a string descriptor associated with the action of the function is stored

internally (appended to the first position of the action vector). A user can utilize this action as a type of argument

for programming purposes. The command getWinAct()[1] yields the latest action.

Value

String vector of recorded actions (latest first).

getWinFun 125

Author(s)

Alex Couture-Beil, Vancouver Island University, Nanaimo BC

getWinFun Retrieve Names of Functions Referenced in a Window

Description

Get a vector of all function names referenced by a window.

Usage

getWinFun(winName)

Arguments

winName name of window, to retrieve its function list

Value

A vector of function names referenced by a window.

Author(s)

Alex Couture-Beil, Vancouver Island University, Nanaimo BC

getWinVal Retrieve Widget Values for Use in R Code

Description

Get a list of variables defined and set by the GUI widgets. An optional argument scope directs the function to

create local or global variables based on the list that is returned.

Usage

getWinVal(v=NULL, scope="", asvector=FALSE, winName="")

Arguments

v vector of variable names to retrieve from the GUI widgets. If NULL, v retrieves all variables

from all GUI widgets.

scope scope of the retrieval. The default sets no variables in the non-GUI environment; scope="L"

creates variables locally in relation to the parent frame that called the function; scope="P"

creates variables in the temporary package workspace called .PBSmodEnv; and scope="G"

creates global variables (pos=1).

asvector return a vector instead of a list. WARNING: if a widget variable defines a true vector or matrix,

this will not work.

winName window from which to select GUI widget values. The default takes the window that has most

recently received new user input.

126 getYes

Details

TODO: talk about scope=G/P/L and side effects of overwriting existing variables

Value

A list (or vector) with named components, where names and values are defined by GUI widgets.

Author(s)

Alex Couture-Beil, Vancouver Island University, Nanaimo BC

See Also

parseWinFile, setWinVal, clearWinVal

getYes Prompt the User to Choose Yes or No

Description

Display a message prompt with "Yes" and "No" buttons.

Usage

getYes(message, title="Choice", icon="question")

Arguments

message message to display in prompt window.

title title of prompt window.

icon icon to display in prompt window; options are "error", "info", "question", or "warning".

Value

Returns TRUE if the "Yes" button is clicked, FALSE if the "No" button is clicked.

Author(s)

Anisa Egeli, Vancouver Island University, Nanaimo BC

See Also

showAlert, getChoice, chooseWinVal

Examples

Not run:

local(envir=.PBSmodEnv,expr={

if(getYes("Print the number 1?"))

print(1) else print("hallucination")

})

End(Not run)

GT0 127

GT0 Restrict a Numeric Variable to a Positive Value

Description

Restrict a numeric value x to a positive value using a differentiable function. GT0 stands for “greater than zero”.

Usage

GT0(x,eps=1e-4)

Arguments

x vector of values

eps minimum value greater than zero.

Details

if (x >= eps)..........GT0 = x

if (0 < x < eps).......GT0 = (eps/2) * (1 + (x/eps)^2)

if (x <= 0)............GT0 = eps/2

Author(s)

Jon T. Schnute, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

See Also

scalePar, restorePar, calcMin

Examples

local(envir=.PBSmodEnv,expr={

oldpar = par(no.readonly=TRUE)

plotGT0 <- function(eps=1,x1=-2,x2=10,n=1000,col="black") {

x <- seq(x1,x2,len=n); y <- GT0(x,eps);

lines(x,y,col=col,lwd=2); invisible(list(x=x,y=y)); }

testGT0 <- function(eps=c(7,5,3,1,.1),x1=-2,x2=10,n=1000) {

x <- seq(x1,x2,len=n); y <- x;

plot(x,y,type="l");

mycol <- c("red","blue","green","brown","violet","orange","pink");

for (i in 1:length(eps))

plotGT0(eps=eps[i],x1=x1,x2=x2,n=n,col=mycol[i]);

invisible(); };

testGT0()

par(oldpar)

})

128 initHistory

importHistory Import a History List from a File

Description

Import a history list from file fname, and place it into the history list hisname.

Usage

importHistory(hisname="", fname="", updateHis=TRUE)

Arguments

hisname name of the history list to be populated. The default ("") uses the value from getWinAct()[1].

fname file name of history file to import. The default ("") causes an open-file window to be displayed.

updateHis logical: if TRUE, update the history widget to reflect the change in size and index.

Author(s)

Alex Couture-Beil, Vancouver Island University, Nanaimo BC

See Also

exportHistory, initHistory

initHistory Create Structures for a New History Widget

Description

PBS history functions (below) are available to those who would like to use the package’s history functionality,

without using the pre-defined history widget. These functions allow users to create customized history widgets.

Usage

initHistory(hisname, indexname=NULL, sizename=NULL,

buttonnames=NULL, modename=NULL, func=NULL, overwrite=TRUE)

rmHistory(hisname="", index="")

addHistory(hisname="")

forwHistory(hisname="")

backHistory(hisname="")

lastHistory(hisname="")

firstHistory(hisname="")

jumpHistory(hisname="", index="")

clearHistory(hisname="")

initHistory 129

Arguments

hisname name of the history "list" to manipulate. If it is omitted, the function uses the value of

getWinAct()[1] as the history name. This allows the calling of functions directly from the

window description file (except initHistory, which must be called before createWin()).

indexname name of the index entry widget in the window description file. If NULL, then the current index

feature will be disabled.

sizename name of the current size entry widget. If NULL, then the current size feature will be disabled.

buttonnames named list of names of the first, prev, next, and last buttons. If NULL, then the buttons are not

disabled ever

modename name of the radio widgets used to change addHistory\’s mode. If NULL, then the default mode

will be to insert after the current index.

index index to the history item. The default ("") causes the value to be extracted from the widget

identified by indexname.

func name of user supplied function to call when viewing history items.

overwrite if TRUE, history (matching hisname) will be cleared. Otherwise, the imported history will be

merged with the current one.

Details

PBS Modelling includes a pre-built history widget designed to collect interesting choices of GUI variables so that

they can be redisplayed later, rather like a slide show.

Normally, a user would invoke a history widget simply by including a reference to it in the window description

file. However, PBS Modelling includes support functions (above) for customized applications.

To create a customized history, each button must be described separately in the window description file rather than

making reference to the history widget.

The history "List" must be initialized before any other functions may be called. The use of a unique history name

(hisname) is used to associate a unique history session with the supporting functions.

The indexname and sizename arguments correspond to the given names of entry widgets in the window descrip-

tion file, which will be used to display the current index and total size of the list. The indexname entry widget can

also be used by jumpHistory to retrieve a target index.

Author(s)

Alex Couture-Beil, Vancouver Island University, Nanaimo BC

See Also

importHistory, exportHistory

Examples

Not run:

****** THIS CODE DOES NOT RUN. NEEDS FIXING *****

Example of creating a custom history widget that saves values

whenever the "Plot" button is pressed. The user can tweak the

inputs "a", "b", and "points" before each "Plot" and see the

"Index" increase. After sufficient archiving, the user can review

scenarios using the "Back" and "Next" buttons.

A custom history is needed to achieve this functionality since

the packages pre-defined history widget does not update plots.

To start, create a Window Description to be used with createWin

130 isWhat

using astext=TRUE. P.S. Watch out for special characters which

must be "escaped" twice (first for R, then PBSmodelling).

local(envir=.PBSmodEnv,expr={

oldpar = par(no.readonly=TRUE)

winDesc <- ’

window title="Custom History"

vector names="a b k" labels="a b points" font="bold" \\

values="1 1 1000" function=myPlot

grid 1 3

button function=myHistoryBack text="<- Back"

button function=myPlot text="Plot"

button function=myHistoryForw text="Next ->"

grid 2 2

label "Index"

entry name="myHistoryIndex" width=5

label "Size"

entry name="myHistorySize" width=5

’

Convert text to vector with each line represented as a new element

winDesc <- strsplit(winDesc, "\n")[[1]]

Custom functions to update plots after restoring history values

myHistoryBack <- function() {

backHistory("myHistory");

myPlot(saveVal=FALSE); # show the plot with saved values

}

myHistoryForw <- function() {

forwHistory("myHistory");

myPlot(saveVal=FALSE); # show the plot with saved values

}

myPlot <- function(saveVal=TRUE) {

save all data whenever plot is called (directly)

if (saveVal) addHistory("myHistory");

getWinVal(scope="L");

tt <- 2*pi*(0:k)/k;

x <- (1+sin(a*tt)); y <- cos(tt)*(1+sin(b*tt));

plot(x, y);

}

iHistory("myHistory", "myHistoryIndex", "myHistorySize")

createWin(winDesc, astext=TRUE)

par(oldpar)

})

End(Not run)

isWhat Identify an Object and Print Information

Description

Identify an object by class, mode, typeof, and attributes.

lisp 131

Usage

isWhat(x)

Arguments

x an R object

Value

No value is returned. The function prints the object’s characteristics on the command line.

Author(s)

Jon T. Schnute, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

lisp List Objects in .PBSmodEnv Workspace

Description

The function lisp returns a vector of character strings giving the names of the objects in .PBSmodEnv. It is only

a wrapper for the base function ls.

Usage

lisp(name, pos = .PBSmodEnv, envir = as.environment(pos),

all.names = TRUE, pattern)

Arguments

name which environment to use in listing the available objects. See the details section of ls.

pos an alternative argument to name for specifying the environment as a position in the search list.

envir an alternative argument to name for specifying the environment.

all.names a logical value. If TRUE, all object names are returned. If FALSE, names which begin with a ‘.’

are omitted.

pattern an optional regular expression. Only names matching pattern are returned. See ls for addi-

tional details.

Details

See the base function ls for details.

Author(s)

Copyright 1995–2012 R Core Development Team; distributed under GPL 2 or later.

See Also

ls, tget

glob2rx for converting wildcard patterns to regular expressions.

132 loadC

loadC Launch a GUI for Compiling and Loading C Code

Description

A GUI interface allows users to edit, compile, and embed C functions in the R environment.

Usage

loadC()

Details

The function loadC() launches an interactive GUI that can be used to manage the construction of C functions

intended to be called from R. The GUI provides tools to edit, compile, load, and run C functions in the R environ-

ment.

The loadC GUI also includes a tool for comparison between the running times and return values of R and C

functions. It is assumed that the R and C functions are named prefix.r and prefix.c, respectively, where

prefix can be any user-chosen prefix. If an initialization function prefix.init exists, it is called before the start

of the comparison.

The GUI controls:

File Prefix Prefix for .c and .r files.

Lib Prefix Prefix for shared library object.

Set WD Set the working directory.

Open Log Open the log file.

Open.c File Open the file prefix.c from the working directory.

Open .r File Open the file prefix.r from the working directory.

COMPILE Compile prefix.c into a shared library object.

LOAD Load the shared library object.

SOURCE R Source the file prefix.r.

UNLOAD Unload the shared library object.

Options

Editor Text editor to use.

Update Commit option changes.

Browse Browse for a text editor.

Clean Options

Select All Select all check boxes specifying file types.

Select None Select none of the check boxes.

Clean Proj Clean the project of selected file types.

Clean All Clean the directory of selected file types.

Comparison

Times to Run Number of times to run the R and C functions.

RUN Run the comparison between R and C functions.

R Time Computing time to run the R function multiple times.

C Time Computing time to run the C function multiple times.

Ratio Ratio of R/C run times.

Author(s)

Anisa Egeli, Vancouver Island University, Nanaimo BC

loadOptions 133

See Also

compileC

loadOptions Save and Load Options to and from Disk

Description

Save and load options for use from one R session to another. If no file name is given, then the default file name

(specified when the option object was created) is used.

Usage

loadOptions(option.object, fname, prompt = FALSE)

saveOptions(option.object, fname, prompt = FALSE)

Arguments

option.object options class object used for storing package options

fname file name to use: if missing the default file name is used; if given, file name becomes the

default.

prompt logical: if TRUE, prompt the user to select a file from an interactive GUI. If fname is given,

then the value appears as the default selected file.

Details

If fname is given (or selected when prompt=TRUE), then that file becomes the default file name for subsequent

loading and saving.

See Also

See PBSoptions-class for more details and an example using PBSmodelling’s option management functions.

loadOptionsGUI Load and Save Options Values to and from a GUI

Description

These functions are used to move option values to and from a GUI. Option values are stored within an R object

(as referenced by the option.object).

loadOptionsGUI copies the values from the R object to the GUI.

saveOptionsGUI copies the GUI values from the tcltk GUI to the R object.

Usage

loadOptionsGUI(option.object)

saveOptionsGUI(option.object)

Arguments

option.object options class object used for storing package options

134 lucent

See Also

See PBSoptions-class for more details and an example using PBSmodelling’s option management functions.

lucent Convert Solid Colours to Translucence

Description

Convert a vector of solid colours to a vector of translucent ones (or vice versa)

Usage

lucent(col.pal=1, a=1)

Arguments

col.pal vector of colours

a alpha transparency value (0 = fully transparent, 1 = opaque)

Details

The function acts as a small wrapper to the rgb function.

Value

Vector of transformed colours depending on the alpha transparancy value a.

Author(s)

Steve Martell, International Pacific Halibut Commission, Seattle WA

See Also

pickCol, testCol, col2rgb, rgb

Examples

local(envir=.PBSmodEnv,expr={

oldpar = par(no.readonly=TRUE)

pbsfun = function(clrs=c("moccasin",rainbow(3))){

clrs = c(clrs,lucent(clrs,a=0.25))

testCol(clrs); invisible() }

pbsfun()

par(oldpar)

})

openExamples 135

openExamples Open Example Files from a Package

Description

Open examples from the examples subdirectory of a given package.

Usage

openExamples(package, prefix, suffix)

Arguments

package name of the package that contains the examples.

prefix prefix of the example file(s).

suffix character vector of suffixes for the example files.

Details

Copies of each example file are placed in the working directory and opened. If files with the same name already

exist, the user is prompted with a choice to overwrite.

To use this function in a window description file, the package, prefix and suffix arguments must be specified as

the action of the widget that calls openExamples. Furthermore, package, prefix, and each suffix must be sep-

arated by commas. For example, action=myPackage,example1,.r,.cwill copy example1.r and example2.c

from the examples directory of the package myPackage to the working directory and open these files. If the

function was called by a widget, a widget named prefix will be set to the specified prefix.

Note

If all the required arguments are missing, it is assumed that the function is being called by a GUI widget.

Author(s)

Anisa Egeli, Vancouver Island University, Nanaimo BC

See Also

openFile

Examples

Not run:

Copies fib.c and fib.r from the examples directory in

PBSmodelling to the temporary working directory, and opens these files.

local(envir=.PBSmodEnv,expr={

cwd = getwd(); setwd(tempdir())

openExamples("PBSmodelling", c("fib"), c(".r", ".c"))

setwd(cwd)

})

End(Not run)

136 openFile

openFile Open a File with an Associated Program

Description

Open a file using the program that the operating system (Windows/Mac OS X/Linux) associates with its type.

Users wishing to override the default application can specify a program association using setPBSext.

Usage

openFile(fname, package=NULL)

Arguments

fname character vector, containing file names to open.

package (optional) open files relative to this package.

Value

An invisible string vector of the file names and/or commands with file names.

Note

If a command is registered with setPBSext, then openFilewill replace all occurrences of "%f" with the absolute

path of the filename before executing the command.

Author(s)

Alex Couture-Beil, Vancouver Island University, Nanaimo BC

See Also

getPBSext, setPBSext, clearPBSext, writePBSoptions

Examples

Not run:

local(envir=.PBSmodEnv,expr={

use openFile directly:

openFile("doc/PBSmodelling-UG.pdf", package="PBSmodelling")

})

local(envir=.PBSmodEnv,expr={

via doAction in a window description file:

createWin("button text=help func=doAction action=\"openFile(‘doc/PBSmodelling-UG.pdf‘, package=‘PBSmodelling‘)\"

})

local(envir=.PBSmodEnv,expr={

Set up Firefox to open .html files (only applicable if Firefox is NOT the default web browser)

setPBSext("html", ’"c:/Program Files/Mozilla Firefox/firefox.exe" file://%f’)

openFile("foo.html")

})

End(Not run)

openUG 137

openUG Open Package User Guide

Description

Open package User’s Guide ’pkg-UG.pdf’ if it exists. This function is essentially a wrapper for codeopenFile.

Usage

openUG(pkg = "PBSmodelling")

Arguments

pkg Full name (with or without quotes) of a package installed on the user’s system.

Details

We assume that the name of the User’s Guide follows ’PBS’ conventions. This means a user’s guide in PDF

format with extension pdf. The name of the PDF file will be ’<pkg>-UG.pdf’ (e.g., PBSmodelling-UG.pdf.

Author(s)

Rowan Haigh, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

See Also

openFile, showHelp, viewCode

packList Pack a List with Objects

Description

Pack a list with existing objects using names only.

Usage

packList(stuff, target="PBSlist", value, tenv=.PBSmodEnv)

Arguments

stuff string vector of object names

target target list object

value an optional explicit value to assign to stuff

tenv target environment where target list is or will be located

Details

A list object called target will be located in the tenv environment. The objects named in stuff and located in

the lenv environment will appear as named components within the list object target.

If an explicit value is specified, the function uses this value instead of looking for local objects. Essentially,

stuff=valuewhich is then packed into target.

138 pad0

Value

No value is returned

Note

The function determines the parent environment from within. This environment contains the objects from which

the function copies to the target environment.

Author(s)

Rowan Haigh, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

See Also

unpackList, readList, writeList

Examples

local(envir=.PBSmodEnv,expr={

fn = function() {

alpha=rnorm(10)

beta=letters

gamma=mean

delta=longley

packList(c("alpha","beta","gamma","delta")) }

fn(); tprint(PBSlist)

})

pad0 Pad Values with Leading Zeroes

Description

Pad numbers and/or text with leading and/or trailing zeroes.

Usage

pad0(x, n, f = 0)

Arguments

x vector of numbers and/or strings

n number of text characters representing a padded integer

f factor of 10 transformation on x before padding

Details

Converts numbers (or text coerced to numeric) to integers and then to text, and pads them with leading zeroes. If

the factor f is >0, then trailing zeroes are also added.

Value

If length(f)==1 or length(x)==1, the function returns a character vector representing x with leading zeroes.

If both f and x have lengths >1, then a list of character vectors indexed by f is returned.

parseWinFile 139

Author(s)

Rowan Haigh, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

See Also

show0, GT0

Examples

local(envir=.PBSmodEnv,expr={

resetGraph(); x <- pad0(x=123,n=10,f=0:7);

addLabel(.5,.5,paste(x,collapse="\n"),cex=1.5);

})

parseWinFile Convert a Window Description File into a List Object

Description

Parse a window description file (markup file) into the list format expected by createWin.

Usage

parseWinFile(fname, astext=FALSE)

Arguments

fname file name of the window description file.

astext if TRUE, fname is interpreted as a vector of strings, with each element representing a line of

code in a window description file.

Value

A list representing a parsed window description file that can be directly passed to createWin.

Note

All widgets are forced into a 1-column by N-row grid.

Author(s)

Alex Couture-Beil, Vancouver Island University, Nanaimo BC

See Also

createWin, compileDescription

Examples

Not run:

local(envir=.PBSmodEnv,expr={

x <- parseWinFile(system.file("examples/LissFigWin.txt",package="PBSmodelling"))

createWin(x)

})

End(Not run)

140 PBSoptions-class

pause Pause Between Graphics Displays or Other Calculations

Description

Pause, typically between graphics displays. Useful for demo purposes.

Usage

pause(s = "Press <Enter> to continue")

Arguments

s text issued on the command line when pause is invoked.

Author(s)

Jon T. Schnute, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

PBSmodelling PBS Modelling

Description

PBS Modelling provides software to facilitate the design, testing, and operation of computer models. It focuses

particularly on tools that make it easy to construct and edit a customized graphical user interface (GUI). Although

it depends heavily on the R interface to the Tcl/Tk package, a user does not need to know Tcl/Tk.

PBSmodelling contains examples that illustrate models built using other R packages, including PBSmapping,

odesolve, PBSddesolve, and BRugs. It also serves as a convenient prototype for building new R packages, along

with instructions and batch files to facilitate that process.

The R directory .../library/PBSmodelling/doc includes a complete user guide ‘PBSmodelling-UG.pdf’. To

use this package effectively, please consult the guide.

PBS Modelling comes packaged with interesting examples accessed through the function runExamples(). Addi-

tionally, users can view PBS Modelling widgets through the function testWidgets(). More generally, a user can

run any available demos in his/her locally installed packages through the function runDemos().

PBSoptions-class S4: Project Options Class

Description

Projects commonly involve various settings or options such as paths to C compilers or other third-party tools.

PBSmodelling provides a set of option management functions for managing user specific options. Options can

be modified through the provided set of functions on the command line, or through a custom GUI. These options

can be saved to disk for use in subsequent R sessions.

To use PBSmodelling’s suite of option management functions, a PBSoptions object must be created for each of

your projects. Each PBSoptions object contains a distinct R environment where option values are stored; this

allows different projects to use overlapping option names without conflicts (provided each project has its own

PBSoptions class object).

PBSoptions-class 141

Details

When a PBSoptions object is created with the new function, the initial.options list, if supplied, is stored

as initial user options in the object. The initialization routine then attempts to load user set options from the

filename file. If such a file exists, these values are stored in the PBSoptions object overwriting any initial values

as specified by initial.options

Option values are not directly stored in the object, but rather in an environment stored in the instance slot. Using

an environment rather than slots for storing options allows us to pass option object by reference rather than value;

that is, we can save options in the object without the need of returning a new modified class object. It is therefore

necessary that users use the functions listed in the "see also" section to effectively manage user options.

Objects from the Class

Objects can be created by calls of the form

new("PBSoptions",filename,initial.options=list(),gui.prefix="option").

filename: default file name to use when saving and loading options to and from disk

initial.options: a list with distinctly named initial options to use if no previously saved file exists

gui.prefix: a prefix used to identify GUI variables which correspond to user options

Slots

instance: The R environment used to store options. Please do not use this directly; use the functions listed under

the "see also" section.

Methods

print signature(x = "PBSoptions"): prints the list of options

Warning

Do not use the slots directly – use the access functions instead.

Author(s)

Alex Couture-Beil, Vancouver Island University, Nanaimo BC

See Also

getOptions for retrieving and modifying user options

getOptionsFileName for retrieving and modifying the default options file name

loadOptions for loading and saving options from and to disk

getOptionsPrefix for retrieving and modifying the GUI prefix (for custom GUI interfaces)

loadOptionsGUI for setting GUI values to reflect user options and vice-versa

Examples

local(envir=.PBSmodEnv,expr={

#initialize an option manager with a single logical option

.mypkg <- new("PBSoptions", filename="my_pkg.txt",

initial.options=list(sillyhatday=FALSE))

#retrieving an option

silly <- getOptions(.mypkg, "sillyhatday")

cat("today is", ifelse(silly, "silly hat day!", "monday"), "\n")

142 pickCol

#set an option

setOptions(.mypkg, sillyhatday = TRUE, photos = "/shares/silly_hat_photos")

#create a GUI which works with options

createWin(c(

"check name=optionsillyhatday text=\"silly hat day\"",

"entry name=optionphotos width=22 mode=character label=\"photos directory\"",

"button func=doAction text=save action=saveOptionsGUI(.mypkg)"), astext = TRUE)

#update GUI values based on values stored in .mypkg’s options

loadOptionsGUI(.mypkg)

print(getOptions(.mypkg))

})

pickCol Pick a Colour From a Palette and get the Hexadecimal Code

Description

Display an interactive colour palette from which the user can choose a colour.

Usage

pickCol(returnValue=TRUE)

Arguments

returnValue If TRUE, display the full colour palette, choose a colour, and return the hex value to the R

session.

If FALSE, use an intermediate GUI to interact with the palette and display the hex value of the

chosen colour.

Value

A hexidecimal colour value.

Author(s)

Alex Couture-Beil, Vancouver Island University, Nanaimo BC

See Also

testCol

Examples

Not run:

local(envir=.PBSmodEnv,expr={

junk<-pickCol(); resetGraph()

addLabel(.5,.5,junk,cex=4,col=junk)

})

End(Not run)

plotACF 143

plotACF Plot Autocorrelation Bars From a Data Frame, Matrix, or Vector

Description

Plot autocorrelation bars (ACF) from a data frame, matrix, or vector.

Usage

plotACF(file, lags=20,

clrs=c("blue","red","green","magenta","navy"), ...)

Arguments

file data frame, matrix, or vector of numeric values.

lags maximum number of lags to use in the ACF calculation.

clrs vector of colours. Patterns are repeated if the number of fields exceed the length of clrs.

... additional arguments for plot or lines.

Details

This function is designed primarily to give greater flexibility when viewing results from the R-package BRugs.

Use plotACF in conjunction with samplesHistory("*",beg=0,plot=FALSE) rather than samplesAutoC which

calls plotAutoC.

Author(s)

Rowan Haigh, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

Examples

local(envir=.PBSmodEnv,expr={

oldpar = par(no.readonly=TRUE)

resetGraph(); plotACF(trees,lwd=2,lags=30)

par(oldpar)

})

plotAsp Construct a Plot with a Specified Aspect Ratio

Description

Plot x and y coordinates using a specified aspect ratio.

Usage

plotAsp(x, y, asp=1, ...)

144 plotBubbles

Arguments

x vector of x-coordinate points in the plot.

y vector of y-coordinate points in the plot.

asp y/x aspect ratio.

... additional arguments for plot.

Details

The function plotAsp differs from plot(x,y,asp=1) in the way axis limits are handled. Rather than expand the

range, plotAsp expands the margins through padding to keep the aspect ratio accurate.

Author(s)

Alex Couture-Beil, Vancouver Island University, Nanaimo BC

Examples

local(envir=.PBSmodEnv,expr={

oldpar = par(no.readonly=TRUE)

x <- seq(0,10,0.1)

y <- sin(x)

par(mfrow=2:1)

plotAsp(x,y,asp=1,xlim=c(0,10),ylim=c(-2,2), main="sin(x)")

plotAsp(x,y^2,asp=1,xlim=c(0,10),ylim=c(-2,2), main="sin^2(x)")

par(oldpar)

})

plotBubbles Construct a Bubble Plot from a Matrix

Description

Construct a bubble plot for a matrix z.

Usage

plotBubbles(z, xval=FALSE, yval=FALSE, dnam=FALSE, rpro=FALSE,

cpro=FALSE, rres=FALSE, cres=FALSE, powr=0.5, size=0.2, lwd=1,

clrs=c("black","red","blue"), hide0=FALSE, frange=0.1, prettyaxis=FALSE, ...)

Arguments

z input matrix, array (2 dimensions) or data frame.

xval x-values and/or labels for the columns of z. if xval=TRUE, the first row contains x-values for

the columns.

yval y-values and/or labels for the rows of z. If yval=TRUE, the first column contains y-values for

the rows.

dnam logical: if TRUE, attempt to use dimnames of input matrix z as xval and yval. The dimnames

are converted to numeric values and must be strictly increasing or decreasing. If successful,

these values will overwrite previously specified values of xval and yval or any default indices.

rpro logical: if TRUE, convert rows to proportions.

plotCsum 145

cpro logical: if TRUE, convert columns to proportions.

rres logical: if TRUE, use row residuals (subtract row means).

cres logical: if TRUE, use column residuals (subtract column means).

powr power transform. Radii are proportional to z^powr. Note: powr=0.5 yields bubble areas

proportional to z.

size size (inches) of the largest bubble.

lwd line width for drawing circles.

clrs colours (3-element vector) used for positive, negative, and zero values, respectively.

hide0 logical: if TRUE, hide zero-value bubbles.

frange number specifying the fraction by which the range of the axes should be extended.

prettyaxis logical: if TRUE, apply the pretty function to both axes.

... additional arguments for plotting functions.

Details

The function plotBubbles essentially flips the z matrix visually. The columns of z become the x-values while the

rows of z become the y-values, where the first row is displayed as the bottom y-value and the last row is displayed

as the top y-value. The function’s original intention was to display proportions-at-age vs. year.

Author(s)

Jon T. Schnute, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

See Also

genMatrix

Examples

local(envir=.PBSmodEnv,expr={

oldpar = par(no.readonly=TRUE)

plotBubbles(round(genMatrix(40,20),0),clrs=c("green","grey","red"));

data(CCA.qbr,envir=.PBSmodEnv)

plotBubbles(CCA.qbr,cpro=TRUE,powr=.5,dnam=TRUE,size=.15,

ylim=c(0,70),xlab="Year",ylab="Quillback Rockfish Age")

par(oldpar)

})

plotCsum Plot Cumulative Sum of Data

Description

Plot the cumulative frequency of a data vector or matrix, showing the median and mean of the distribution.

Usage

plotCsum(x, add = FALSE, ylim = c(0, 1), xlab = "Measure",

ylab = "Cumulative Proportion", ...)

146 plotDens

Arguments

x vector or matrix of numeric values.

add logical: if TRUE, add the cumulative frequency curve to a current plot.

ylim limits for the y-axis.

xlab label for the x-axis.

ylab label for the y-axis.

... additional arguments for the plot function.

Author(s)

Rowan Haigh, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

Examples

local(envir=.PBSmodEnv,expr={

oldpar = par(no.readonly=TRUE)

x <- rgamma(n=1000,shape=2)

plotCsum(x)

par(oldpar)

})

plotDens Plot Density Curves from a Data Frame, Matrix, or Vector

Description

Plot the density curves from a data frame, matrix, or vector. The mean density curve of the data combined is also

shown.

Usage

plotDens(file, clrs=c("blue","red","green","magenta","navy"), ...)

Arguments

file data frame, matrix, or vector of numeric values.

clrs vector of colours. Patterns are repeated if the number of fields exceed the length of clrs.

... additional arguments for plot or lines.

Details

This function is designed primarily to give greater flexibility when viewing results from the R-package BRugs. Use

plotDens in conjunction with samplesHistory("*",beg=0,plot=FALSE) rather than samplesDensity which

calls plotDensity.

Author(s)

Rowan Haigh, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

plotFriedEggs 147

Examples

local(envir=.PBSmodEnv,expr={

oldpar = par(no.readonly=TRUE)

z <- data.frame(y1=rnorm(50,sd=2),y2=rnorm(50,sd=1),y3=rnorm(50,sd=.5))

plotDens(z,lwd=3)

par(oldpar)

})

plotFriedEggs Render a Pairs Plot as Fried Eggs and Beer

Description

Create a pairs plot where the lower left half comprises either fried egg contours or smoke ring contours, the upper

right half comprises glasses of beer filled to the correlation point, and the diagonals show frequency histograms

of the input data.

Usage

plotFriedEggs(A, eggs=TRUE, rings=TRUE, levs=c(0.01,0.1,0.5,0.75,0.95),

pepper=200, replace=FALSE, jitt=c(1,1), bw=25, histclr=NULL)

Arguments

A data frame or matrix for use in a pairs plot.

eggs logical: if TRUE, fry eggs in the lower panels.

rings logical: if TRUE, blow smoke rings in the lower panels.

levs explicit contour levels expressed as quantiles.

pepper number of samples to draw from A to pepper the plots.

replace logical: if TRUE, sample A with replacement.

jitt argument factor used by function base::jitterwhen peppering. If user supplies two num-

bers, the first will jitter x, the second will jitter y.

bw argument bandwidth used by function KernSmooth::bkde2D.

histclr user-specified colour(s) for histogram bars along the diagonal.

Details

This function comes to us from Dr. Steve Martell of the Fisheries Science Centre at UBC. Obviously many hours

of contemplation with his students at the local pub have contributed to this unique rendition of a pairs plot.

Note

If eggs=TRUE and rings=FALSE, fried eggs are served.

If eggs=FALSE and rings=TRUE, smoke rings are blown.

If eggs=TRUE and rings=TRUE, only fried eggs are served.

If eggs=FALSE and rings=FALSE, only pepper is sprinkled.

Author(s)

Steve Martell, International Pacific Halibut Commission, Seattle WA

148 plotSidebars

See Also

plotBubbles, scalePar

KernSmooth::bkde2D, grDevices::contourLines, graphics::contour

Examples

local(envir=.PBSmodEnv,expr={

oldpar = par(no.readonly=TRUE)

x=rnorm(5000,10,3); y=-x+rnorm(5000,1,4); z=x+rnorm(5000,1,3)

A=data.frame(x=x,y=y,z=z)

for (i in 1:3)

switch(i,

{plotFriedEggs(A,eggs=TRUE,rings=FALSE);

pause("Here are the eggs...(Press Enter for next)")},

{plotFriedEggs(A,eggs=FALSE,rings=TRUE);

pause("Here are the rings...(Press Enter for next)")},

{plotFriedEggs(A,eggs=FALSE,rings=FALSE);

cat("Here is the pepper alone.\n")})

par(oldpar)

})

plotSidebars Plot Table as Horizontal Sidebars

Description

Plot (x,y) table (matrix or data frame) as horizontal sidebars.

Usage

plotSidebars(z, scale = 1, col = lucent("blue", 0.25), ...)

Arguments

z data frame or matrix of z-values (e.g., age frequencies) where rows form the plot’s y-values

and columns describe the grouping variable along the x-axis.

scale numeric scale factor controlling the leftward expansion of z-value bars.

col colour to fill bars.

... additional parameters used by par and polygon. The user can also pass in two non-formal

arguments to control the function:

lbl – labels for the x- and y-axis;

margin – function to report margin summaries.

Details

Plots z-data as horizontal bars arising from an x-coordinate controlled by the column names of z. The bars extend

left along the y-coordinate by z*scale from the central x-coordinate.

Author(s)

Steve Martell, International Pacific Halibut Commission, Seattle WA

plotTrace 149

See Also

plotBubbles, plotFriedEggs, evalCall

Examples

local(envir=.PBSmodEnv,expr={

oldpar = par(no.readonly=TRUE)

pbsfun = function () {

meanmarg = function(x){x=x[!is.na(x)];

if (length(x)==0 | all(x==0)) NA else sum((x/sum(x))*as.numeric(names(x)))}

data(CCA.qbr,envir=.PBSmodEnv)

plotSidebars(CCA.qbr,scale=4,las=1,border="navyblue",mar=c(4,4,1,1),

lbl=c("Year","Quillback Rockfish Age"),margin=function(x){round(meanmarg(x),0)})

invisible() }

pbsfun()

par(oldpar)

})

plotTrace Plot Trace Lines from a Data Frame, Matrix, or Vector

Description

Plot trace lines from a data frame or matrix where the first field contains x-values, and subsequent fields give

y-values to be traced over x. If input is a vector, this is traced over the number of observations.

Usage

plotTrace(file, clrs=c("blue","red","green","magenta","navy"), ...)

Arguments

file data frame or matrix of x and y-values, or a vector of y-values.

clrs vector of colours. Patterns are repeated if the number of traces (y-fields) exceed the length of

clrs.

... additional arguments for plot or lines.

Details

This function is designed primarily to give greater flexibility when viewing results from the R-package BRugs.

Use plotTrace in conjunction with samplesHistory("*",beg=0,plot=FALSE) rather than samplesHistory

which calls plotHistory.

Author(s)

Rowan Haigh, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

Examples

local(envir=.PBSmodEnv,expr={

oldpar = par(no.readonly=TRUE)

z <- data.frame(x=1:50,y1=rnorm(50,sd=3),y2=rnorm(50,sd=1),y3=rnorm(50,sd=.25))

plotTrace(z,lwd=3)

par(oldpar)

})

150 presentTalk

presentTalk Run a Presentation in R

Description

Start an R talk from a talk description file that launches a control GUI.

Usage

presentTalk(talk)

Arguments

talk name of file containing XML code (e.g., swisstalk.xml).

Details

The function presentTalk is a tool that facilitates lectures and workshops in R. The function allows the presenter

to show code snippets alongside their execution, making use of R’s graphical capabilities. When presentTalk

is called, a graphical user interface (GUI) is launched that allows the user to control the flow of the talk (e.g.,

switching between talks or skipping to various sections of a talk.

The automatic control buttons allow the user to move forward or backward in the talk. The GO button moves

forward one tag segment, the Back button moves back to the previous tag segment. The blue buttons allow

movement among sections – Prev to the previous section, Restart to the start of the current section, and Next to

the next section. Drop down lists are provided for both indicating the current section and slide number and as an

additional interface for jumping between different sections or slide numbers.

In addition to the automatic menu items, a user can add buttons to the GUI that accomplish similar purposes.

Note

See the PBSmodelling User’s Guide for more information.

Author(s)

Alex Couture-Beil, Vancouver Island University, Nanaimo BC

See Also

See PBStalk-class for more details on PBSmodelling’s talk presentation classes.

Examples

local(envir=.PBSmodEnv,expr={

cwd = getwd()

talk_dir <- system.file("examples", package = "PBSmodelling")

setwd(talk_dir)

presentTalk("swisstalk.xml") # closing the GUI should restore cwd

})

promptWriteOptions 151

promptWriteOptions Prompt the User to Write Changed Options

Description

If changes have been made to PBS options, this function allows the user to choose whether to write PBS options

to an external file that can be loaded later by readPBSoptions.

Usage

promptWriteOptions(fname="")

Arguments

fname name of file where options will be saved.

Details

If there are options that have been changed in the GUI but have not been committed to PBSmodelling memory in

the global R environment, the user is prompted to choose whether or not to commit these options.

Then, if any PBS options have been changed, the user is prompted to choose whether to save these options to the

file fname. (When a new R session is started or when a call to readPBSoptions or writePBSoptions is made,

PBS options are considered to be unchanged; when an option is set, the options are considered to be changed).

If fname="", the user is prompted to save under the file name last used by a call to readPBSoptionsor writePBSoptions

if available. Otherwise, the default file name "PBSoptions.txt" is used.

Author(s)

Anisa Egeli, Vancouver Island University, Nanaimo BC

See Also

writePBSoptions, readPBSoptions, setPBSoptions

Examples

Not run:

local(envir=.PBSmodEnv,expr={

promptWriteOptions() #uses default filename PBSoptions.txt

})

End(Not run)

152 readPBSoptions

readList Read a List from a File in PBS Modelling Format

Description

Read in a list previously saved to a file by writeList. At present, only two formats are supported: R’s native

format used by the dput function and an ad hoc PBSmodelling format. The function readList detects the format

automatically.

For information about the PBSmodelling format, see writeList.

Usage

readList(fname)

Arguments

fname file name of the text file containing the list.

Value

List obtained from the file.

Warning

When importing a list in the PBSmodelling ("P") format, if two list elements share the same name, the list will

import incorrectly.

Author(s)

Alex Couture-Beil, Vancouver Island University, Nanaimo BC

See Also

packList, unpackList, writeList

readPBSoptions Read PBS Options from an External File

Description

Load options that were saved using writePBSoptions, for use with openFile, getPBSoptionsor interfaces such

as loadC.

Usage

readPBSoptions(fname="PBSoptions.txt")

Arguments

fname file name or full path of file from which the options will be loaded.

resetGraph 153

Note

If an option exists in R memory but not in the saved file, the option is not cleared from memory.

Author(s)

Anisa Egeli, Vancouver Island University, Nanaimo BC

See Also

writePBSoptions, getGUIoptions, openFile, getPBSoptions

resetGraph Reset par Values for a Plot

Description

Reset par() to default values to ensure that a new plot utilizes a full figure region. This function helps manage

the device surface, especially after previous plotting has altered it.

Usage

resetGraph(reset.mf=TRUE)

Arguments

reset.mf if TRUE reset the multi-frame status; otherwise preserve mfrow, mfcol, and mfg

Details

This function resets par() to its default values. If reset.mf=TRUE, it also clears the graphics device with frame().

Otherwise, the values of mfrow, mfcol, and mfg are preserved, and graphics continues as usual in the current plot.

Use resetGraph only before a high level command that would routinely advance to a new frame.

Value

invisible return of the reset value par()

Author(s)

Jon T. Schnute, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

154 restorePar

restorePar Get Actual Parameters from Scaled Values

Description

Restore scaled parameters to their original units. Used in minimization by calcMin.

Usage

restorePar(S,pvec)

Arguments

S scaled parameter vector.

pvec a data frame comprising four columns - c("val","min","max","active")and as many rows

as there are model parameters. The "active" field (logical) determines whether the parame-

ters are estimated (TRUE) or remain fixed (FALSE).

Details

Restoration algorithm: P = Pmin + (Pmax − Pmin)(sin(
πS

2
))2

Value

Parameter vector converted from scaled units to original units specified by pvec.

Author(s)

Jon T. Schnute, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

See Also

scalePar, calcMin, GT0

Examples

local(envir=.PBSmodEnv,expr={

pvec <- data.frame(val=c(1,100,10000),min=c(0,0,0),max=c(5,500,50000),

active=c(TRUE,TRUE,TRUE))

S <- c(.5,.5,.5)

P <- restorePar(S,pvec)

print(cbind(pvec,S,P))

})

runDemos 155

runDemos Interactive GUI for R Demos

Description

An interactive GUI for accessing demos from any R package installed on the user’s system. runDemos is a

convenient alternative to R’s demo function.

Usage

runDemos(package)

Arguments

package display demos from a particular package (optional).

Details

If the argument package is not specified, the function will look for demos in all packages installed on the user’s

system.

Note

The runDemos GUI attempts to retain the user’s objects and restore the working directory. However, pre-existing

objects will be overwritten if their names coincide with names used by the various demos. Also, depending on

conditions, the user may lose working directory focus. We suggest that cautious users run this demo from a project

where data objects are not critical.

Author(s)

Alex Couture-Beil, Vancouver Island University, Nanaimo BC

See Also

runExamples for examples specific to PBSmodelling.

runExample Run a Single GUI Example Included with PBS Modelling

Description

Display a GUI to demonstrate one PBS Modelling example.

The example source files can be found in the R directory .../library/PBSmodelling/examples.

Usage

runExample(ex, pkg="PBSmodelling")

Arguments

ex string specifying an example in the pkg directory examples.

pkg package with an examples subdirectory.

156 runExamples

Details

If no example is specified or if the example does not exist, a GUI pops up informing you of potential choices.

Note that the string choice is case-sensitive.

Some examples use external packages which must be installed to work correctly:

BRugs - LinReg, MarkRec, and CCA;

odesolve/PBSddesolve - FishRes;

PBSmapping - FishTows.

Note

The examples are copied from .../library/PBSmodelling/examples to R’s current temporary working direc-

tory and run from there.

Author(s)

Rowan Haigh, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

See Also

runDemos, runExamples

runExamples Run GUI Examples Included with PBS Modelling

Description

Display an interactive GUI to demonstrate PBS Modelling examples.

The example source files can be found in the R directory .../library/PBSmodelling/examples.

Usage

runExamples()

Details

Some examples use external packages which must be installed to work correctly:

BRugs - LinReg, MarkRec, and CCA;

odesolve/PBSddesolve - FishRes;

PBSmapping - FishTows.

Note

The examples are copied from .../library/PBSmodelling/examples to R’s current temporary working direc-

tory and run from there.

Author(s)

Alex Couture-Beil, Vancouver Island University, Nanaimo BC

See Also

runDemos, runExample

scalePar 157

scalePar Scale Parameters to [0,1]

Description

Scale parameters for function minimization by calcMin.

Usage

scalePar(pvec)

Arguments

pvec a data frame comprising four columns - c("val","min","max","active")and as many rows

as there are model parameters. The "active" field (logical) determines whether the parame-

ters are estimated (TRUE) or remain fixed (FALSE).

Details

Scaling algorithm: S = 2

π
asin

√
P−Pmin

Pmax−Pmin

Value

Parameter vector scaled between 0 and 1.

Author(s)

Jon T. Schnute, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

See Also

restorePar, calcMin, GT0

Examples

local(envir=.PBSmodEnv,expr={

pvec <- data.frame(val=c(1,100,10000),min=c(0,0,0),max=c(5,500,50000),

active=c(TRUE,TRUE,TRUE))

S <- scalePar(pvec)

print(cbind(pvec,S))

})

158 selectDir

selectDir Display Dialogue: Select directory

Description

Display the default directory chooser prompt provided by the Operating System.

Usage

selectDir(initialdir=getwd(), mustexist=TRUE, title="",

usewidget=NULL)

Arguments

initialdir initially selected directory

mustexist if logical value is TRUE, only a existing directory can be selected

title title for the prompt window

usewidget store the selected directory in the named entry widget

Value

The directory path selected by the user

Author(s)

Alex Couture-Beil, Vancouver Island University, Nanaimo BC

See Also

selectFile

Examples

Not run:

local(envir=.PBSmodEnv,expr={

dir(selectDir(title="select a directory to list contents of"))

#integration with widget via doAction

createWin(c("entry foo mode=character",

"button text=\"select dir\"

func=doAction action=\"selectDir(usewidget=‘foo‘)\""), astext=TRUE)

})

End(Not run)

selectFile 159

selectFile Display Dialogue: Open or Save File

Description

Display the default Open or Save prompt provided by the Operating System.

Usage

selectFile(initialfile="", initialdir=getwd(),

filetype=list(c("*","All Files")), mode="open", multiple=FALSE,

title="", defaultextension="", usewidget=NULL)

Arguments

initialfile initially selected file

initialdir initially directory the dialog opens

filetype a list of character vectors indicating file types made available to users of the GUI. Each vector

is of length one or two. The first element specifies either the file extension or "*" for all file

types. The second element gives an optional descriptor name for the file type. The supplied

filetype list appears as a set of choices in the pull-down box labelled “Files of type:”.

mode string: if "save" display Save As prompt, if "open" display Open prompt.

multiple if TRUE the open prompt can select multiple files. This has no effect for the save prompt.

title title for the prompt window

defaultextension

default file extension if none is provided by the user

usewidget store the selected file in the named entry widget

Value

The file name and path of the file(s) selected by the user.

Author(s)

Alex Couture-Beil, Vancouver Island University, Nanaimo BC

See Also

selectDir

Examples

Not run:

local(envir=.PBSmodEnv,expr={

#integration with widget via doAction

createWin(c("entry foo mode=character width=60",

"button text=\"select file\"

func=doAction action=\"selectFile(usewidget=‘foo‘)\""), astext=TRUE)

})

End(Not run)

160 setGUIoptions

setFileOption Set a PBS File Path Option Interactively

Description

Set a PBS option by browsing for a file. This function provides an alternative to using setPBSoptions when

setting an option that has a path to a file as its value.

Usage

setFileOption(option)

Arguments

option name PBS option to change

Note

If all the required arguments are missing, it is assumed that the function is being called by a GUI widget.

Author(s)

Anisa Egeli, Vancouver Island University, Nanaimo BC

See Also

setPathOption, setPBSoptions

Examples

Not run:

local(envir=.PBSmodEnv,expr={

setPathOption("editor")

})

End(Not run)

setGUIoptions Set PBS Options from Widget Values

Description

Set PBS options from corresponding values of widgets in a GUI.

Usage

setGUIoptions(option)

Arguments

option the name of a single option or the string "*".

setPathOption 161

Details

A GUI may have PBS options that it uses, which have corresponding widgets that are used for entering values for

these options. These are declared by declareGUIoptions.

If the option argument is the name of an option, setGUIoptions transfers the value of this option from a same-

named widget into PBS options global R environment database.

If the option argument is "*", then all the options that have been declared by declareGUIoptions will be

transferred in this fashion.

To use this function in a window description file, the option argument must be specified as the action of the

widget that calls setGUIoptions – action=editor or action=* for example.

Note

If all the required arguments are missing, it is assumed that the function is being called by a GUI widget.

Author(s)

Anisa Egeli, Vancouver Island University, Nanaimo BC

See Also

declareGUIoptions, getGUIoptions, setPBSoptions,

Examples

Not run:

local(envir=.PBSmodEnv,expr={

setGUIoptions("editor")

})

End(Not run)

setPathOption Set a PBS Path Option Interactively

Description

Set a PBS option by browsing for a directory. This function provides an alternative to using setPBSoptionswhen

setting an option that has a path as its value.

Usage

setPathOption(option)

Arguments

option name PBS option to change

Note

If all the required arguments are missing, it is assumed that the function is being called by a GUI widget.

162 setPBSext

Author(s)

Anisa Egeli, Vancouver Island University, Nanaimo BC

See Also

setFileOption, setPBSoptions

Examples

Not run:

local(envir=.PBSmodEnv,expr={

setPathOption("myPath")

})

End(Not run)

setPBSext Set a Command Associated with a File Name Extension

Description

Set a command with an associated extension, for use in openFile. The command must specify where the target

file name is inserted by indicating a "%f".

Usage

setPBSext(ext, cmd)

Arguments

ext string specifying the extension suffix.

cmd command string to associate with the extension.

Note

These values are not saved from one PBS Modelling session to the next.

Author(s)

Alex Couture-Beil, Vancouver Island University, Nanaimo BC

See Also

getPBSext, openFile, clearPBSext

setPBSoptions 163

setPBSoptions Set A User Option

Description

Options set by the user for use by other functions.

Usage

setPBSoptions(option, value, sublist=FALSE)

Arguments

option name of the option to set.

value new value to assign this option.

sublist if value is a sublist (list component) of option, this list component can be changed individu-

ally using sublist=TRUE.

Details

Objects can be placed into the PBS options manager (see PBSoptions-class).

If the user wishes to change the object associated with an option, issue the command:

setPBSoptions("someOldOption",someNewOption)

If an option comprises a list object, a user can alter specific components of the list by activating the sublist

argument:

setPBSoptions(option="myList", value=list(gamma=130), sublist=TRUE)

See example below.

Note

A value .PBSmod$.options$.optionsChanged is set to TRUE when an option is changed, so that the user doesn’t

always have to be prompted to save the options file.

By default, .PBSmod$.options$.optionsChanged is not set or NULL.

Also, if an option is set to "" or NULL then it is removed.

.initPBSoptions() is now called first (options starting with a dot "." do not set .optionsChanged).

Author(s)

Alex Couture-Beil, Vancouver Island University, Nanaimo BC

See Also

getPBSoptions, writePBSoptions, readPBSoptions

164 setWidgetColor

Examples

local(envir=.PBSmodEnv,expr={

myList=list(alpha=1,beta=2,gamma=3,delta=4)

setPBSoptions(option="myList", myList)

cat("Original myList:\n---------------\n")

print(getPBSoptions("myList"))

setPBSoptions(option="myList", value=list(gamma=130), sublist=TRUE)

cat("Revised myList:\n--------------\n")

print(getPBSoptions("myList"))

})

setwdGUI Browse for Working Directory and Optionally Find Prefix

Description

Allows the user to browse a directory tree to set the working directory. Optionally, files with given suffixes can be

located in the new directory.

Usage

setwdGUI()

Examples

local(envir=.PBSmodEnv,expr={

createWin("button text=\"Change working directory\" func=setwdGUI", astext=TRUE)

})

setWidgetColor Update Widget Color

Description

Update the foreground and background colors of a widget

Usage

setWidgetColor(name, radioValue, winName = .PBSmodEnv$.PBSmod$.activeWin, ...)

Arguments

name the name of the widget

radioValue if specified, modify a particular radio option, as identified by the value, rather than the com-

plete set (identified by the common name)

winName window from which to select the GUI widget. The window that most recently receive user

input is used by default if winname is not supplied

... any combination of "fg", "bg", "disablefg", "disablebg", "entryfg", "entrybg", "noeditfg",

"noeditbg" arguments, depending on type of widget - see details

setWidgetColor 165

Details

The setWidgetColor function allows dynamic updating of widget colors during program execution. However, two

factors determine whether dynamic color updating is possible for a particular widget: (i) the type of widget, and

(ii) the nature of the Tk implementation in the underlying widget library. Thus, a given widget may not support

all combinations of colour variables. The following widgets support the corresponding options:

button: fg, bg, disablefg

check: fg, bg, disablefg, entryfg, entrybg

data: entryfg, entrybg, noeditfg, noeditbg

droplist: fg, bg

entry: entryfg, entrybg, noeditfg, noeditbg

label: fg, bg

matrix: entryfg, entrybg, noeditfg, noeditbg

object: entryfg, entrybg, noeditfg, noeditbg

progressbar: fg, bg

radio: fg, bg

slide: fg, bg

spinbox: entryfg, entrybg

text: fg, bg

vector: entryfg, entrybg, noeditfg, noeditbg

These options are described in the PBSmodelling User Guide under Appendix A.

Be aware that Tk uses gray for the highlight color during a selection operation. This means that when the back-

ground colour is also gray, there is no visual clue that the value has been selected for a copy operation.

Author(s)

Alex Couture-Beil (VIU, Nanaimo BC) and Allen R. Kronlund (PBS, Nanaimo BC)

Examples

local(envir=.PBSmodEnv,expr={

createWin("label \"hello world\" name=hello", astext=TRUE)

setWidgetColor("hello", bg="lightgreen", fg="purple")

})

local(envir=.PBSmodEnv,expr={

createWin("vector names=v length=3 values=\"1 2 3\"", astext=TRUE)

setWidgetColor("v[1]", entrybg="lightgreen", entryfg="purple")

setWidgetColor("v[2]", entrybg="green", entryfg="purple")

setWidgetColor("v[3]", entrybg="forestgreen", entryfg="purple")

})

166 setWidgetState

setWidgetState Update Widget State

Description

Update the read-only state of a widget.

Usage

setWidgetState(varname, state, radiovalue, winname, warn=TRUE)

Arguments

varname the name of the widget

state "normal" or "disabled" and for some widgets "readonly" as described under Details below.

radiovalue if specified, disable a particular radio option, as identified by the value, rather than the complete

set (identified by the common name)

winname window from which to select the GUI widget. The window that most recently receive user

input is used by default if winname is not supplied.

warn if TRUE, display a warning if readonly is converted to disabled (only applies for widgets that

don’t accept readonly)

Details

The setWidgetState function allows dynamic control of widget functioning during program execution. The func-

tion serves as a wrapper for the tkconfigure function available in the underlying Tk libraries used by PBS Mod-

elling. Thus, setWidgetState is only available for those widgets that use Tk library widgets.

The state of the following PBS Modelling widgets can be set to "normal" or "disabled": button, check, data,

droplist, entry, matrix, object, radio, slide, spinbox, table, text, and vector. When the state variable is set to

"disabled", values displayed in the widget cannot be changed or copied except in the case of the object and table

widgets which permit the values to be copied.

The data, entry, matrix, and vector widgets support a "readonly" state that allows values displayed in the widget

to be copied but not changed. The displayed value can be selected using the keyboard or mouse. However, the

copy and paste operations can only be accomplished via Ctrl-C and Ctrl-V, respectively, not the mouse.

Be aware that Tk uses gray for the highlight color during a selection operation. This means that when the back-

ground colour is also gray, there is no visual clue that the value has been selected for a copy operation.

Exceptions to the behaviour determined by state include the object, table and text widgets. There is no "read-

only" state applicable to these widgets. Nevertheless, the values displayed can be copied even when the state is

"disabled".

Individual radio widgets grouped by the name variable of a radio declaration can be updated by specifying radio-

value in the call to setWidgetState.

The state of individual elements in the data, matrix, and vector widgets can be updated by indexing. For the vector

and matrix widgets any element can be addressed by appending the desired index to the widget name using square

brackets (e.g., "myVec[2]" or "myMatrix[2,3]"). The data widget is indexed differently than the matrix widget by

adding "d" after the brackets (e.g., "myData[1,1]d"). This change in syntax is required for internal coding of PBS

Modelling.

Author(s)

Alex Couture-Beil (VIU, Nanaimo BC) and Allen R. Kronlund (PBS, Nanaimo BC)

setWinAct 167

Examples

Not run:

local(envir=.PBSmodEnv,expr={

winDesc <- c(’vector length=3 name=vec labels="normal disabled readonly" values="1 2 3"’,

"matrix nrow=2 ncol=2 name=mat", "button name=but_name");

createWin(winDesc, astext=TRUE)

setWidgetState("vec[1]", "normal")

setWidgetState("vec[2]", "disabled")

setWidgetState("vec[3]", "readonly")

setWidgetState("mat", "readonly")

setWinVal(list(mat = matrix(1:4, 2, 2)))

#works for buttons too

setWidgetState("but_name", "disabled")

})

End(Not run)

setWinAct Add a Window Action to the Saved Action Vector

Description

Append a string value specifying an action to the first position of an action vector.

Usage

setWinAct(winName, action)

Arguments

winName window name where action is taking place.

action string value describing an action.

Details

When a function is called from a GUI, a string descriptor associated with the action of the function is stored

internally (appended to the first position of the action vector). A user can utilize this action as a type of argument

for programming purposes. The command getWinAct()[1] yields the latest action.

Sometimes it is useful to “fake” an action. Calling setWinAct allows the recording of an action, even if a button

has not been pressed.

Author(s)

Alex Couture-Beil, Vancouver Island University, Nanaimo BC

168 setWinVal

setWinVal Update Widget Values

Description

Update a widget with a new value.

Usage

setWinVal(vars, winName)

Arguments

vars a list or vector with named components.

winName window from which to select GUI widget values. The default takes the window that has most

recently received new user input.

Details

The vars argument expects a list or vector with named elements. Every element name corresponds to the widget

name which will be updated with the supplied element value.

The vector, matrix, and data widgets can be updated in several ways. If more than one name is specified for

the names argument of these widgets, each element is treated like an entry widget.

If however, a single name describes any of these three widgets, the entire widget can be updated by passing an

appropriately sized object.

Alternatively, any element can be updated by appending its index in square brackets to the end of the name.

The data widget is indexed differently than the matrix widget by adding "d" after the brackets. This tweak is

necessary for the internal coding (bookkeeping) of PBS Modelling. Example: "foo[1,1]d".

Author(s)

Alex Couture-Beil, Vancouver Island University, Nanaimo BC

See Also

getWinVal, createWin

Examples

Not run:

local(envir=.PBSmodEnv,expr={

winDesc <- c("vector length=3 name=vec",

"matrix nrow=2 ncol=2 name=mat", "slideplus name=foo");

createWin(winDesc, astext=TRUE)

setWinVal(list(vec=1:3, "mat[1,1]"=123, foo.max=1.5, foo.min=0.25, foo=0.7))

})

End(Not run)

show0 169

show0 Convert Numbers into Text with Specified Decimal Places

Description

Return a character representation of a number with added zeroes out to a specified number of decimal places.

Usage

show0(x, n, add2int=FALSE, round2n=FALSE)

Arguments

x numeric data (scalar, vector, or matrix).

n number of decimal places to show, including zeroes.

add2int if TRUE, add zeroes to integers after the decimal.

round2n if TRUE, round x first to n decimal places.

Value

A scalar/vector of strings representing numbers. Useful for labelling purposes.

Note

By default, this function does not round or truncate numbers. It simply adds zeroes if n is greater than the

available digits in the decimal part of a number. The user can choose to round the numbers first by setting

argument round2n = TRUE.

Author(s)

Rowan Haigh, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

See Also

pad0, GT0

Examples

local(envir=.PBSmodEnv,expr={

oldpar = par(no.readonly=TRUE)

frame()

#do not show decimals on integers

addLabel(0.25,0.75,show0(15.2,4))

addLabel(0.25,0.7,show0(15.1,4))

addLabel(0.25,0.65,show0(15,4))

#show decimals on integers

addLabel(0.25,0.55,show0(15.2,4,TRUE))

addLabel(0.25,0.5,show0(15.1,4,TRUE))

addLabel(0.25,0.45,show0(15,4,TRUE))

par(oldpar)

})

170 showArgs

showAlert Display a Message in an Alert Window

Description

Display an alert window that contains a specified message and an OK button for dismissing the window.

Usage

showAlert(message, title="Alert", icon="warning")

Arguments

message message to display in alert window

title title of alert window

icon icon to display in alert window; options are "error", "info", "question", or "warning".

Author(s)

Anisa Egeli, Vancouver Island University, Nanaimo BC

See Also

getYes

Examples

Not run:

local(envir=.PBSmodEnv,expr={

showAlert("Hello World!")

})

End(Not run)

showArgs Display Expected Widget Arguments

Description

For each widget specified, display its arguments in order with their default values. The display list can be expanded

to report each argument on a single line.

Usage

showArgs(widget, width=70, showargs=FALSE)

Arguments

widget vector string of widget names; if not specified (default), the function displays information

about all widgets in alphabetical order.

width numeric width used by strwrap to wrap lines of the widget usage section.

showargs logical:, if TRUE, the display also lists each argument on single line after the widget usage

section.

showHelp 171

Value

A text stream to the R console. Invisibly returns the widget usage lines.

Author(s)

Alex Couture-Beil, Vancouver Island University, Nanaimo BC

showHelp Display HTML Help Pages for Packages in Browser

Description

Display the help pages for installed packages that match the supplied pattern in an HTML browser window.

Usage

showHelp(pattern="methods", ...)

Arguments

pattern string pattern to match to package names

... allows user to specify two additional arguments:

remote - character string giving a valid URL for the R_HOME directory on a remote location;

update - logical: if TRUE, attempt to update the package index to reflect the currently available

packages. (Not attempted if remote is non-NULL.)

Details

The specified pattern is matched to R-packages installed on the user’s system. The code uses the utils function

browseURL to display the HTML Help Pages using a browser that the system associates with html extensions.

(See help for browseURL for other operating systems.

Value

A list is invisibly returned, comprising:

Apacks all packages installed on user’s system

Spacks selected packages based on specified pattern

URLs path and file name of HTML Help Page

Help pages are displayed in a separate browser window.

Note

The connection time for browsers (at least in Windows OS) is slow. If the HTML browser program is not already

running, multiple matching pages will most likely not be displayed. However, subsequent calls to showHelp

should show all matches.

Author(s)

Rowan Haigh, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

See Also

viewCode, showPacks

172 showRes

showPacks Show Packages Required But Not Installed

Description

Show the packages specified by the user and compare these to the installed packages on the user’s system. Display

packages not installed.

Usage

showPacks(packs=c("PBSmodelling","PBSmapping","PBSddesolve",

"rgl","deSolve","akima","deldir","sp","maptools","KernSmooth"))

Arguments

packs string vector of package names that are compared to installed packages.

Value

Invisibly returns a list of Apacks (all packages installed on user’s system), Ipacks (packages in packs that are

installed), and Mpacks (packages that are missing).

Author(s)

Jon T. Schnute, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

showRes Show Results of Expression Represented by Text

Description

Evaluate the supplied expression, reflect it on the command line, and show the results of the evaluation.

Usage

showRes(x, cr=TRUE, pau=TRUE)

Arguments

x an R expression to evaluate

cr logical: if TRUE, introduce extra carriage returns

pau logical: if TRUE, pause after expression reflection and execution

Value

The results of the expression are return invisibly.

Author(s)

Jon T. Schnute, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

showVignettes 173

Examples

local(envir=.PBSmodEnv,expr={

showRes("x=rnorm(100)",pau=FALSE)

})

showVignettes Display Vignettes for Packages

Description

Create a GUI that displays all vignettes for installed packages. The user can choose to view the source file for

building the vignette or the final .pdf file.

Usage

showVignettes(package)

Arguments

package character string specifying package name that exists in the user’s R library

Details

If the argument package is not specified, the function will look for vignettes in all packages installed on the user’s

system. The user can choose to view the source file for building the vignette (usually *.Rnw or *.Snw files) or the

final build from the source code (*.pdf).

showVignettes uses the PBSmodelling function openFile to display the .Rnw and .pdf files using programs

that the system associates with these extensions. On systems that do not support file extension associations, the

function setPBSext can temporarily set a command to associate with an extension.

Author(s)

Anisa Egeli, Vancouver Island University, Nanaimo BC

See Also

showHelp, openFile, setPBSext, getPBSext

sortHistory Sort an Active or Saved History

Description

Utility to sort history. When called without any arguments, an interactive GUI is used to pick which history to

sort. When called with hisname, sort this active history widget. When called with file and outfile, sort the

history located in file and save to outfile.

Usage

sortHistory(file="", outfile=file, hisname="")

174 talk-class

Arguments

file file name of saved history to sort.

outfile file to save sorted history to.

hisname name of active history widget and window it is located in, given in the form WINDOW.HISTORY.

Details

After selecting a history to sort (either from given arguments, or interactive GUI) the R data editor window will be

displayed. The editor will have one column named \"new\" which will have numbers 1,2,3,...,n. This represents

the current ordering of the history. You may change the numbers around to define a new order. The list is sorted

by reassigning the index in row i as index i.

For example, if the history had three items 1,2,3. Reordering this to 3,2,1 will reverse the order; changing the list

to 1,2,1,1 will remove entry 3 and create two duplicates of entry 1.

Author(s)

Alex Couture-Beil, Vancouver Island University, Nanaimo BC

See Also

importHistory, initHistory

talk-class S4: Present Talk Classes

Description

The function presentTalk is a tool that facilitates lectures and workshops in R. It allows the presenter to show

code snippets alongside their execution, making use of R’s graphical capabilities.

For presentTalk to work, six S4 class objects are created:

talk......root element that constitutes a talk;

section...branch element that defines a section within a talk;

text......leaf element that specifies text to be printed on the R console;

file......leaf element that specifies files to be opened by the OS;

code......leaf element that specifies R code to be executed;

break.....leaf element that specifies where to allow a break in the talk.

The leaf elements, also termed primitive elements, occur in isolation and cannot contain other elements. There-

fore, only two levels of nesting are supported: sections within a talk and primitives within a section.

See Appendix B in the PBSmodelling User’s Guide for more information.

Details

This function uses a convenience function called xmlGetAttr (from the package XML) that retrieves the value of

a named attribute in an XML node.

The function presentTalk translates the XML code into a list structure called .presentTalk below the global

object .PBSmod. The GUI is represented as a list structure called presentwin under .PBSmod, as for all GUI

objects in PBSmodelling.

talk-class 175

Slots Available

talk

name character string giving the name of the talk (required)

sections list list of sections within the talk

files list list of files within the talk

section

name character string giving the name of the section (required)

items list list of the four primitive (leaf-element) S4 classes

button logical should GUI have a button that selects section?

col integer column in lower section of GUI to place button

section_id integer specify if section does not immediately follow a talk

text

text character text to display on the R console

"break" logical break the presentation after displaying the text specified?

file

name character string giving the name in the GUI for a group of files to open (required)

filename character individual file names associated with the group name in the GUI

"break" logical break the presentation after opening the group of files?

button logical should GUI add a button that opens this group of files?

col integer column in lower section of GUI to place button

code

show logical show the code snippet in the R console?

print logical print the results of running the R code?

code character the actual chunk of R code

"break" character string describing where to introduce breaks in the code segment

eval logical evaluate the R code?

break

.xData NULL allows a break in the talk for user interaction on the R console.

Creating S4 Objects

Objects can be created by calls of the form:

new("talk", name=name)

new("section",

name = node$attributes["name"],

button = as.logical(xmlGetAttr(node,"button",FALSE)),

col = as.integer(xmlGetAttr(node,"col",2)))

new("text",

text = xmlValue(node),

"break" = as.logical(xmlGetAttr(node,"break",TRUE)))

new("file",

name = xmlGetAttr(node,"name",""),

"break" = as.logical(xmlGetAttr(node,"break",TRUE)),

filename = xmlValue(node),

button = as.logical(xmlGetAttr(node,"button",FALSE)),

col = as.integer(xmlGetAttr(node,"col",3)))

new("code",

show = as.logical(xmlGetAttr(node,"show",TRUE)),

print = as.logical(xmlGetAttr(node,"print",TRUE)),

code = xmlValue(node),

176 testAlpha

"break" = tolower(xmlGetAttr(node,"break","print")))

new("break")

Author(s)

Alex Couture-Beil, Vancouver Island University, Nanaimo BC

See Also

presentTalk for presenting a talk in R.

xmlGetAttr for retrieving the value of a named attribute in an XML node.

setClass for creating a class definition.

PBSoptions-class for a complicated S4 class implementation.

testAlpha Test Various Alpha Transparency Values

Description

Display how the alpha transparency for rgb() varies.

Usage

testAlpha(alpha=seq(0,1,len=25), fg="blue", bg="yellow",

border="black", grid=FALSE, ...)

Arguments

alpha numeric vector of alpha transparency values values from 0 to 1.

fg foreground colour of the top shape that varies in transparency.

bg background colour (remains constant) of the underlying shape.

border border colour (which also changes in transparency) of the foreground polygon.

grid logical: if TRUE, lay a grey grid on the background colour.

... additional graphical arguments to send to the the ploting functions.

Value

Invisibly returns the compound RGB matrix for fg, alpha, bg, and border.

Author(s)

Jon T. Schnute, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

See Also

testCol, testPch, testLty, testLwd

testCol 177

testCol Display Colours Available Using a Set of Strings

Description

Display colours as round patches in a plot. Useful for programming purposes. Colours can be specified in any of

3 different ways:

(i) by colour name,

(ii) by hexadecimal colour code created by rgb(), or

(iii) by calling one of the colour palettes.

Usage

testCol(cnam=colors()[sample(length(colors()),15)])

Arguments

cnam vector of colour names to display. Defaults to 15 random names from the color palette to use

as patterns.

Author(s)

Rowan Haigh, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

See Also

pickCol, testAlpha, testPch, palettes

Examples

local(envir=.PBSmodEnv,expr={

mix and match patterns

testCol(c("sky","fire","sea","wood"))

})

local(envir=.PBSmodEnv,expr={

display transparencies of blue

testCol(rgb(0,0,1,seq(0.05,1,0.05)))

})

local(envir=.PBSmodEnv,expr={

display colours of the rainbow

testCol(rainbow(64,end=0.75))

})

local(envir=.PBSmodEnv,expr={

display basic palette colours

testCol(1:length(palette()))

})

local(envir=.PBSmodEnv,expr={

mix colour types

testCol(c("#9e7ad3", "purple", 6))

})

178 testLwd

testLty Display Line Types Available

Description

Display line types available.

Usage

testLty(newframe=TRUE, n=1:18, ...)

Arguments

newframe if TRUE, create a new blank frame, otherwise overlay current frame.

n vector of line type numbers.

... additional arguments for function lines.

Note

Quick representation of line types for reference purposes.

Author(s)

Rowan Haigh, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

See Also

testLwd, testPch, testCol

testLwd Display Line Widths

Description

Display line widths. User can specify particular ranges for lwd. Colours can also be specified and are internally

repeated as necessary.

Usage

testLwd(lwd=1:20, col=c("black","blue"), newframe=TRUE)

Arguments

lwd line widths to display. Ranges can be specified.

col colours to use for lines. Patterns are repeated if length(lwd) > length(col).

newframe if TRUE, create a new blank frame, otherwise overlay current frame.

Author(s)

Rowan Haigh, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

testPch 179

Examples

local(envir=.PBSmodEnv,expr={

testLwd(3:15,col=c("salmon","aquamarine","gold"))

})

testPch Display Plotting Symbols or Octal Strings

Description

Display plotting symbols or octal strings. User can specify particular ranges (increasing continuous integer) for

pch.

Usage

testPch(pch=1:100, ncol=10, grid=TRUE, newframe=TRUE, octal=FALSE, ...)

Arguments

pch symbol codes or octal string numbers.

ncol number of columns in display (can only be 2, 5, or 10). Most sensibly this is set to 10.

grid logical: if TRUE, grid lines are plotted for visual aid.

newframe logical: if TRUE reset the graph, otherwise overlay on top of the current graph.

octal logical: if TRUE, show octal strings (backslash characters) used in text statements (e.g., "30\272C"

= 30◦C).

... additional arguments for functions points or text.

Author(s)

Rowan Haigh, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

See Also

testLty, testLwd, addLabel

Examples

local(envir=.PBSmodEnv,expr={

testPch(123:255)

})

local(envir=.PBSmodEnv,expr={

testPch(1:25,ncol=5)

})

local(envir=.PBSmodEnv,expr={

testPch(41:277,octal=TRUE)

})

180 testWidgets

testWidgets Display Sample GUIs and their Source Code

Description

Display an interactive GUI to demonstrate the available widgets in PBS Modelling. A text window displays the

window description file source code. The user can modify this sample code and recreate the test GUI by pressing

the button below.

The Window Description Files can be found in the R directory

.../library/PBSmodelling/testWidgets.

Usage

testWidgets()

Details

Following are the widgets and default values supported by PBS Modelling. For detailed descriptions, see Ap-

pendix A in ‘PBSModelling-UG.pdf’ located in the R directory .../library/PBSmodelling/doc.

button text="Calculate" font="" fg="black" bg="" disablefg=NULL

width=0 name=NULL function="" action="button" sticky=""

padx=0 pady=0

check name mode="logical" checked=FALSE text="" font="" fg="black"

bg="" disablefg=NULL function="" action="check" edit=TRUE

sticky="" padx=0 pady=0

data nrow ncol names modes="numeric" rowlabels="" collabels=""

rownames="X" colnames="Y" font="" fg="black" bg="" entryfont=""

entryfg="black" entrybg="white" noeditfg="black" noeditbg="gray"

values="" byrow=TRUE function="" enter=TRUE action="data"

edit=TRUE width=6 borderwidth=0 sticky="" padx=0 pady=0

droplist name values=NULL choices=NULL labels=NULL selected=1

add=FALSE font="" fg="black" bg="white" function="" enter=TRUE

action="droplist" edit=TRUE mode="character" width=20

sticky="" padx=0 pady=0

entry name value="" width=20 label=NULL font="" fg="" bg=""

entryfont="" entryfg="black" entrybg="white" noeditfg="black"

noeditbg="gray" edit=TRUE password=FALSE function="" enter=TRUE

action="entry" mode="numeric" sticky="" padx=0 pady=0

grid nrow=1 ncol=1 toptitle="" sidetitle="" topfont="" sidefont=""

topfg=NULL sidefg=NULL fg="black" topbg=NULL sidebg=NULL bg=""

byrow=TRUE borderwidth=1 relief="flat" sticky="" padx=0 pady=0

history name="default" function="" import="" fg="black" bg=""

entryfg="black" entrybg="white" text=NULL textsize=0 sticky=""

padx=0 pady=0

testWidgets 181

image file=NULL varname=NULL subsample=NULL sticky="" padx=0 pady=0

include file=NULL name=NULL

label text="" name="" mode="character" font="" fg="black" bg=""

sticky="" justify="left" anchor="center" wraplength=0 width=0

padx=0 pady=0

matrix nrow ncol names rowlabels="" collabels="" rownames=""

colnames="" font="" fg="black" bg="" entryfont="" entryfg="black"

entrybg="white" noeditfg="black" noeditbg="gray" values=""

byrow=TRUE function="" enter=TRUE action="matrix" edit=TRUE

mode="numeric" width=6 borderwidth=0 sticky="" padx=0 pady=0

menu nitems=1 label font="" fg="" bg=""

menuitem label font="" fg="" bg="" function action="menuitem"

notebook tabs name=NULL selected=1 tabpos="top" font="" fg=NULL

bg=NULL width=0 height=0 homogeneous=FALSE arcradius=2

tabbevelsize=0 function=NULL action="notebook" sticky="we"

padx=0 pady=0

null bg="" padx=0 pady=0

object name rowshow=0 font="" fg="black" bg="" entryfont=""

entryfg="black" entrybg="white" noeditfg="black" noeditbg="gray"

vertical=FALSE collabels=TRUE rowlabels=TRUE function=""

enter=TRUE action="data" edit=TRUE width=6 borderwidth=0

sticky="" padx=0 pady=0

progressbar name value=0 maximum=100 style="normal" width=NULL

height=NULL vertical=FALSE fg=NULL bg=NULL relief="sunken"

borderwidth=2 sticky="" padx=0 pady=0

radio name value text="" font="" fg="black" bg="" function=""

action="radio" edit=TRUE mode="numeric" selected=FALSE

sticky="" padx=0 pady=0

slide name from=0 to=100 value=NA showvalue=FALSE

orientation="horizontal" font="" fg="black" bg="" function=""

action="slide" sticky="" padx=0 pady=0

slideplus name from=0 to=1 by=0.01 value=NA font="" fg="black"

bg="" entryfont="" entryfg="black" entrybg="white" function=""

enter=FALSE action="slideplus" sticky="" padx=0 pady=0

spinbox name from to by=1 value=NA label="" font="" fg="black"

bg="" entryfont="" entryfg="black" entrybg="white" function=""

enter=TRUE edit=TRUE action="droplist" width=20 sticky=""

padx=0 pady=0

table name rowshow=0 font="" fg="black" bg="white" rowlabels=""

collabels="" function="" action="table" edit=TRUE width=10

182 tget

sticky="" padx=0 pady=0

text name height=8 width=30 edit=FALSE scrollbar=TRUE fg="black"

bg="white" mode="character" font="" value="" borderwidth=1

relief="sunken" sticky="" padx=0 pady=0

vector names length=0 labels="" values="" vecnames="" font=""

fg="black" bg="" entryfont="" entryfg="black" entrybg="white"

noeditfg="black" noeditbg="gray" vertical=FALSE function=""

enter=TRUE action="vector" edit=TRUE mode="numeric" width=6

borderwidth=0 sticky="" padx=0 pady=0

window name="window" title="" vertical=TRUE bg="#D4D0C8"

fg="#000000" onclose="" remove=FALSE

Author(s)

Alex Couture-Beil, Vancouver Island University, Nanaimo BC

See Also

createWin, showArgs

tget Get/Print Objects From or Put Objects Into Temporary Work Environment

Description

Get/print objects from or put objects into a temporary work environment called .PBSmodEnv. These objects

include .PBSmod, which controls the GUI system.

Usage

tget(x, penv=NULL, tenv=.PBSmodEnv)

tcall(x, penv=NULL, tenv=.PBSmodEnv)

tprint(x, penv=NULL, tenv=.PBSmodEnv)

tput(x, penv=NULL, tenv=.PBSmodEnv)

Arguments

x name (with or without quotes) of an object to retrieve or store in the temporary environment.

penv parent environment, defaults to parent.frame() called from within the function.

tenv temporary working environment, defaults to .PBSmodEnv.

Details

These accessor functions were developed as a response to the CRAN repository policy statement: “Packages

should not modify the global environment (user’s workspace).”

There are also wrapper functions called .win.tget, .win.tcall, and .win.tprint that can be used in win-

dow description files to launch functions or print objects from the .PBSmodEnv workspace. The wrapper uses

getWinAct to get the function (or object) name that a user specifies in the action argument of a widget com-

mand.

unpackList 183

Value

Objects are retrieved from or sent to the temporary working environment to/from the place where the function(s)

are called. Additionally, tcall invisibly returns the object without transferring, which is useful when the object

is a function that the user may wish to call, for example, tcall(myfunc)().

Note

Additional wrapper functions to access functions in .PBSmodEnv are named with the prefix .win.

Author(s)

Rowan Haigh, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

References

CRAN Repository Policy: http://cran.r-project.org/web/packages/policies.html

Examples

local(envir=.PBSmodEnv,expr={

str(tcall(.PBSmod),2)

})

unpackList Unpack List Elements into Variables

Description

Make local or global variables (depending on the scope specified) from the named components of a list.

Usage

unpackList(x, scope="L")

Arguments

x named list to unpack.

scope If "L", create variables local to the parent frame that called the function. If "P", create variables

in the temporary package workspace called .PBSmodEnv. If "G", create global variables.

Value

A character vector of unpacked variable names.

Author(s)

Alex Couture-Beil, Vancouver Island University, Nanaimo BC

See Also

packList, readList, writeList

184 updateGUI

Examples

local(envir=.PBSmodEnv,expr={

x <- list(a=21,b=23);

unpackList(x);

print(a);

})

updateGUI Update Active GUI With Local Values

Description

Update the currently active GUI with values from R’s memory at the specified location.

Usage

updateGUI(scope = "L")

Arguments

scope either "L" for the parent frame, "P" for the temporary work environment .PBSmodEnv, "G" for

the global environment, or an explicit R environment.

Details

If the characteristics of the local R objects do not match those of the GUI objects, the update will fail.

Value

Invisibly returns a Boolean vector that specifies whether the objects in the local R environment match items in the

active GUI.

Author(s)

Rob Kronlund, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

See Also

getWinVal, setWinVal

Examples

local(envir=.PBSmodEnv,expr={

#law of free food: http://www.phdcomics.com/comics.php?f=1223

createWin(c(

"vector names=\"foodquality hunger cost\" values=\"0.6 0.8 0.1\" width=10",

"entry name=taste edit=F label=taste:"), astext=TRUE)

getWinVal(scope="P")

taste <- foodquality * hunger / cost

updateGUI()

})

vbdata 185

vbdata Data: Lengths-at-Age for von Bertalanffy Curve

Description

Lengths-at-age for freshwater mussels (Anodonta kennerlyi).

Usage

data(vbdata)

Format

A data frame with 16 rows and 2 columns c("age","len").

Details

Data for demonstration of the von Bertalanffy model used in the calcMin example.

Source

Fisheries and Oceans Canada - Mittertreiner and Schnute (1985)

References

Mittertreiner, A. and Schnute, J. (1985) Simplex: a manual and software package for easy nonlinear parameter

estimation and interpretation in fishery research. Canadian Technical Report of Fisheries and Aquatic Sciences

1384, xi + 90 pp.

vbpars Data: Initial Parameters for a von Bertalanffy Curve

Description

Starting parameter values for Linf, K, and t0 for von Bertalanffy minimization using length-at-age data (vbdata)

for freshwater mussels (Anodonta kennerlyi).

Usage

data(vbpars)

Format

A matrix with 3 rows and 3 columns c("Linf","K","t0"). Each row contains the starting values, minima, and

maxima, respectively, for the three parameters.

Details

Data for demonstration of the von Bertalanffy model used in the calcMin example.

186 view

References

Mittertreiner, A. and Schnute, J. (1985) Simplex: a manual and software package for easy nonlinear parameter

estimation and interpretation in fishery research. Canadian Technical Report of Fisheries and Aquatic Sciences

1384, xi + 90 pp.

view View First/Last/Random n Elements/Rows of an Object

Description

View the first or last or random n elements or rows of an object. Components of lists will be subset using iterative

calls to view.

Usage

view(obj, n=5, last=FALSE, random=FALSE, print.console=TRUE, ...)

Arguments

obj object to view.

n first (default)/last/random n elements/rows of obj to view.

last logical: if TRUE, last n elements/rows of obj are displayed.

random logical: if TRUE, n random elements/rows (without replacement) of obj are displayed.

print.console logical: if TRUE, print the results to the console (default).

The results are also returned invisibly should the user wish to assign the output to an object.

... additional arguments (e.g., replace=TRUE if specifying random=TRUE).

Value

Invisibly returns the results of the call to view.

Note

If random=TRUE, random sampling will take place before the last operator is applied.

Author(s)

Rowan Haigh, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

See Also

Generic functions head and tail exist in the package utils.

viewCode 187

viewCode View Package R Code

Description

View the R code of all functions in a specified package installed on the user’s system.

Usage

viewCode(pkg="PBSmodelling", funs, output=4, ...)

Arguments

pkg string name of a package installed on the user’s computer.

funs string vector of explicit function names from pkg to view.

output numeric value: 1 = function names only, 2 = function names with brief description, 3 = func-

tions and their arguments, and 4 = function R-code (default).

... allows user to specify two additional arguments for output=2:

remote - character string giving a valid URL for the R_HOME directory on a remote location;

update - logical: if TRUE, attempt to update the package index to reflect the currently available

packages. (Not attempted if remote is non-NULL.)

Also, if user specifies pat=TRUE, then funs, if specified, are treated like patterns.

Details

If funs is not specified, then all functions, including hidden (dot) functions are displayed.

If the package has a namespace, functions there are also displayed.

Value

Invisibly returns source code of all functions in the specified package. The function invokes openFile to display

the results.

Author(s)

Rowan Haigh, Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo BC

See Also

showHelp, view

188 writeList

writeList Write a List to a File in PBS Modelling Format

Description

Write an ASCII text representation in either "D" format or "P" format. The "D" format makes use of dput and

dget and produces an R representation of the list. The "P" format represents a simple list in an easy-to-read, ad

hoc PBSmodelling format.

Usage

writeList(x, fname, format="D", comments="")

Arguments

x R list object to write to an ASCII text file.

fname file name of the text file to create.

format format of the file to create: "D" or "P".

comments vector of character strings to use as initial-line comments in the file.

Details

The D Format: The "D" format is equivalent to using R’s base functions dput and dget, which support all R

objects.

The P Format:

The "P" format only supports a list that may contain lists, vectors, matrices, arrays, and data frames. Scalars are

treated like vectors. It writes each list element using the following conventions:

1. $ denotes the start of a list element, and the element’s name follows this character; for nested lists, $

separates each nesting level;

2. $$, on the next line, denotes a line used to describe the element’s structure, which includes object type,

mode(s), names (if vector), rownames (if matrix or data), and colnames (if matrix or data); and

3. subsequent lines contain data (one line for a vector and multiple lines for a matrix or other data).

If a list’s elements are unnamed, have the name NA, or have the empty string as a name, this function generates

names ("P" format only). If two list elements share the same name, the list will export correctly, but it will

import incorrectly.

Arrays with three or more dimensions have dim and dimnames arguments. dim describes the dimension of the

data (a vector as returned by dim(some_array)) and dimnames is a vector of length sum(dim(some_array)+1)

and is constructed as follows:

foreach dimension d, first append the name of the dimension d and then append all

Multiple rows of data for matrices or data frames must have equal numbers of entries (separated by whitespace).

Note that array data are written the same format as they are displayed in the R console:

nrow=dim()[1], ncol=dim()[2]

repeated by scrolling through successively higher dimensions, increasing the index from left to right within each

dimension. The flattened table will have dim()[2] columns.

For complete details, see “PBSmodelling-UG.pdf” at the location described when loading this package.

writePBSoptions 189

Value

String containing the file name.

Author(s)

Alex Couture-Beil, Vancouver Island University, Nanaimo BC

See Also

packList, readList, unpackList

Examples

Not run:

local(envir=.PBSmodEnv,expr={

cwd = getwd(); setwd(tempdir())

test <- list(a=10,b=euro,c=view(WorldPhones),d=view(USArrests))

writeList(test,"test.txt",format="P",

comments=" Scalar, Vector, Matrix, Data Frame")

openFile("test.txt")

setwd(cwd)

})

End(Not run)

local(envir=.PBSmodEnv,expr={

cwd = getwd(); setwd(tempdir())

##Example of dimnames for Arrays

dimnames(Titanic)

writeList(list(Titanic), format="P")

setwd(cwd)

})

writePBSoptions Write PBS Options to an External File

Description

Save options that were set using setPBSoptions, setPBSext, or interfaces such as loadC. These options can be

reloaded using readPBSoptions.

Usage

writePBSoptions(fname="PBSoptions.txt")

Arguments

fname file name or full path of file to which the options will be saved.

Note

Options with names starting with "." will not be saved.

Author(s)

Anisa Egeli, Vancouver Island University, Nanaimo BC

190 writePBSoptions

See Also

readPBSoptions, setPBSoptions, setPBSext, promptWriteOptions

Index

∗Topic arith
calcFib, 94

calcGM, 95

∗Topic array
genMatrix, 118

∗Topic character
convSlashes, 107

doAction, 111

evalCall, 113

showArgs, 170

showPacks, 172

viewCode, 187

∗Topic classes
PBSoptions-class, 140

talk-class, 174

∗Topic color
lucent, 134

pickCol, 142

testAlpha, 176

testCol, 177

testLty, 178

testLwd, 178

testPch, 179

∗Topic connection
readPBSoptions, 152

∗Topic datasets
CCA.qbr, 97

vbdata, 185

vbpars, 185

∗Topic data
clipVector, 104

∗Topic device
chooseWinVal, 98

clearRcon, 103

expandGraph, 114

getChoice, 119

resetGraph, 153

showHelp, 171

∗Topic documentation
openUG, 137

∗Topic environment
lisp, 131

tget, 182

∗Topic file
findPrefix, 116

findProgram, 117

openExamples, 135

openFile, 136

packList, 137

readList, 152

selectDir, 158

selectFile, 159

unpackList, 183

writeList, 188

∗Topic graphs
plotACF, 143

plotDens, 146

plotTrace, 149

∗Topic hplot
drawBars, 112

plotAsp, 143

plotBubbles, 144

plotCsum, 145

plotFriedEggs, 147

plotSidebars, 148

∗Topic interface
compileC, 106

loadC, 132

∗Topic iplot
addArrows, 92

addLabel, 93

addLegend, 93

∗Topic list
exportHistory, 115

importHistory, 128

packList, 137

parseWinFile, 139

readList, 152

sortHistory, 173

unpackList, 183

writeList, 188

∗Topic manip
tget, 182

∗Topic methods
clearAll, 102

clearPBSext, 103

clearWinVal, 104

focusWin, 117

getOptions, 121

getOptionsFileName, 122

191

192 INDEX

getOptionsPrefix, 122

getPBSext, 123

getPBSoptions, 124

getWinAct, 124

getWinFun, 125

getWinVal, 125

loadOptions, 133

loadOptionsGUI, 133

PBSoptions-class, 140

setPBSext, 162

setPBSoptions, 163

setWidgetColor, 164

setWidgetState, 166

setWinAct, 167

setWinVal, 168

updateGUI, 184

∗Topic nonlinear
calcMin, 95

∗Topic optimize
calcMin, 95

GT0, 127

restorePar, 154

scalePar, 157

∗Topic package
openUG, 137

PBSmodelling, 140

showPacks, 172

viewCode, 187

∗Topic print
pad0, 138

show0, 169

view, 186

∗Topic programming
compileC, 106

evalCall, 113

loadC, 132

∗Topic utilities
chooseWinVal, 98

cleanProj, 100

cleanWD, 101

clipVector, 104

closeWin, 105

compileDescription, 107

createVector, 108

createWin, 109

doAction, 111

findPat, 115

getChoice, 119

initHistory, 128

isWhat, 130

pause, 140

runDemos, 155

runExample, 155

runExamples, 156

showArgs, 170

showHelp, 171

showRes, 172

showVignettes, 173

testCol, 177

testLty, 178

testLwd, 178

testPch, 179

testWidgets, 180

addArrows, 92, 93, 94

addHistory (initHistory), 128

addLabel, 92, 93, 94, 179

addLegend, 92, 93, 93

backHistory (initHistory), 128

break-class (talk-class), 174

calcFib, 94

calcGM, 95

calcMin, 95, 97, 127, 154, 157, 185

CCA.qbr, 97

chooseWinVal, 98, 120, 126

cleanProj, 100

cleanWD, 101, 104

clearAll, 102

clearHistory (initHistory), 128

clearPBSext, 103, 104, 123, 136, 162

clearRcon, 103

clearWinVal, 104, 104, 126

clipVector, 104

closeWin, 105, 109

code-class (talk-class), 174

col2rgb, 134

compileC, 106, 133

compileDescription, 107, 109, 139

convSlashes, 107

createVector, 105, 108, 109

createWin, 105, 107, 108, 109, 112, 139, 168, 182

declareGUIoptions, 110, 120, 161

doAction, 111, 113

drawBars, 112

environment, 109

evalCall, 112, 113, 149

expandGraph, 114

exportHistory, 115, 128, 129

file-class (talk-class), 174

findPat, 115

findPrefix, 116

findProgram, 117

findSuffix (findPrefix), 116

firstHistory (initHistory), 128

INDEX 193

focusRgui (clearRcon), 103

focusWin, 117

forwHistory (initHistory), 128

genMatrix, 118, 145

getChoice, 99, 119, 126

getGUIoptions, 111, 120, 153, 161

getOptions, 121, 141

getOptionsFileName, 122, 141

getOptionsPrefix, 122, 141

getPBSext, 103, 123, 124, 136, 162, 173

getPBSoptions, 124, 153, 163

getWinAct, 112, 124

getWinFun, 125

getWinVal, 99, 104, 109, 120, 125, 168, 184

getYes, 126, 170

glob2rx, 131

GT0, 97, 127, 139, 154, 157, 169

head, 186

importHistory, 115, 128, 129, 174

initHistory, 109, 115, 128, 128, 174

isWhat, 130

jumpHistory (initHistory), 128

lastHistory (initHistory), 128

lisp, 131

loadC, 106, 132

loadOptions, 122, 133, 141

loadOptionsGUI, 133, 141

ls, 131

lucent, 134

openExamples, 135

openFile, 103, 123, 135, 136, 137, 153, 162, 173

openUG, 137

packList, 137, 152, 183, 189

pad0, 138, 169

palettes, 177

parseWinFile, 107, 109, 126, 139

pause, 140

PBSmodelling, 140

PBSmodelling-package (PBSmodelling), 140

PBSoptions-class, 140

pickCol, 134, 142, 177

plotACF, 143

plotAsp, 113, 143

plotBubbles, 119, 144, 148, 149

plotCsum, 145

plotDens, 146

plotFriedEggs, 147, 149

plotSidebars, 148

plotTrace, 149

presentTalk, 150, 176

print,PBSoptions-method (PBSoptions-class),

140

promptWriteOptions, 111, 120, 151, 190

readList, 138, 152, 183, 189

readPBSoptions, 120, 124, 151, 152, 163, 190

regular expression, 131

resetGraph, 114, 153

restorePar, 97, 127, 154, 157

rgb, 134

rmHistory (initHistory), 128

runDemos, 155, 156

runExample, 155, 156

runExamples, 155, 156, 156

saveOptions, 122

saveOptions (loadOptions), 133

saveOptionsAs (loadOptions), 133

saveOptionsGUI (loadOptionsGUI), 133

scalePar, 97, 127, 148, 154, 157

section-class (talk-class), 174

selectDir, 158, 159

selectFile, 158, 159

setClass, 176

setFileOption, 160, 162

setGUIoptions, 111, 120, 160

setOptions (getOptions), 121

setOptionsFileName (getOptionsFileName), 122

setOptionsPrefix (getOptionsPrefix), 122

setPathOption, 160, 161

setPBSext, 103, 123, 136, 162, 173, 190

setPBSoptions, 151, 160–162, 163, 190

setwdGUI, 164

setWidgetColor, 164

setWidgetState, 166

setWinAct, 167

setWinVal, 99, 109, 120, 126, 168, 184

show,PBSoptions-method (PBSoptions-class),

140

show0, 139, 169

showAlert, 126, 170

showArgs, 170, 182

showHelp, 137, 171, 173, 187

showPacks, 171, 172

showRes, 172

showVignettes, 173

sortHistory, 173

Sys.which, 117

tail, 186

talk-class, 174

tcall (tget), 182

testAlpha, 176, 177

194 INDEX

testCol, 134, 142, 176, 177, 178

testLty, 176, 178, 179

testLwd, 176, 178, 178, 179

testPch, 176–178, 179

testWidgets, 180

text-class (talk-class), 174

tget, 131, 182

tprint (tget), 182

tput (tget), 182

unpackList, 138, 152, 183, 189

updateGUI, 184

vbdata, 185, 185

vbpars, 185

view, 186, 187

viewCode, 137, 171, 187

widgets (testWidgets), 180

writeList, 138, 152, 183, 188

writePBSoptions, 136, 151, 153, 163, 189

xmlGetAttr, 176

