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1. Methods

Our goal is to compute the probability that a set of related subjects whose DNA

sequence is observed through sequencing or other means (sequenced subjects) share a

rare variant (RV) identical-by-descent given that a RV has been observed at a site in the

sequence. We assume that the variant for which we compute a sharing probability is rare

enough that there exists a single copy of that variant among the alleles present in the

nf founders of the pedigree relating the subject for which we want to compute a sharing

probability. In the basic setting, all founders are unrelated and a single copy of the variant

is present among the founders. In a generalization, we later allow founders to be related,

and two copies of the allele to be introduced in the pedigree by a pair of related founders.

1.1. Computation assuming all founders are unrelated

We define the following random variables and constants:

Ci Number of copies of the RV received by sequenced subject i

Fj Indicator variable that founder j introduces one copy of the RV in the pedigree

Bk Number of copies of the RV in subject k where a line of descent from a founder

branches into two separate lines of descents to a subset of sequenced subjects

Dij Number of generations (meioses) between subject i and his ancestor j

For a set of n sequenced subjects for which the pedigree structure limits to one the

number of copies of the rare variant that they can share, we want to compute the probability
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P [RV shared] = P [C1 = . . . = Cn = 1|C1 + . . .+ Cn ≥ 1] =
P [C1 = . . . = Cn = 1]

P [C1 + . . .+ Cn ≥ 1]
(1)

=

∑nf

j=1 P [C1 = . . . = Cn = 1|Fj]P [Fj]∑nf

j=1 P [C1 + . . .+ Cn ≥ 1|Fj]P [Fj]

where the expression on the second line results from our assumption that there exists a

single copy of that variant among the alleles present in the nf founders. The probabilities

P [Fj] = 1
nf

cancel from the numerator and denominator. For the other terms, we first

derive expressions for the special case where all the sequenced subjects descend from every

founder among their ancestors through independent lines of descent. In that case,

P [C1 = . . . = Cn = 1|Fj] =


∏

i

(
1
2

)Dij =
(
1
2

)Dj if Fj is a common ancestor to the n sequenced subjects

0 otherwise

(2)

and

P [C1 + . . .+ Cn ≥ 1|Fj] = 1− P [C1 = . . . = Cn = 0|Fj] = 1−
∏

i∈d(j)

(
1−

(
1

2

)Dij

)
(3)

where Dj =
∑

iDij and d(j) is the subset of sequenced individuals who descend from

founder j.

The global expression is then

P [RV shared] =

∑nf

j=1

(
1
2

)Dj I(Fj is a common ancestor to the n sequenced subjects)∑nf

j=1

[
1−

∏
i∈d(j)

(
1−

(
1
2

)Dij

)] (4)

We note here that equation 4 covers the general case of pedigrees without inbreeding,

including individuals marrying multiple times and marriage loops. For the common special

case of a pedigree with a founder couple ancestral to all descendants in the pedigree, the
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numerator simplifies and we obtain the following expression:

P [RV shared] =

(
1
2

)Df−1∑nf

j=1

[
1−

∏
i∈d(j)

(
1−

(
1
2

)Dij

)] (5)

where f is any of the two founders forming the ancestral couple.

When the lineages of sequenced individuals ”coalesce” at a branching individual k

below a founder of the pedigree, we can no longer write a general expression like 4, and

recursive computations are required. Without loss of generality, let k be the branching

individual who has sequenced subjects 1, . . . , ik as descendants through independent lines

of descent. We have

P [C1 = . . . = Cn = 1] = P [C1 = . . . = Cik = 1|Bk = 1]P [Bk = Cik+1 = . . . = Cn = 1] (6)

because P [C1 = . . . = Cik = 1|Bk = 0] = 0. The term P [C1 = . . . = Cik = 1|Bk = 1] is

computed from equation 2 replacing Fj by Bk. The term P [Bk = Cik+1 = . . . = Cn = 1] is

computed by reapplying equation 6 recursively with every branching individual.

Also, for a founder above a branching individual in the pedigree, we have

P [C1 = . . . = Cn = 0|Fj] = P [C1 = . . . = Cik = 0|Bk = 1, Fj]P [Bk = 1, Cik+1 = . . . = Cn = 0|Fj]

+P [C1 = . . . = Cik = 0|Bk = 0, Fj]P [Bk = Cik+1 = . . . = Cn = 0|Fj]

= P [C1 = . . . = Cik = 0|Bk = 1]P [Bk = 1, Cik+1 = . . . = Cn = 0|Fj] (7)

+P [Bk = Cik+1 = . . . = Cn = 0|Fj]

The term P [C1 = . . . = Cik = 0|Bk = 1] is computed from the right-hand side of

equation 3 replacing Fj by Bk. The two terms P [Bk = a, Cik+1 = . . . = Cn = 0|Fj], a = 0, 1

require recursive computations. If h is a branching individual who is an ancestor of k and a
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descendant of founder j, then

P [Bk = 1, Cik+1 = . . . = Cn = 0|Fj]

= P [Bk = 1, Cik+1 = . . . = Cih = 0|Bh = 1]P [Bh = 1, Cih+1 = . . . = Cn = 0|Fj]

+P [Bk = 1, Cik+1 = . . . = Cih = 0|Bh = 0]P [Bh = Cih+1 = . . . = Cn = 0|Fj]

=
(
1
2

)Dkh P [Cik+1 = . . . = Cih = 0|Bh = 1]P [Bh = 1, Cih+1 = . . . = Cn = 0|Fj] (8)

and similarly to 8

P [Bk = Cik+1 = . . . = Cn = 0|Fj]

=
(

1−
(
1
2

)Dkh

)
P [Cik+1 = . . . = Cih = 0|Bh = 1]P [Bh = 1, Cih+1 = . . . = Cn = 0|Fj]

+P [Bh = Cih+1 = . . . = Cn = 0|Fj] (9)

where the computation of the term P [Cik+1 = . . . = Cih = 0|Bh = 1] can itself involve other

branching individuals below h.

1.2. Computation allowing for relatedness between founders or inbreeding

loops within a pedigree

We generalize our computation to the setting where founders are related, while still

excluding that the founders are themselves inbred (only their children will be). This

includes the setting where inbreeding loops are known and are included in the pedigree

structure. One can then define a noninbred subpedigree by removing some familial links.

The relatedness between the ”founders” of that subpedigree can be captured by their

kinship coefficient based on the removed links, and the first approximation described below

can then be applied. When familial links between founders are unknown, they sometime

can be estimated from genotype data on these founders. Other times, genotype data is only
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available on the sequenced subjects.

We propose two methods to approximate sharing probabilities between sequenced

subjects in presence of IBD sharing in excess of what is expected based on the pedigree

structure. With the first method, only one founder allele (not necessarily the RV considered

in the computation) can be shared by only one pair of founders. This method gives an

exact sharing probability when only two founders are related, and a good approximation

when a few founders are related. Known founder pair-specific kinship coefficients can be

used. With the second method, up to T alleles can be shared by two pairs of founders, with

T set to 2 or 3 depending on the level of sharing between founders. It requires to assume

that all founders are related to the same extent, i.e. all pairs of founders have the same

kinship coefficient calculated to explain the excess sharing between sequenced subjects. The

method gives a good approximation for more extensive hidden relatedness than the first

method. Note that in this second approximation, we still assume that only two founders

introduce a copy of the RV considered in the computation.

The elements that we need to implement either approach are:

1. The probability that a pair of related founders introduce the RV in the pedigree.

2. The sharing probabilities conditional on the introduction of the RV by two of the

founders.

The two methods to approximate the probability that a pair of related founders

introduce the RV in the pedigree are described below. The formulas for the sharing

probabilities conditional on the introduction of the RV by two of the founders are given in

Appendix .1.
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Once the required elements have been computed, we get an adjusted estimate of

sharing probability with the following formula:

P [RV shared] =

∑nf

j=1 P [C1 = . . . = Cn = 1|FU
j ]P [FU

j ] +
∑

j

∑
k>j P [C1 = . . . = Cn = 1|Fj, Fk]P [Fj, Fk]∑nf

j=1 P [C1 + . . .+ Cn ≥ 1|FU
j ]P [FU

j ] +
∑

j

∑
k>j P [C1 + . . .+ Cn ≥ 1|Fj, Fk]P [Fj, Fk]

(10)

where FU
j is the event that founder j is the only one to introduce the RV in the family.

1.2.1. Method 1

The probability that two related founders, say j and k, introduce the RV in the

pedigree is expressed as follows:

P [Fj, Fk] = P [Allele shared is RV|j&k share allele IBD]P [j&k share allele IBD] (11)

=
1

2nf − 1
2φjk =

2φjk

2nf − 1

where φjk is the kinship coefficient between founders j and k. The first term represents

the probability that the RV is the allele IBD between the two founders among the 2nf − 1

distinct alleles in all founders. The marginal probability that any founder h introduces the

RV needs to be adjusted compared to the unrelated case. In that computation, we make

the simplifying assumption that the probability that 3 or more founders share an allele IBD

is 0 so that the event ”i and j share an allele IBD” means that they are the only ones to

do so. This assumption is true only when a single pair of founders are related. While the

formula allows all pairs of founders to be related, we recommend using this approximation

when only a few of the φjk are non-zero.

P [Fh] =
∑
j

∑
k>j

P [Fh|j&k share allele IBD]P [j&k share allele IBD] (12)
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+P [Fh|no founder pair shares allele IBD]P [no founder pair shares allele IBD]

=
2

2nf − 1

∑
j

∑
k>j

P [j&k share allele IBD] +
1

nf

(
1−

∑
j

∑
k>j

P [j&k share allele IBD]

)

=
4
∑

j

∑
k>j φjk

2nf − 1
+

1

nf

(
1−

∑
j

∑
k>j

2φjk

)

We obtain the probability of FU
j , the event that founder j is the only one to introduce

the RV in the family, as

P [FU
j ] = P [Fj]−

∑
k 6=j

P [Fj, Fk] (13)

If we know which founders j and k are related, then their degree of relatedness is

usually also known, and specifies their kinship coefficient φjk. If it is possible to identify a

subset of founders that are suspected to be related, with the other founders unrelated to

that subset and between themselves, then this method can still be applied, with the kinship

coefficient between the subset of founders suspected to be related estimated as described

in section 1.2.2. If instead familial links between founders are completely unknown, we

generally recommend to apply the second method.

1.2.2. Method 2

For the second method, we assume φjk = φf∀j, k. This is an assumption that

we prefer to make when the relatedness between specific pairs of founders is unknown

and we need to rely on genotye data to estimate it. Even with perfect information

on IBD sharing between subjects, there is considerable variation in the kinship co-

efficient based on IBD sharing estimated for pairs of subjects with the same degree

of relatedness due to variation in the length of genome shared from pair to pair (?),
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and reliable inference can only be obtained for the mean or other central tendency parameter.

Two situations can occur with respect to the genotype data available to estimate

kinship between founders:

1. Polymorphic markers have been genotyped on the pedigree founders, typically a

genomewide SNP array. Then φjk can be estimated for each founder pair j and k,

and a global estimate φ̂f obtained by averaging the φ̂jk over all founder pairs from the

same population.

2. Genotype data is only available on the sequenced subjects (either from the sequencing

data itself of from other genotyping). The common φf is estimated based on the

estimated kinship coefficients between sequenced subjects and the relationship

between the sequenced subjects and all founders.

φi1i2 = φf
∑
j

∑
k>j

[(
1

2

)Di1j
+Di2k

I(j&k not mating) +

(
1

2

)Di1j
+Di2k

−1

I(j&k mating)

]
+ φp

i1i2

= φfκi1i2 + φp
i1i2

(14)

An estimate of φf is then obtained for every pair i1, i2 as

φ̂f
i1,i2

=
(φ̂i1i2 − φ

p
i1i2

)

κi1i2
(15)

These pair-specific estimates can then be averaged over all pairs of sequenced subjects

from the same population to obtain a global φ̂f .

This second method of approximation relates the estimated mean kinship φ̂f to the

distribution of the number of alleles distinct by descent in the founders. Then, P [Fj, Fk]
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and P [Fj] are derived from that distribution. The rest of this sub-subsection explains in

detail how to compute the approximate values of these quantities.

The number of alleles A distinct by descent in the founders can take values 1, . . . , 2nf .

We will assume only the values 2nf − T, . . . , 2nf have nonzero probability. For the sake of

simplicity, we will present the case where T = 2. We parameterize the probabilities P [A] to

be proportional to

2nf − 2 2nf − 1 2nf

1
2
θ2 θ 1

(16)

inspired from a truncated Poisson distribution. The expected kinship coefficient among the

nf founders is then

E[Φ] =
θφ̄2nf−1 + 1

2
θ2φ̄2nf−2

1 + θ + 1
2
θ2

(17)

where φ̄a is the mean kinship coefficient among the nf founders when there are a alleles

distinct by descent. Assuming no inbreeding among the founders, we show in Appendix ??

that:

φ̄a =
1

2(nf − 1)
P [Any founder shares an allele IBD with 2 other founders]

+
1

4(nf − 1)
P [Any founder shares an allele IBD with 1 other founder]

=
1

2(nf − 1)

2nf − a
nf

2nf − a− 1

nf − 1
(18)

+
1

4(nf − 1)

2(a− nf )(4nf − 2a)

2(a− nf )(4nf − 2a) + (a− nf )(2(a− nf )− 1) + (4nf − 2a)(2nf − a− 1)

Equating E[Φ] = φ̂f , we solve for θ:
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θ̂ =
−(φ̂f − φ̄2nf−1)−

√
(φ̂f − φ̄2nf−1)

2 − 2(φ̂f − φ̄2nf−2)φ̂
f

φ̂f − φ̄2nf−2
(19)

We then need P [Fj, Fk|A = a]:

P [Fj, Fk|A = a] = P [Allele shared is RV|j&k share allele IBD, A = a]P [j&k share allele IBD|A = a]

=
1

a
2φ̄a (20)

Finally, P [Fj, Fk] is obtained as

P [Fj, Fk] =

2nf∑
a=2nf−2

P [Fj, Fk|A = a]P [A = a]

=

(
2φ̄2nf−2

1
2
θ2

2nf − 2
+

2φ̄2nf−1θ

2nf − 1

)
1

1 + θ + 1
2
θ2

=

(
φ̄2nf−2θ

2

2nf − 2
+

2φ̄2nf−1θ

2nf − 1

)
1

1 + θ + 1
2
θ2

(21)

The marginal probability that any founder j introduces the RV is

P [Fj] =

2nf∑
a=2nf−2

P [Fj|A = a]P [A = a]

=

(
θ2

2nf − 2
+

2θ

2nf − 1
+

1

nf

)
1

1 + θ + 1
2
θ2

(22)

As with method 1, the probability of FU
j , the event that founder j is the only one to

introduce the RV in the family, is obtained using equation 13.

When φ̂f is moderately high, say greater than φ2nf−1, one should allow up to three

alleles to be shared, i.e. set T = 3 and give the event A = 2nf − 3 a nonzero probability
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equal to 1
6
θ3. The estimation of θ then requires solving a cubic polynomial, but the other

formulas generalize easily.

1.3. Validation of the approximation of the sharing probabilities

We simulated small populations from which we sampled founders of a pedigree to

validate the quality of the approximation of the sharing probabilities.

1.3.1. Simulated populations

.1. Sharing probabilities conditional on the introduction of the RV by two of

the founders

We need to introduce an additional type of subjects, the descendants that are common

to the two founders introducing the RV, and who can therefore receive two copies of the

variant. We note the number of copies of the RV in such a subject h by Th.

As before, we begin by the expressions for the special case where all the sequenced

subjects descend from every founder among their ancestors through independent lines of

descent. With two founders introducing the RV, we further need to distinguish four events.

.1.1. The lines of descent to every sequenced subject are common to the two founders

introducing the variant

This implies that the two founders introducing the RV are mates and their descendants

in common are their children. With the assumption of independent lines of descent, the n

sequenced individuals descend from n children of the founders and
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P [C1 = . . . = Cn = 1|Fj, Fk] =
n∑

x=0

P [C1 = . . . = Cn = 1|]{i : Ti = 2} = x, ]{i : Ti = 1} = n− x, Fj, Fk]

P []{i : Ti = 2} = x, ]{i : Ti = 1} = n− x|Fj, Fk] (1)

=
n∑

x=0

(
1

2

)∑
{i:Ti=2} Dij−2(1

2

)∑
{i:Ti=1} Dij−1(n

x

)(
1

4

)x(
1

2

)n−x

=
n∑

x=0

(
1

2

)Ds−n−x(
n

x

)(
1

2

)2x(
1

2

)n−x

=

(
1

2

)Ds n∑
x=0

(
n

x

)
=

(
1

2

)Ds−n

where Ds =
∑

iDij and Dij = Dik∀i. This expression applies if all Dij ≥ 2, i.e. the

sequenced subjects are grand-children or more distant descendants of the founders. When

a sequenced subject is a children of the founders, then Ci = Ti. We adapt the formula to

distinguish the nc sequenced subjects who are children of the founders from the others.

P [C1 ≥ 1, . . . , Cnc ≥ 1, Cnc+1 = . . . = Cn = 1|Fj, Fk] = P [C1 ≥ 1, . . . , Cnc ≥ 1|Fj, Fk] (2)

P [Cnc+1 = . . . = Cn = 1|Fj, Fk]

=

(
3

4

)nc
(

1

2

)(Ds−nc)−(n−nc)

=

(
3

4

)nc
(

1

2

)Ds−n

The expression for the probability of not seeing the variant in any sequenced individual

when all Dij ≥ 2 is:

P [C1 = . . . = Cn = 0|Fj, Fk] =
n∑

x=0

n−x∑
y=0

P [C1 = . . . = Cn = 0|]{i : Ti = 2} = x, ]{i : Ti = 1} = y, Fj, Fk]

P []{i : Ti = 2} = x, ]{i : Ti = 1} = y|Fj, Fk] (3)
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=
n∑

x=0

n−x∑
y=0

∏
{i:Ti=2}

(
1−

(
1

2

)Dij−2
) ∏
{i:Ti=1}

(
1−

(
1

2

)Dij−1
)

(
n

x, y, n− x− y

)(
1

4

)x(
1

2

)y (
1

4

)n−x−y

without obvious simplification. The modification for sequenced subjects who are children

of the founders is similar to that for the joint sharing probability, with probability equal to

1
4

of not receiving the variant instead of 3
4

of receiving it.

.1.2. One founder is ancestor of all sequenced subjects and the other is ancestor of only

one subject

We note j the founder who is ancestor of all sequenced subjects and 1 the sequenced

subject descendant of the two founders j and k. There is only one child of founder k who

can receive two copies of the variant (possibly subject 1 himself) and we note that child h.

The number of copies he received is noted T.

P [C1 = . . . = Cn = 1|Fj, Fk] = P [C1 = . . . = Cn = 1|T = 2, Fj, Fk]P [T = 2|Fj, Fk] (4)

+P [C1 = . . . = Cn = 1|T = 1, Fj, Fk]P [T = 1|Fj, Fk]

=

(
1

2

)D1h−1+
∑n

i=2 Dij
(

1

2

)Dhj 1

2

+

(
1

2

)D1h+
∑n

i=2 Dij

[(
1

2

)Dhj 1

2
+

(
1−

(
1

2

)Dhj

)
1

2

]

=

(
1

2

)D1h+
∑n

i=2 Dij

[(
1

2

)Dhj

+
1

2

]

This expression applies if D1h ≥ 1, i.e. subject 1 is not h himself, he or she is a

grand-child or more distant descendant of the founder k. When subject 1 is a child of

founder k, the expression becomes:
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P [C1 ≥ 1, C2 = . . . = Cn = 1|Fj, Fk] = P [C1 = 2, C2 = . . . = Cn = 1|Fj, Fk] (5)

+P [C1 = . . . = Cn = 1|Fj, Fk]

=

(
1

2

)Ds

1

2
+

(
1

2

)∑n
i=2 Dij 1

2

=

(
1

2

)Ds+1 [
1 + 2D1j

]
The expression for the probability of not seeing the variant in any sequenced subject

when Dih ≥ 1 is:

P [C1 = . . . = Cn = 0|Fj, Fk] =
n∏

i=1

P [Ci = 0|Fj, Fk] (6)

=


P [C1 = 0|T = 2, Fj, Fk]P [T = 2|Fj, Fk]

+P [C1 = 0|T = 1, Fj, Fk]P [T = 1|Fj, Fk]

+P [C1 = 0|T = 0, Fj, Fk]P [T = 0|Fj, Fk]


n∏

i=2

P [Ci = 0|Fj]

=


(

1−
(
1
2

)D1h−1
) (

1
2

)Dhj 1
2

+
(

1−
(
1
2

)D1h

)
1
2

+
(

1−
(
1
2

)Dhj

)
1
2


n∏

i=2

(
1−

(
1

2

)Dij

)

The same probability when subject 1 is a child of founder k is

P [C1 = . . . = Cn = 0|Fj, Fk] =
n∏

i=1

P [Ci = 0|Fj, Fk] =
1

2

n∏
i=1

(
1−

(
1

2

)Dij

)
(7)

.1.3. Each founder is ancestor of his own independent sequenced subject

We assume that founder j is ancestor of subject 1 and founder k is ancestor of subject

2. If there are n > 2 sequenced subjects, then P [C1 = . . . = Cn = 1|Fj, Fk] = 0. If n = 2,

then
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P [C1 = C2 = 1|Fj, Fk] = P [C1 = 1|Fj]P [C2 = 1|Fk] =

(
1

2

)D1j+D2k

(8)

The expression for the probability of not seeing the variant in any sequenced subject is

P [C1 = . . . = Cn = 0|Fj, Fk] = P [C1 = 0|Fj]P [C2 = 0|Fk] (9)

=

(
1−

(
1

2

)D1j

)(
1−

(
1

2

)D2k

)


