
Appendix to Time Series Database
Interface (TSdbi) Guide and Illustrations

Paul D. Gilbert
April 29, 2015

Contents

1 Appendix A: Connection Specific Details 1
1.1 TSMySQL Connection Details 1
1.2 TSPostgreSQL Connection Details 2
1.3 TSSQLite Connection Details . 3
1.4 TSodbc Connection Details . 3

1.4.1 Example ODBC configuration file 4
1.5 TSOracle Connection Details . 5
1.6 TSsdmx Connection Details . 6
1.7 TSjson Connection Details . 6
1.8 TSfame Connection Details . 7

2 Appendix B: Underlying SQL Database Structure and Loading
Data 7

3 Appendix C: Examples Using DBI and direct SQL Queries 11

4 Appendix D: TSjson README regarding Python details 12

1 Appendix A: Connection Specific Details

This appendix provides details of the different connections which are specific
to individual packages and backend databases. In order to make the examples
complete, for the SQL versions, test databases are first created with the tables
expected by the TS* packages. Note that this is done with a dbConnect connec-
tion rather than a TSconnect connection, because TSconnect expects the tables
to exist already.

WARNING: running these example will overwrite tables in the“test”database
on the server.

The database setup might typically be done by an administrator, rather
than by an end user. Here it is done using a function createTSdbTables in
the TSsql package. The instructions for building the database tables can be
seen by examining that function. The instruction could be used to build the
database using database utilites rather than R, which might be the way a system
administrator would build the database.

In many cases there are two or more ways to pass information like the user-
name, password, and server or host. One mechanism is that this information
is specified in a configuration file in the user’s home directory. The database
driver then reads this information and it is not part of the user’s R session. (Of-
ten this is considered the most secure way.) Another way is that environment
variables are set, and the database driver uses these. Again, this is not part of
the user’s R session. Still another way is that the user passes this information
in the call to TSconnect in their R session. In this case the character strings are
visible in the R session, and possibly recorded in the user’s R scripts, thus this is
typically not considered to be very secure. A modification, which is only a little
bit better, is for the user’s R scripts to read the information from environment
variables using, for example:

> user <- Sys.getenv("MYSQL_USER")

1.1 TSMySQL Connection Details

The MySQL user, password, and hostname should be set in MySQL client con-
figuration file (.my.cnf) in the user’s home directory before starting R. Alter-
natively, this information can be set with environment variables MYSQL USER,
MYSQL PASSWD and MYSQL HOST. (An environment variable MYSQL DATABASE
can also be set, but“test” is specified below.) Below the configuration file is used.

The next small section of code uses dbConnect to set up database tables that
expected by TSconnect.

> setup <- RMySQL::dbConnect(RMySQL::MySQL(), dbname="test")

> TSsql::removeTSdbTables(setup, yesIknowWhatIamDoing=TRUE)

> TSsql::createTSdbTables(setup, index=FALSE)

> DBI::dbDisconnect(setup)

Now a TSdbi connection to the database is established.

1

> library("TSMySQL")

> con <- TSconnect("MySQL", dbname="test")

The alternative to pass the user/password information in the arguments to
the connection function would be:

> con <- TSconnect("MySQL", dbname="test",

username=user, password=passwd, host=host)

This may be cumbersome to change, and is generally considered to be less
secure.

While it may not be necessary to detach packages, the following prevents
warnings later about objects being masked:

> detach("package:TSMySQL", unload=TRUE)

> unloadNamespace("RMySQL")

1.2 TSPostgreSQL Connection Details

The PostgreSQL user, and password, can be set in PostgreSQL configuration file
(.pgpass in Linux) in the user’s home directory before starting R. The Postgress
documentation suggests that it should be possible to get the host from the .pg-
pass file too, but I have not been able to make that work. The PostgreSQL alter-
native to the configuration file is to use environment variables PGDATABASE,
PGHOST, PGPORT, and PGUSER. This package supports another alterna-
tively to set this information with environment variables POSTGRES USER,
POSTGRES PASSWD and POSTGRES HOST, which are read in the R code.
(An environment variable POSTGRES DATABASE can also be set, but “test”
is specified below.) Below, the environment variable POSTGRES HOST is used
to determine the host server, but the .pgpass file is used for the user and pass-
word information.

> host <- Sys.getenv("POSTGRES_HOST")

The next small section of code uses dbConnect to set up database tables that
expected by TSconnect.

> setup <- RPostgreSQL::dbConnect(RPostgreSQL:::PostgreSQL(), dbname="test")

> TSsql::removeTSdbTables(setup, yesIknowWhatIamDoing=TRUE)

> TSsql::createTSdbTables(setup, index=FALSE)

> DBI::dbListTables(setup)

> DBI::dbDisconnect(setup)

Now a TSdbi connection to the database is established.

> library("TSPostgreSQL")

> con <- TSconnect("PostgreSQL", dbname="test", host=host)

Another alternative is to pass the user/password information in the argu-
ments to the connection function:

2

> con <- TSconnect("PostgreSQL", dbname="test",

user=user, password=passwd, host=host)

This is may be cumbersome to change, and is generally considered to be less
secure.

While it may not be necessary to detach packages, the following prevents
warnings later about objects being masked:

> detach("package:TSPostgreSQL")

1.3 TSSQLite Connection Details

In SQLite there does not seem to be any need to set user or password informa-
tion, and examples here all use the localhost.

Now setup database tables that are used by TSdbi using a dbConnect con-
nection, after which a TSconnect connection can be used:

> setup <- RSQLite::dbConnect(RSQLite::SQLite(), dbname="test")

> TSsql::removeTSdbTables(setup, yesIknowWhatIamDoing=TRUE)

> TSsql::createTSdbTables(setup, index=FALSE)

> DBI::dbListTables(setup)

> DBI::dbDisconnect(setup)

Now a TSdbi connection to the database is established.

> library("TSSQLite")

> con <- TSconnect("SQLite", dbname="test")

While it may not be necessary to detach packages, the following prevents
warnings later about objects being masked:

> detach("package:TSSQLite")

1.4 TSodbc Connection Details

The ODBC user, password, hostname, etc, should be set in ODBC client config-
uration file in the user’s home directory (.odbc.ini in Linux) before starting R.
An example of this file is provided below. It will also be necessary to have the
appropriate driver installed on the system (Postgresql in the example below).
Alternatively, it should be possible to set some of the information with environ-
ment variables ODBC USER, ODBC PASSWD and ODBC DATABASE. How-
ever, the variable ODBC HOST does not seem to work for passing the ODBC
connection, so a properly setup ODBC configuration file is needed. Because of
this, the environment variable mechanism is not actively tested in TSodbc and
the user, passwd, and host settings should preferably be done in the configura-
tion file.

A one time setup of the database tables that are used by TSdbi needs to be
done using a odbcConnect connection, after which a TSconnect connection can
be used:

3

> library("TSodbc")

> library("RODBC")

> con <- RODBC::odbcConnect(dsn="test")

> if(con == -1) stop("error establishing ODBC connection.")

> TSsql::removeTSdbTables(con, yesIknowWhatIamDoing=TRUE, ToLower=TRUE)

> TSsql::createTSdbTables(con)

> RODBC::odbcClose(channel=con)

Now a TSconnect connection to the database can be established.

> library("TSodbc")

> con <- TSconnect("odbc", dbname="test")

Another alternative is to pass the user/password information in the argu-
ments to the connection function:

> con <- TSconnect("odbc", dbname="test", uid=user, pwd=passwd)

This is may be cumbersome to change, and is generally considered to be less
secure.

While it may not be necessary to detach packages, the following prevents
warnings later about objects being masked:

> detach("package:TSodbc")

1.4.1 Example ODBC configuration file

Following is an example ODBC configuration file I use in Linux (so the file is in
my home directory and called “.odbc.ini”) to connect to a remote PostgreSQL
server:

[test]

Description = test DB (Postgresql)

Driver = Postgresql

Trace = No

TraceFile = /tmp/test_odbc.log

Database = test

Servername = some.host

UserName = paul

Password = mySecret

Port = 5432

Protocol = 6.4

ReadOnly = No

RowVersioning = No

ShowSystemTables = No

ShowOidColumn = No

FakeOidIndex = No

ConnSettings =

4

[ets]

Description = ets DB (Postgresql)

Driver = Postgresql

Trace = No

TraceFile = /tmp/test_odbc.log

Database = ets

Servername = some.host

UserName = paul

Password = mySecret

Port = 5432

Protocol = 6.4

ReadOnly = No

RowVersioning = No

ShowSystemTables = No

ShowOidColumn = No

FakeOidIndex = No

ConnSettings =

The above depends on the driver tag “Postgresql” being defined in the file
/etc/odbcinst.ini, to give the actual driver file location. That file might have
something like

[PostgreSQL]

Description = PostgreSQL ODBC driver (Unicode version)

Driver = /usr/lib/x86_64-linux-gnu/odbc/psqlodbcw.so

Setup = /usr/lib/x86_64-linux-gnu/odbc/libodbcpsqlS.so

Debug = 0

CommLog = 1

UsageCount = 1

1.5 TSOracle Connection Details

This package is available on R-forge, but is not being tested, because I do not
currently have a server to test it. The code in this section of the vignette is not
being run. Please contact the package maintainer (Paul Gilbert) if you have an
Oracle server and are willing to test the package.

The Oracle user, password, and hostname should be set in Oracle client
configuration file (tnsnames.ora) before starting R.

The next small section of code uses dbConnect to set up database tables that
expected by TSconnect.

> setup <- ROracle::dbConnect(ROracle::Oracle(), dbname="test")

> TSsql::removeTSdbTables(setup, yesIknowWhatIamDoing=TRUE)

> TSsql::createTSdbTables(setup, index=FALSE)

5

> DBI::dbListTables(setup)

> DBI::dbDisconnect(setup)

Now a TSdbi connection to the database is established.

> library("TSOracle")

> con <- TSconnect("Oracle", dbname="test")

While it may not be necessary to detach packages, the following prevents
warnings later about objects being masked:

> detach("package:TSOracle")

1.6 TSsdmx Connection Details

Package TSsdmx is a wrapper for RJSDMX. Additional information about
RJSDMX and the underlying java code is available at https://github.com/

amattioc/SDMX/wiki/.
When the TSsdmx method TSconnect is first used the underlying code reads

a configuration file that sets, among other things, the amount of printout done
during retrieval. The default is useful for debugging but will be more than
typically expected in an R session. A system wide default location for this
file can be set. A user’s default will be found in the users home directory
(/.SdmxClient in Linux). More details on this file can be found at https:

//github.com/amattioc/SDMX/wiki/Configuration. R users will probably
want to specify

SDMX.level = OFF

java.util.logging.ConsoleHandler.level = OFF

to suppress most printed output. Otherwise, R programs that use try() will
not suppress printed error messages as they should. With the levels set OFF,
the error and warning messages are still returned to the R program to handle
appropriately.

1.7 TSjson Connection Details

The TSjson method TSconnect can establish a connection to a proxy server.
(See the main text for directly connecting to the web data source.)

> library("TSjson")

> con <- TSconnect("TSjson", dbname="proxy-cansim")

The dbname specifies the proxy server, for which credentials will be needed.
The user, password, and host, can be specified as arguments. If specified as
NULL (the default) then they will be determined by reading a file /.TSjson.cfg
which should have a line with four fields:

[proxy-cansim] user password host

6

https://github.com/amattioc/SDMX/wiki/
https://github.com/amattioc/SDMX/wiki/
https://github.com/amattioc/SDMX/wiki/Configuration
https://github.com/amattioc/SDMX/wiki/Configuration

The first field should match the dbname specification. Currently only a single
line is supported, starting with ”[proxy-cansim]”, but the format is intended for
extension to support proxies to different web databases.

If the file does not exist then environment variables ”TSJSONUSER”, ”TSJ-
SONPASSWORD”, and ”TSJSONHOST” will be used.

> detach("package:TSjson")

1.8 TSfame Connection Details

I no longer have access to Fame so package TSfame is no longer being extensively
tested. (It has previously worked.) The code in this section of the vignette is
not being run. Please contact the package maintainer (Paul Gilbert) if you have
Fame and are willing to test the package.

Beware that the package fame may be installed but not functional because
the Fame HLI code is not available. A warning will be issued in this case.

Two variants of the Fame connect are available. The first requires a Fame
database available on the local system:

> con <- TSconnect("fame", dbname="testFame.db")

The second requires a Fame server:

> con <- TSconnect("fame", dbname="ets /path/to/etsmfacansim.db", "read")

where the characters before the space in the dbname string indicate the network
name of the server, and the path after the string indicates where the server
should find the database.

While it may not be necessary to detach packages, the following prevents
warnings later about objects being masked:

> detach("package:TSfame")

2 Appendix B: Underlying SQL Database Struc-
ture and Loading Data

More detailed description of the instructions for building the database tables
is given in the vignette for the TSdbi package. Those instruction show how to
build the database using database utilites rather than R, which might be the
way a system administrator would build the database.

The database tables are shown in the Table below. The Meta table is used for
storing meta data about series, such as a description and longer documentation,
and also includes an indication of what table the series data is stored in. To
retrieve series it is not necessary to know which table the series is in, since this
can be found on the Meta table. Putting data on the database may require
specifying the table, if it cannot be determined from the R representation of the
series.

7

Table 1: Data Tables

Table Contents
Meta meta data and index to series data tables
A annual data
Q quarterly data
M monthly data
S semiannual data
W weekly data
D daily data
B business data
U minutely data
I irregular data with a date
T irregular data with a date and time

In addition, there will be tables ”vintages” and ”panels” if those features are
used.

The following is done with dbConnect from package DBI in place of a TScon-
nect, since they are direct SQL queries and do not use the TSdbi methods.

The structure reported reflects the setup that was done previously. These
queries are Mysql specific but below is a generic SQL way to do this.

> library("RMySQL")

> con <- dbConnect(MySQL(), dbname="test")

> dbListTables(con)

[1] "A" "B" "D" "I" "M" "Meta" "Q" "S" "T" "U"

[11] "W"

> dbGetQuery(con, "show tables;")

Tables_in_test

1 A

2 B

3 D

4 I

5 M

6 Meta

7 Q

8 S

9 T

10 U

11 W

> dbGetQuery(con, "describe A;")

8

Field Type Null Key Default Extra

1 id varchar(40) YES <NA>

2 year int(11) YES <NA>

3 v double YES <NA>

> dbGetQuery(con, "describe B;")

Field Type Null Key Default Extra

1 id varchar(40) YES <NA>

2 date date YES <NA>

3 period int(11) YES <NA>

4 v double YES <NA>

> dbGetQuery(con, "describe D;")

Field Type Null Key Default Extra

1 id varchar(40) YES <NA>

2 date date YES <NA>

3 period int(11) YES <NA>

4 v double YES <NA>

> dbGetQuery(con, "describe M;")

Field Type Null Key Default Extra

1 id varchar(40) YES <NA>

2 year int(11) YES <NA>

3 period int(11) YES <NA>

4 v double YES <NA>

> dbGetQuery(con, "describe Meta;")

Field Type Null Key Default Extra

1 id varchar(40) NO PRI <NA>

2 tbl char(1) YES MUL <NA>

3 refperiod varchar(10) YES <NA>

4 description text YES <NA>

5 documentation text YES <NA>

> dbGetQuery(con, "describe U;")

Field Type Null Key Default Extra

1 id varchar(40) YES <NA>

2 date timestamp NO CURRENT_TIMESTAMP on update CURRENT_TIMESTAMP

3 tz varchar(4) YES <NA>

4 period int(11) YES <NA>

5 v double YES <NA>

> dbGetQuery(con, "describe Q;")

9

Field Type Null Key Default Extra

1 id varchar(40) YES <NA>

2 year int(11) YES <NA>

3 period int(11) YES <NA>

4 v double YES <NA>

> dbGetQuery(con, "describe S;")

Field Type Null Key Default Extra

1 id varchar(40) YES <NA>

2 year int(11) YES <NA>

3 period int(11) YES <NA>

4 v double YES <NA>

> dbGetQuery(con, "describe W;")

Field Type Null Key Default Extra

1 id varchar(40) YES <NA>

2 date date YES <NA>

3 period int(11) YES <NA>

4 v double YES <NA>

If schema queries are supported then table information can be obtained in a
(almost) generic SQL way. On some systems this will fail because users do not
have read priveleges on the INFORMATION SCHEMA table. This does not
seem to be an issue in SQLite, but SQLite schema queries are not the same as
for other SQL engines.

> dbGetQuery(con, paste(

"SELECT COLUMN_NAME FROM INFORMATION_SCHEMA.Columns ",

" WHERE TABLE_SCHEMA='test' AND table_name='A' ;"))

COLUMN_NAME

1 id

2 year

3 v

> dbGetQuery(con, paste(

"SELECT COLUMN_NAME, COLUMN_DEFAULT, COLLATION_NAME, DATA_TYPE,",

"CHARACTER_SET_NAME, CHARACTER_MAXIMUM_LENGTH, NUMERIC_PRECISION",

"FROM INFORMATION_SCHEMA.Columns WHERE TABLE_SCHEMA='test' AND table_name='A' ;"))

COLUMN_NAME COLUMN_DEFAULT COLLATION_NAME DATA_TYPE CHARACTER_SET_NAME

1 id <NA> latin1_swedish_ci varchar latin1

2 year <NA> <NA> int <NA>

3 v <NA> <NA> double <NA>

CHARACTER_MAXIMUM_LENGTH NUMERIC_PRECISION

1 40 NA

2 NA 10

3 NA 22

10

> dbGetQuery(con, paste(

"SELECT COLUMN_NAME, DATA_TYPE, CHARACTER_MAXIMUM_LENGTH, NUMERIC_PRECISION",

"FROM INFORMATION_SCHEMA.Columns WHERE TABLE_SCHEMA='test' AND table_name='M';"))

COLUMN_NAME DATA_TYPE CHARACTER_MAXIMUM_LENGTH NUMERIC_PRECISION

1 id varchar 40 NA

2 year int NA 10

3 period int NA 10

4 v double NA 22

> dbDisconnect(con)

[1] TRUE

3 Appendix C: Examples Using DBI and direct
SQL Queries

The following examples are queries using the underlying ”DBI” functions. They
should not often be needed to access time series, but may be useful to get at
more detailed information, or formulate special queries. Typically these queries
may be more useful for systems administrators doing database maintenance than
they are for end users.

These queries depend on the underlying structure of the database, which
should be considered “opague” from the perspective of a TSdbi user. That is,
this structure could be changed without affecting the TSdbi functionality, but
the following queries would be affected.

> library("TSMySQL")

> library("DBI")

> con <- TSconnect("MySQL", dbname="test")

> dbGetQuery(con, "SELECT count(*) FROM Meta ;")

count(*)

1 0

> dbGetQuery(con, "SELECT max(year) FROM A ;")

max(year)

1 NA

Finally, to disconnect gracefully, one should

> dbDisconnect(con)

11

4 Appendix D: TSjson README regarding Python
details

Package TSjson needs Python 2 and Python modules sys, json, mechanize,

re, csv, and urllib2. The package has been tested with python 2.7.3 on

Ubuntu Linux and Windows XP. There is no obvious reason why it should not

work on other systems. (Please advise the package maintainer, Paul

Gilbert <pgilbert.ttv9z@ncf.ca> if you discover differently.) The python code

is fairly simple and may work in Python 3 versions but module mechanize,

which does the main part that cannot be done easily in R, is not available

for Python 3. (Also, module urllib2 is split into urllib.request and

urllib.error in Python 3.)

Python also needs to be on the path so that it can be found when run from

the R process. Some brief instructions are provided below, but installing

programs will be operating system dependent, so these are not comprehensive.

Instructions for installing python modules are further below.

Probably not necessary for using this package, but for those interested,

additional information and turorials on python are available at

https://wiki.python.org/moin/FrontPage

=========== Windows =====================

On Windows, python can be installed by dowloading and following intructions at

http://www.python.org/getit/

Python also needs to be on the search PATH. Setting the PATH will be

slightly different on different versions of Windows. (See, for example,

http://www.computerhope.com/issues/ch000549.htm)

The steps will be roughly:

-From Desktop or Start Menu, right-click My Computer and then Properties.

-In the System Properties window, click the Advanced tab.

-In the Advanced section, click the Environment Variables button.

-In the Environment Variables window, highlight the Path variable

in the Systems Variable section and click the Edit button. Modify

the path to indicate the location where python is installed. (Directories

in the Path are separated with a semicolon.)

There should typically be a part of this environment variable string that is

something like C:\Python27; but the exact string will depend

on the version and where it has been installed.

12

You can check that it is being found and the version by executing

python --version

at a Command Prompt. (Be sure to open this window after you set the path

as above.)

=========== Linux =====================

Python is usually already installed on Linux systems. (Your system is likely

badly broken if it is not.) You can check the version by executing

python --version

in a shell. If the command is not found then you need to ensure that python is

on your PATH. If it is not installed then the install can be done with the

usual system utilities. For example, on Debian based systems

sudo apt-get python

or you can install it from http://www.python.org/getit/. (But it really is

unlikely that you will need to install python. Also, I do not think that it

should be necessary to upgrade or change the version of Python to use the

package, and I do not recommend that, because too many other things on

your system depend on python.)

=========== Python modules =====================

Modules sys, re, csv, json, and urllib2 are provided with the Python Standard

Library so they will usually not need to be installed. Module mechanize will

usually need to be installed.

You can check if python modules are already installed by starting python in a

shell or in Windows at the Command Prompt:

python

and then at the python >>> prompt try to import the modules. (Python newbies

beware that indentation is part of the python syntax and you should not put

spaces at the beginning of the command.)

>>> import sys, json, re, csv, urllib2

>>> import mechanize

13

then

>>> quit()

to exit python.

Installing modules can be done in a number of different ways, for example,

using apt-get or Synaptic in some versions of Linux. The standard python

module installation utility 'pip' is a good option (as of 2014) and works

different operating systems.

With python and modules installed you should be able to access data from

Statistics Canada directly from you R session. The python code that makes this

work is distributed with the source TSjson package in the file

exec/cansimGet.py. That code can also be executed directly as a python program.

The main reason for using python rather than doing this directly in R is that

the initial query to the web site returns a link to a dynamically generated

web page, which must be accessed in a second step. The python module mechanize

provides a mechanism to do this, whereas there is currently no easy

mechanism in R.

This mechanizm is somewhat fragile. The web site may not repond in a

timely way, it may change, or the server name may change.

Thus this is really a temporary method for accesss,

until a better API is available.

14

	Appendix A: Connection Specific Details
	TSMySQL Connection Details
	TSPostgreSQL Connection Details
	TSSQLite Connection Details
	TSodbc Connection Details
	Example ODBC configuration file

	TSOracle Connection Details
	TSsdmx Connection Details
	TSjson Connection Details
	TSfame Connection Details

	Appendix B: Underlying SQL Database Structure and Loading Data
	Appendix C: Examples Using DBI and direct SQL Queries
	Appendix D: TSjson README regarding Python details

