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1 Overview:

RJaCGH is an R package designed for the analysis of microarray CGH data. In
this type of problems we have a collection of log-ratios that measure the ratio
between the copy number of sequences of nucleotides between a test sample and
a control sample for a number of probes. The main goal of the analysis is to
detect which of those probes have a normal copy number, a loss copy number
or a gained copy number.
This package basically fits a Non Homogeneous Hidden Markov Model through
Reversible Jump Markov Chain Montecarlo. That is, we assume that there are
k different groups (hidden states; different copy number ratios) within the data.
Each of those groups follows a normal distribution with parameters µk and σ2

k
.

The movements between those hidden states follow a Markov process whose
transition probabilities depend on the distance between probes. The estimation
of the parameters is made through a Markov Chain Monte Carlo (MCMC)
algorithm. These techniques are based on the exploration of the parameter
space through sampling. Instead of fitting several models and selecting just
one, RJaCGH uses reversible jump [3] to jump between models and get the
posterior probability for each of them. We can make birth/death moves (create
or delete a hidden state) and split/combine moves (separate or merge existing
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states). The inferences are then based on all models visited through Bayesian
Model Averaging.

The package estimates the probability for every probe to have a normal
copy number, gained or lost and computes probabilistic common regions. This
vignette shows some of the package features with small examples. The references
give full details about the statistical model and the parameterization it uses, plus
further details of the algorithm; see particularly [4].

Please note that our methods are computer intensive, so they may take a
long time on a slow machine.

2 Data:

We use for the examples the public data set of Snijders et al. [6] with 15 human
cells with known karyotypes, as found in the objects from package GLAD 1.6.0.
[7].

3 Examples:

3.1 Same model for the whole genome

We will analyze data cell gm13330 from [6]. First, we take out the missing
values, because RJaCGH does not handle NA’s. We are going to use the log-2
ratios, the positions and the chromosome number.

> set.seed(1)

> library(RJaCGH)

> data(snijders)

> y <- gm13330$LogRatio[!is.na(gm13330$LogRatio)]

> Pos <- gm13330$PosBase[!is.na(gm13330$LogRatio)]

> Chrom <- gm13330$Chromosome[!is.na(gm13330$LogRatio)]

As the positions of the probes are not ordered within each chromosome, first
we have to do so:

> id <- order(Chrom, Pos)

> y <- y[id]

> Pos <- Pos[id]

> Chrom <- Chrom[id]

Now, we are going to fit the model through the function RJaCGH(). But
first we must decide if we want to fit a model with equal variances for all the
hidden states or with different variances. This can be set with the argument
var.equal=TRUE (default) or var.equal=FALSE in the call to RJaCGH(). Be-
sides, we can fit the same model to the whole genome or a different one for each
chromosome. We can set this option with model="genome" or model="Chrom"

in the call to RJaCGH(). In this section we will fit the same model for the whole
genome.

We can also set the maximum number of hidden states that we want to fit.
For example, we will fit HMMs with a maximum of four hidden states, so we’ll
set the parameter k.max=4.
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Besides, we can set, if we wish to, the jumping parameters of the MCMC. They
control the exploration of the probability distribution of the model via setting
the jumps we make from a particular value of the parameters to a new one.
There are two types of them:

� The standard deviation of the candidates of the jumps of the chain within
a given model: sigma.tau.mu, sigma.tau.sigma.2 and sigma.tau.beta.
They are vectors of length k.max. They are related to the dispersion within
models.

� The standard deviation of the jumps between models in split/combine
moves: tau.split.mu. it is a scalar and is related to the dispersion be-
tween models.

We must remember that these are not parameters of the model, in the sense that
different values produce different models. They are parameters of the algorithm
that speed up or assure convergence.

We have to enclose them in a list. By some inspection of the data and/or
trial/error we set them to the following values:

> jump.parameters <- list(sigma.tau.mu = rep(0.01, 4), sigma.tau.sigma.2 = rep(0.05,

+ 4), sigma.tau.beta = rep(0.1, 4), tau.split.mu = 0.1)

The arguments burnin and TOT control the number of iterations of the al-
gorithm (the burn-in and the after burn-in).

NC and deltaT are arguments related to the number of coupled parallel
chains; they will be explained in the last section.

We can also pass other arguments, such as the starting base and end base of
the probes (Start, End), the distance between probes (Dist), the names of the
probes (probe.names), the maximal distance between probes beyond which we
consider them independent (max.dist)... See the help file for RJaCGH() for full
reference.

> fit <- RJaCGH(y = y, Pos = Pos, Chrom = Chrom, model = "genome",

+ var.equal = TRUE, k.max = 4, burnin = 50000, TOT = 10000,

+ jump.parameters = jump.parameters, NC = 2, deltaT = 0.5)

Doing Array array1

Starting Reversible Jump

Start burn-in

End burn-in

After the fit (it may take a little while), RJaCGH() returns an object with
several interesting components. For example, there is a list for each array ana-
lyzed:

> names(fit)

[1] "array1" "array.names" "Pos" "Pos.rel"

[5] "Chrom" "Dist.for.model" "call" "temp.dir"

fit[[’array1’]] is another list with the results of the fit of the array named
’array1’. The elements are in an object called fit.k, enclosed in as many sublists
as many models (with different number of hidden states) we have fitted:
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> length(fit[["array1"]]$fit.k)

[1] 4

We can summarize the fit and inspect the results. By default, summary

returns the quantiles of the posterior distributions for the means and variances
and the median of the parameters for the transition probabilities:

> summary.HMM <- summary(fit)

> summary.HMM

Summary for ARRAY array1 :

Distribution of the number of hidden states:

1 2 3 4

0 0 0 1

Model with 4 states:

Distribution of the posterior means of hidden states:

10% 25% 50% 75% 90%

Loss -0.867 -0.854 -0.840 -0.825 -0.813

Normal-1 -0.085 -0.081 -0.078 -0.074 -0.071

Normal-2 0.030 0.032 0.035 0.038 0.040

Gain 0.509 0.517 0.526 0.536 0.543

Distribution of the posterior variances of hidden states:

10% 25% 50% 75% 90%

Loss 0.007 0.007 0.007 0.007 0.008

Normal-1 0.007 0.007 0.007 0.007 0.008

Normal-2 0.007 0.007 0.007 0.007 0.008

Gain 0.007 0.007 0.007 0.007 0.008

Parameters of the transition functions:

Loss Normal-1 Normal-2 Gain

Loss 0.000 2.710 2.830 2.964

Normal-1 6.493 0.000 2.593 7.084

Normal-2 7.854 3.125 0.000 5.847

Gain 4.298 4.278 2.755 0.000

================================================

We can also plot the model with higher posterior probability and the clas-
sification of genes using information from all models visited: that is, through
Bayesian Model Averaging:

> plot(fit, array = "array1", cex = 1.1)
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and the ’red’ to gains. Note that two states have been labeled as ’Normal’.
As statistical states do not always correspond to biological states (for example,
a mixture of two normal distributions -two hidden states- might be needed to
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fit the distribution of the normal copy numbers), RJaCGH does an automatic
labeling giving to each hidden state a probability of beign a state of gain, normal
or loss. It is based on the posterior means and variances of the hidden states
and the arguments normal.reference (the reference value for the mean of the
normal state -no change-) and window (a multiplier of the standard deviation
of the data that sets how much can the distribution of a state of normal copy
number separate from the normal.reference (see help for further details). We
can see the default relabelling:

> round(fit[["array1"]]$fit.k[[4]]$state.labels, 3)

Loss Normal Gain

Loss 1.000 0.000 0.000

Normal-1 0.198 0.798 0.004

Normal-2 0.015 0.896 0.089

Gain 0.000 0.000 1.000

The user can explore different thresholds with (not shown):

> plot(relabelStates(fit, window = 0.25))

> plot(relabelStates(fit, window = 2))

When a good labeling is found, we can update the fit:

> fit <- relabelStates(fit, window = 1.25)

There are other methods to extract more information, as states(), mod-
elAveraging() or smoothMeans(). They will be introduced in the next section.

We can also inspect the exploration of the parameter space in the most
visited model:

> trace.plot(fit, array = "array1")

Called from: trace.plot(fit, array = "array1")
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If we don’t see good mixing we can re-adjust the jumping parameters:

� If the lines are too straight for some parameters, we must reduce its cor-
responding jumping parameters and refit.

� If the lines oscilate too much, we should refit with greater jumping pa-
rameters.

� The parameter that rule the movements amongst states is tau.split.mu,
and the parameters that rule the means, the variances and beta are
sigma.tau.mu, sigma.tau.sigma.2 and sigma.tau.beta.

We can also check the good mixing of the algorithm looking at the proportion
of the different values sampled for µ, σ2 and β: it should not be very low nor
very high; some authors say that it should roughly be around 0.23. We’ll do it
for the model with highest posterior probability:

> maxK <- as.numeric(names(which.max(table(fit[["array1"]]$k))))

> fit[["array1"]]$fit.k[[maxK]]$prob.mu

[1] 0.2019602

> fit[["array1"]]$fit.k[[maxK]]$prob.sigma.2

[1] 0.6247878

> fit[["array1"]]$fit.k[[maxK]]$prob.beta

[1] 0.2677882
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And finally, we can check that the algorithm has made some jumps between
models (birth, death, split and combine movements):

> fit[["array1"]]$prob.b

[1] 3 2

> fit[["array1"]]$prob.d

[1] 4 3

> fit[["array1"]]$prob.s

[1] 5

> fit[["array1"]]$prob.c

[1] 1

Birth and Death are performed with delayed rejection, so for each iteration they
are tried two times and we have two values for them (moves accepted in first
and second attempt). (Note that these numbers include the burn-in iterations,
but the values in trace.plot() do not.)

3.2 A different model for every chromosome

We can also fit a different model for every chromosome with the function
RJaCGH() changing the parameter model to ’Chrom’. We’ll fit a model to other
cell line: 01524. If there is lot of difference in variance between chromosomes ev-
ery chromosome should have its own set of jumping parameters, so we shouldn’t
specify them and let RJaCGH do a simple search to find ’good’ ones. In this ex-
ample there is no such different variances per chromosomes, but we’ll let the
program choose them as a demonstration:

> y2 <- gm01524$LogRatio[!is.na(gm01524$LogRatio)]

> Pos2 <- gm01524$PosBase[!is.na(gm01524$LogRatio)]

> Chrom2 <- gm01524$Chromosome[!is.na(gm01524$LogRatio)]

> id <- order(Chrom2, Pos2)

> y2 <- y2[id]

> Pos2 <- Pos2[id]

> Chrom2 <- Chrom2[id]

> fit.chrom <- RJaCGH(y = y2, Pos = Pos2, Chrom = Chrom2, model = "Chrom",

+ k.max = 4, burnin = 20000, TOT = 10000, NC = 2, deltaT = 0.5)

Again, the results of the fit are nested lists, one for each array fitted. Inside
there is a list for every chromosome, and every chromosome is an object of the
same class as explained in the former section. However, we can summarize a
given chromosome directly with the summary() function:

> summary(fit.chrom, array = "array1", Chrom = 6)
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Summary for ARRAY array1 :

Distribution of the number of hidden states:

1 2 3 4

0.000 0.995 0.005 0.000

Model with 2 states:

Distribution of the posterior means of hidden states:

10% 25% 50% 75% 90%

Normal -0.009 -0.001 0.008 0.016 0.024

Gain 0.516 0.528 0.542 0.555 0.569

Distribution of the posterior variances of hidden states:

10% 25% 50% 75% 90%

Normal 0.007 0.008 0.009 0.01 0.011

Gain 0.007 0.008 0.009 0.01 0.011

Parameters of the transition functions:

Normal Gain

Normal 0.00 4.244

Gain 2.88 0.000

================================================

We can also see the sequence of hidden states, that is the copy number
status for every probe. We can compute it conditionally to a particular model,
(with the method states) or averaging through every model fit weighted by the
posterior probability of that model (method modelAveraging):

> sequence <- states(fit.chrom)

> sequence.averaged <- modelAveraging(fit.chrom)

We can see the copy number of chromosome 6:

> head(sequence[["array1"]][[6]]$states)

[1] Normal Normal Normal Normal Normal Normal

Levels: Normal Gain

> head(sequence.averaged[["array1"]][[6]]$states)

[1] Normal Normal Normal Normal Normal Normal

Levels: Loss < Normal < Gain

And the probability of every state in that chromosome:

> head(sequence[["array1"]][[6]]$prob.states)

Normal Gain

[1,] 1 0
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[2,] 1 0

[3,] 1 0

[4,] 1 0

[5,] 1 0

[6,] 1 0

> head(sequence.averaged[["array1"]][[6]]$prob.states)

Loss Normal Gain

[1,] 0.002636411 0.9929945 0.004369092

[2,] 0.002636016 0.9929932 0.004370813

[3,] 0.002635523 0.9929915 0.004372964

[4,] 0.002635523 0.9929915 0.004372964

[5,] 0.002635523 0.9929915 0.004372964

[6,] 0.002635523 0.9929915 0.004372964

We can also see the smoothed values for every probe (this method returns a
vector, not a list with as many vectors as chromosomes):

> s.means <- smoothMeans(fit.chrom)

> head(s.means)

[,1]

[1,] -0.0106512737

[2,] -0.0106512737

[3,] -0.0092514418

[4,] 0.0009757245

[5,] -0.0022687141

[6,] 0.0055772497

These methods can be also used on a fit with the same model on the whole
genome, as the one we fit in the last section. Note that we can access directly
a given chromosome usin the array and Chrom arguments.

And we can plot the whole genome or just a chromosome:

> plot(fit.chrom, array="array1")
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> plot(fit.chrom, array="array1", Chrom = 6)
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Finally, we can also see the probabilities of alteration in a graph chromosome
by chromosome:

> genomePlot(fit.chrom)
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P.Loss >= 0.9
0.7 <= P.Loss < 0.9
0.5 <= P.Loss < 0.7
P.Loss < 0.5 or P.Gain < 0.5
0.5 <= P.Gain < 0.7
0.7 <= P.Gain < 0.9
P.Gain >= 0.9

3.3 Fitting several arrays

We can also fit at the same time several arrays (if they have the same probes
spotted in the same positions). RJaCGH fits a different model to each of them:

> gm07081LR <- gm07081$LogRatio

> gm10315LR <- gm10315$LogRatio

> gm07408LR <- gm07408$LogRatio

> not.NA <- !is.na(gm07081LR) & !is.na(gm10315LR) & !is.na(gm07408LR)

> gm07081LR <- gm07081LR[not.NA]

> gm10315LR <- gm10315LR[not.NA]

> gm07408LR <- gm07408LR[not.NA]

> Pos3 <- gm07081$PosBase[not.NA]

> Chrom3 <- gm07081$Chromosome[not.NA]

> id <- order(Chrom3, Pos3)

> Pos3 <- Pos3[id]

> Chrom3 <- Chrom3[id]

> fit.arrays <- RJaCGH(y = cbind(gm07081LR = gm07081LR[id], gm10315LR = gm10315LR[id],

+ gm07408LR = gm07408LR[id]), Pos = Pos3, Chrom = Chrom3, model = "genome",

+ k.max = 4, burnin = 20000, TOT = 10000, NC = 2, deltaT = 0.5)
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The returned object follows the same structure (nested lists); now every
object is a list with the result of the fit to each array:

> summary(fit.arrays)

Summary for ARRAY gm07081LR :

Distribution of the number of hidden states:

1 2 3 4

0 0 0 1

Model with 4 states:

Distribution of the posterior means of hidden states:

10% 25% 50% 75% 90%

Normal-1 -0.104 -0.094 -0.084 -0.066 -0.054

Normal-2 -0.001 0.000 0.001 0.003 0.004

Gain-1 0.166 0.192 0.210 0.235 0.259

Gain-2 0.480 0.488 0.492 0.500 0.505

Distribution of the posterior variances of hidden states:

10% 25% 50% 75% 90%

Normal-1 0.004 0.004 0.004 0.005 0.005

Normal-2 0.004 0.004 0.004 0.005 0.005

Gain-1 0.004 0.004 0.004 0.005 0.005

Gain-2 0.004 0.004 0.004 0.005 0.005

Parameters of the transition functions:

Normal-1 Normal-2 Gain-1 Gain-2

Normal-1 0.000 1.042 3.322 4.545

Normal-2 4.404 0.000 5.236 6.540

Gain-1 0.243 0.119 0.000 0.269

Gain-2 3.031 2.917 1.874 0.000

================================================

Summary for ARRAY gm10315LR :

Distribution of the number of hidden states:

1 2 3 4

0.000 0.000 0.015 0.985

Model with 4 states:

Distribution of the posterior means of hidden states:

10% 25% 50% 75% 90%

Normal-1 -0.138 -0.131 -0.112 -0.098 -0.085

Normal-2 -0.028 -0.025 -0.019 -0.015 -0.012
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Normal-3 0.039 0.042 0.047 0.050 0.052

Gain 0.584 0.588 0.594 0.602 0.608

Distribution of the posterior variances of hidden states:

10% 25% 50% 75% 90%

Normal-1 0.005 0.006 0.006 0.006 0.006

Normal-2 0.005 0.006 0.006 0.006 0.006

Normal-3 0.005 0.006 0.006 0.006 0.006

Gain 0.005 0.006 0.006 0.006 0.006

Parameters of the transition functions:

Normal-1 Normal-2 Normal-3 Gain

Normal-1 0.000 0.817 3.053 4.250

Normal-2 3.847 0.000 3.405 7.865

Normal-3 4.219 3.094 0.000 6.148

Gain 4.184 4.409 4.207 0.000

================================================

Summary for ARRAY gm07408LR :

Distribution of the number of hidden states:

1 2 3 4

0 0 0 1

Model with 4 states:

Distribution of the posterior means of hidden states:

10% 25% 50% 75% 90%

Normal -0.007 -0.006 -0.005 -0.004 -0.003

Gain-1 0.435 0.440 0.447 0.453 0.458

Gain-2 0.580 0.592 0.605 0.624 0.638

Gain-3 0.861 0.885 0.916 0.941 0.970

Distribution of the posterior variances of hidden states:

10% 25% 50% 75% 90%

Normal 0.004 0.004 0.004 0.004 0.004

Gain-1 0.004 0.004 0.004 0.004 0.004

Gain-2 0.004 0.004 0.004 0.004 0.004

Gain-3 0.004 0.004 0.004 0.004 0.004

Parameters of the transition functions:

Normal Gain-1 Gain-2 Gain-3

Normal 0.000 6.126 8.329 8.519

Gain-1 2.719 0.000 2.220 3.453

Gain-2 2.932 1.139 0.000 1.895

Gain-3 1.265 0.296 0.343 0.000

================================================
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> summary(fit.arrays, array = "gm07081LR")

Summary for ARRAY gm07081LR :

Distribution of the number of hidden states:

1 2 3 4

0 0 0 1

Model with 4 states:

Distribution of the posterior means of hidden states:

10% 25% 50% 75% 90%

Normal-1 -0.104 -0.094 -0.084 -0.066 -0.054

Normal-2 -0.001 0.000 0.001 0.003 0.004

Gain-1 0.166 0.192 0.210 0.235 0.259

Gain-2 0.480 0.488 0.492 0.500 0.505

Distribution of the posterior variances of hidden states:

10% 25% 50% 75% 90%

Normal-1 0.004 0.004 0.004 0.005 0.005

Normal-2 0.004 0.004 0.004 0.005 0.005

Gain-1 0.004 0.004 0.004 0.005 0.005

Gain-2 0.004 0.004 0.004 0.005 0.005

Parameters of the transition functions:

Normal-1 Normal-2 Gain-1 Gain-2

Normal-1 0.000 1.042 3.322 4.545

Normal-2 4.404 0.000 5.236 6.540

Gain-1 0.243 0.119 0.000 0.269

Gain-2 3.031 2.917 1.874 0.000

================================================

So we can apply the same methods used in previous sections to the whole
set of arrays, to a given array (or to a given chromosome of a given array if we
fit a different model to every chromosome for each array).

We may want to plot the fit for all the arrays. We can do it in two different
ways:

� Plot for every probe the percentage of arrays which have that probe
marginally altered.

� Plot for every probe the average probability on all arrays.

> plot(fit.arrays, show = "frequency")
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> plot(fit.arrays, show = "average")
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We can also compare the classification of genes with the true states of Sni-
jders:

> seq.states <- modelAveraging(fit.arrays, array = "gm07081LR")[["gm07081LR"]]$states

> table(seq.states, gm07081$Statut[not.NA])
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seq.states Normal Trisomy

Loss 0 0

Normal 1870 1

Gain 19 67

3.4 Probabilistic Common Regions

RJaCGH can also compute probabilistic common regions. Note that these re-
gions are different to other approaches, because they take into account the
precision or variability inherent to the estimation of the true copy number for
every probe on every array considered. There are two different methods (see [5]
for a detailed explanation):

� pREC_A returns regions common to the whole set of arrays with a joint
probability of alteration as high as a given threshold.

� pREC_S returns regions shared by a subset of arrays (of size as high as a
given threshold) with a joint probability within each array as high as a
given threshold.

pREC_A detects regions common for most of the arrays. It has three argu-
ments, p for the minimum probability to call a region altered, alteration for
the type of alteration (’Gain’ or ’Loss’) and array.weights for the weight that
we want to give to each array (by default, it is the same for all of them).

We can find common regions for the three arrays from the last section:

> Regions.Gain <- pREC_A(fit.arrays, p = 0.33, alteration = "Gain")

> Regions.Loss <- pREC_A(fit.arrays, p = 0.33, alteration = "Loss")

> Regions.Gain

Chromosome Start End Probes Prob. Gain

1 2 245000 245000 1 0.688017058868713

2 7 0 0 1 0.341757834396861

3 7 2687 2687 1 0.343287900561349

4 7 3276 6868 8 0.342995745945239

5 7 9696 17181 3 0.343279620031394

6 7 18019 37000 23 0.343129797151064

7 7 38319 38319 1 0.343294937352390

8 7 40773 40773 1 0.343294937352390

9 7 42488 57971 22 0.340692548873315

10 11 13646 13646 1 0.365345472557761

11 11 76848 76848 1 0.353999247244374

12 11 128440 128440 1 0.362664641690394

13 12 0 0 1 0.663434976126789

14 12 94805 94805 1 0.656262842029275

15 15 25615 25615 1 0.360068851345038

16 17 48088 48088 1 0.377848372070255

17 17 56276 56313 2 0.348429138923435

18 20 0 73000 85 0.34216409478714

19 22 3258 33000 14 0.338518418697333

20 23 4000 149342 45 0.671864575809702
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> Regions.Loss

[1] "No common regions found"

If we want to make this results into a data.frame we would do:

> RG <- as.data.frame(print(Regions.Gain))

pREC_S is useful to detect subset of arrays that share common alterations.
It has the arguments p and alteration but also a freq.array that sets the
minimum number of arrays that can form a region.

> Regions <- pREC_S(fit.arrays, p = 0.75, alteration = "Gain",

+ freq.array = 2)

> Regions

Common regions of Gain of at least 0.75 probability:

Chromosome Start End Probes Arrays

1 2 245000 245000 1 gm07081LR;gm07408LR

2 12 0 0 1 gm07081LR;gm07408LR

3 12 94805 94805 1 gm07081LR;gm07408LR

4 17 56276 56276 1 gm07081LR;gm07408LR

5 20 70647 70647 1 gm07081LR;gm07408LR

6 22 7172 7172 1 gm07081LR;gm10315LR

7 23 4000 149342 45 gm10315LR;gm07408LR

8 23 30966 30966 1 gm07081LR;gm10315LR;gm07408LR

The result of plotting this object is an image plot that shows for each pair
of arrays the number of alterations shared and their mean lengths. Besides,
a hierarchical clustering based in that measure is performed and the arrays
reordered:

> plot(Regions, cex.axis = 0.6)

$probes

Var2

Var1 gm07081LR gm10315LR gm07408LR

gm07081LR 0 2 6

gm10315LR 2 0 46

gm07408LR 6 46 0

$length

Var2

Var1 gm07081LR gm10315LR gm07408LR

gm07081LR 0 1.000 1.000

gm10315LR 1 0.000 3159.652

gm07408LR 1 3159.652 0.000
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