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Abstract

In this manuscript we present various robust statistical methods and show how to
apply them in R using the WRS2 package. We elaborate on robust location measures
and present robust t-test versions for independent and dependent samples. We focus on
robust one-way and higher order ANOVA strategies including mixed designs (“between-
within subjects”). Finally, we elaborate on running interval smoothers which we use in
robust ANCOVA.
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1. Introduction

Data are rarely normal. Yet many classical statistical methods assume normally distributed
data, especially when it comes to small samples. For large samples the central limit theorem
tells us that we do not have to worry too much. Unfortunately, things are a little bit more
complex than that when it comes to statistical testing, especially when we have to deal with
prominent “dangerous” normality deviations such heavily skewed data, data with outliers, and
heavy-tailed distribution.

Before elaborating on consequences of these violations within the context of statistcal testing
and estimation, let us look at the impact of normality deviations from a purely descriptive
angle. It is common knowledge that the mean can be heavily affected by outliers or highly
skewed distributions. Computing the mean on such data would not give us the “typical” par-
ticipant; it is just not a good location measure to characterize the sample. In this case, once
strategy is to use more robust measure such as the median or trimmed mean. Corresponding
statistical tests involving such robust parameters are outside the classical statistical testing
framework, however. Another strategy to deal with such violations (especially right-skewed
data) is to apply transformations such as the logarithm or more sophisticated Box-Cox trans-
formations (Box and Cox 1964). For instance, in a simple ¢-test scenario where we want to
compate two group means we can think of applying log-transformations within each group
which could make the data “more normal”. The problem with this strategy is that a subse-
quent t-test compares the log-means between the groups (i.e., the geometric means) rather
than the original means. This might not be in line anymore with the original research question
and hypotheses.

Apart from such descriptive considerations, violations from normality influence the results of
statistical tests. The approximation of sampling distribution of the test statistic might not
be proper, test results might be biased, confidence intervals not estimated in a satisfactory
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manner. In addition, the power of classical test statistics becomes low. In general, we have
the following options when doing inference on small, ugly datasets and we are worried about
the outcomes. We can stay within the parametric framework and establish the sampling
distribution via permutation strategies. The R (R Core Team 2015) package coin (Hothorn,
Hornik, van de Wiel, and Zeileis 2008) gives a general implementation of basic permutation
strategies. Another option is to perform a parametric or nonparametric bootstrap for which
the boot package (Canty and Ripley 2015) provides a flexible framework. Alternatively, we
can switch into the nonparametric testing world. Nonparametric tests have less restrictive
distributional assumptions than their parametric friends. Prominent examples for classical
nonparametric tests taught in most introductory statistics class are the Mann-Whitney U-test
(Mann and Whitney 1947), the Wilcoxon signed-rank and rank-sum test (Wilcoxon 1945),
and Kruskal-Wallis ANOVA (Kruskal and Wallis 1952).

Robust methods for statistical estimation and testing provide another great option to deal
with data that are not well-behaved. Historically, the first developments can be traced back to
the 60’s with publications by Tukey (1960), Huber (1964), and Hampel (1968). Measures that
characterize a distribution (such as location and scale) are said to be robust if slight changes
in a distribution have a relatively small effect on their value (Wilcox 2012, p. 23). Robust
methods are still assuming a functional form of the probability distribution but the main goal
is to produce outcomes that are less sensitive to small departures from the assumed functional
form. These methods are important in situations where researchers have a considerably small
sample, deviating from normality. In such situations it is not a good idea to apply classical
statistical tests such as t-tests, ANOVA, ANCOVA, etc. since they may deliver biased results
or their power may be low.

This article introduces the WRS2 package that implements methods from the original WRS
package (see https://github.com/nicebread/WRS/tree/master/pkg) in a more user-friendly
manner. We focus on basic testing scenarios especially relevant for the social sciences and
introduce these methods in a simple way. For further technical and computational details on
the original WRS functions as well as additional tests the reader is referred to Wilcox (2012).

Before we elaborate on the WRS2 package, let us give an overview of some important robust
methods are available in various R. packages. In general, R is pretty well endowed with all
sorts of robust regression functions and packages such as rlm in MASS (Venables and Ripley
2002), 1mrob and nlrob in robustbase (Rousseeuw, Croux, Todorov, Ruckstuhl, Salibian-
Barrera, Verbeke, Koller, and Maechler 2015). The latter function performs nonlinear robust
regression. Robust mixed-effects models are implemented in robustlmm (Koller 2015) and
robust generalized additive models in robustgam (Wong, Yao, and Lee 2014). Regarding
multivariate methods, the rrcov package (Todorov and Filzmoser 2009) provides various im-
plementations such as robust multivariate variance-covariance estimation and robust PCA.
FRB (Van Aelst and Willems 2013) includes bootstrap based approaches for multivariate
regression, PCA and Hotelling tests, RSKC (Kondo 2014) functions for robust k-means clus-
tering, and robustDA (Bouveyron and Girard 2015) performs robust discriminant analysis.
Additional packages for robust statistics can be found on the CRAN Task View on robust
statistics (URL: https://cran.r-project.org/web/views/Robust.html).
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2. Robust Measures of Location

A robust alternative to the mean is the trimmed mean which discards a certain percentage at
both ends of the distribution. For instance, a 20% trimmed mean cuts-off 20% at the low end
and 20% the high end. In R, a trimmed mean can be computed via the basic mean function by
setting the trim argument accordingly. Note that if the trimming portion is set to v = 0.5,
the trimmed mean T; results in the median .

Another alternative is the Winsorized mean. The process of giving less weight to observations
in the tails of the distribution and higher weight to the ones in the center, is called Winsorizing.
Instead of computing the mean on the original distribution we compute the mean on the
Winsorized distribution. Similar to the trimmed mean, the amount of Winsorizing has to
choosen a priori. The WRS2 function to compute Windsorized means is winmean.

A general family of robust location measures are M -estimators (the “M” stands for “maximum
likelihood-type”). The basic idea is to define a loss function to be minimized. For instance, if
the loss function is > 1, (x; — )2, minimization results in the arithmetic mean fi = % Yo .
Instead of such a quadratic loss we can think of a more general, differentiable distance function

§():

Zf(% — ) — min! (1)
1=1

Let ¥ = &'(-) denote its derivative. The minimization problem reduces to > """ | W(x;—fim) = 0
where u,, denotes the M-estimator. Several distance functions have been proposed in the
literature. As an example, Huber (see Huber 1981) proposed the following function:

K if || <K
V() = {Ksign(a?) if |z| > K 2)

K is the bending constant for which Huber proposed a value of K = 1.28. Increasing K
increases efficiency when sampling from a normal distribution, but increases sensitivity to
the tails of the distribution. The estimation of M-estimators is performed iteratively and
implemented in the mest function. More details and additional distance functions can be
found in Wilcox (2012).

3. Robust t-Test and ANOVA Strategies

In this section these robust location measures are used in order to test for differences across
groups. We focus on basic t-test strategies (independent and dependent groups), and various
ANOVA approaches including mixed designs (i.e., between-within subjects designs).

3.1. Tests on Location Measures for Two Independent Groups

Yuen (1974) proposed a test statistic for a two-sample trimmed mean test which allows for
unequal variances. The test statistic is given by

Xn — Xeo
T, =2 2% 3
4 dy + ds 3)
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Figure 1: Left panel: boxplots for scored goals per game (Spanish vs. German league). The
red dots correspond to the 20% trimmed means. Right panel: beanplots for the same setting.

which, under the null (Ho: ps1 = pue2), follows a t-distribution®. Details on computation of the
standard error and the degrees of freedom can be found in Wilcox (2012, p. 157-158). If no
trimming is involved, this method reduces to Welch’s classical t-test with unequal variances
(Welch 1938). Yuen’s test in implemented in the yuen function. There is also a bootstrap
version of it (see yuenbt) which is suggested to use for one-sided testing when the group
sample sizes are unequal.

Let us look at an example. The dataset comprises various soccer team statistics in five
different European leagues, collected at the end of the 2008/2009 season. For the moment,
let us just focus on the Spanish Primera Division (20 teams) and the German Bundesliga (18
teams). We are interested in comparing the trimmed means of goals scored per game across
these two Leagues.

The group-wise boxplots and beanplots in Figure 1 visualize potential differences in the distri-
butions. Spain has a fairly right-skewed goal distribution involving three outliers (Barcelona,
Real Madrid, Atletico Madrid). In the German league, things look more balanced and sym-
metric. Performing a t-test on the group means could be risky, since the Spanish mean could
be affected by the outliers. A saver way is to perform a test on the trimmed means. We keep
the default trimming level of v = 0.2.

Running a two-sample trimmed mean test suggests that there are no significant differences in
the trimmed means across the two leagues:

yuen(GoalsGame ~ League, data = SpainGer)

## Call:

Tt is not suggested to use this test statistic for a v = 0.5 trimming level (which would result in median
comparisons) since the standard errors become highly inaccurate.
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## yuen(formula = GoalsGame ~ League, data = SpainGer)
##

## Test statistic: 0.8394 (df = 16.17), p-value = 0.4135
##

## Trimmed mean difference: -0.11494

## 95 percent confidence interval:

## -0.405 0.1751

If we want to run a test on median differences, or more general M-estimator differences, the
pb2gen function can be used.

pb2gen(GoalsGame ~ League, data = SpainGer, est = "median")

## Call:

## pb2gen(formula = GoalsGame ~ League, data = SpainGer, est = "median")
#i#

## Test statistic: -0.1238, p-value = 0.46411
## 95 percent confidence interval:

## -0.5015 0.2477

pb2gen(GoalsGame ~ League, data = SpainGer, est = "onestep")

## Call:

## pb2gen(formula = GoalsGame ~ League, data = SpainGer, est = "onestep")
##

## Test statistic: -0.1181, p-value = 0.49082
## 95 percent confidence interval:
## -0.3455 0.1753

The first test related to median differences, the second test to Huber’s ¥ estimator. The
results in this particular example are consistent for various robust location estimators.

3.2. One-way Multiple Group Comparisons

Often it is said that F-tests are quite robust against violations. This is not always the case. In
fact, discussions and examples given in Games (1984), Tan (1982), Wilcox (1996) and Cressie
and Whitford (1986) show that things can go wrong when applying ANOVA in situations
where we have heavy-tailed distributions, unequal sample sizes, and when distributions differ
in skewness. Transforming the data is not a very appealing alternative either since, as in a
t-test setting, we end up comparing geometric means.

The first robust alternative present here is a one-way comparison of multiple trimmed group
means, implemented in the tiway function. Let J be the number of groups. The corresponding
null hypothesis is:

Ho @ ppn = pyp = -+ - = pigg.
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Figure 2: Left panel: Boxplots for scored goals per game (Spanish vs. German league).
Right panel: Beanplots for the same setting.

The corresponding test statistic which approximates an F-distribution under the null, is quite
complicated and can be found in Wilcox (2012, p. 293). A bootstrap version is provided in
tlwaybt. If no trimming is involved we end up with Welch’s ANOVA version allowing for
unequal variances (Welch 1951).

A similar test statistic can be derived for comparing medians instead of trimmed means,
implemented in the med1way function. Let us apply these two tests on the soccer dataset. This
time we include all five leagues. Figure 2 shows the corresponding boxplots and beanplots.
We see that Germany and Italy have a pretty symmetric distribution, England and The
Nethderlands right-skewed distributions, and Spain has outliers.

In WRS2 these robust one-way ANOVA variants can be computed as follows:

tlway(GoalsGame ~ League, data = eurosoccer)

## Call:
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## tlway(formula = GoalsGame ~ League, data = eurosoccer)
##

## Test statistic: 1.1178

## Degrees of Freedom 1: 4

## Degrees of Freedom 2: 26.95

## p-value: 0.36875

medlway(GoalsGame ~ League, data = eurosoccer)

## Call:

## medlway(formula = GoalsGame ~ League, data = eurosoccer)
#i#

## Test statistic: 1.2335

## Critical value: 2.3254

## p-value: 0.267

Again, none of the tests suggests a significant difference in robust location parameters across
groups. For illustration, let us just perform all pairwise comparisons on the same data setting.
Post hoc tests on the trimmed means can be computed using the 1incon function:

lincon(GoalsGame ~ League, data = eurosoccer)

## Call:

## lincon(formula = GoalsGame ~ League, data = eurosoccer)

##

## psihat ci.lower ci.upper p.value
## England vs. Italy -0.11184 -0.51061 0.28692 0.39635
## England vs. Spain -0.17105 -0.50367 0.16157 0.12502
## England vs. Germany -0.28599 -0.75439 0.18241 0.07203
## England vs. Netherlands -0.22472 -0.69088 0.24145 0.14940
## Italy vs. Spain -0.05921 -0.41380 0.29538 0.60691
## Italy vs. Germany -0.17415 -0.65496 0.30666 0.27444
## Italy vs. Netherlands -0.11287 -0.59157 0.36583 0.47317
## Spain vs. Germany -0.11494 -0.55124 0.32136 0.41350
## Spain vs. Netherlands -0.05366 -0.48748 0.38015 0.69872
## Germany vs. Netherlands 0.06127 -0.47101 0.59356 0.72607

Post hoc tests for the bootstrap version of the trimmed mean ANOVA (t1waybt) are provided
in mcppb20.

3.3. Comparisons Involving Higher-Order Designs

Let us start with two-way factorial ANOVA design involving J categories for the first factor,
and K categories for the second factor. The test statistic for the one-way trimmed mean
comparisons can be easily generalized to two-way designs. The corresponding function is
called t2way. Median comparisons can be performed via med2way whereas for more general
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Figure 3: Interaction plot involving the median attractiveness ratings in beer goggles dataset.

M-estimators, the function pbad2way does the job. Note that all WRS2 robust ANOVA
functions fit the full model including all possible interactions only.

As an example we use the infamous beer goggles dataset by Field, Miles, and Field (2012).
This dataset is about the effects of alcohol on mate selection in night-clubs. The hypothesis is
that after alcohol had been consumed, subjective perceptions of physical attractiveness would
become more inaccurate (beer goggles effect). In this dataset we have the two factors gender
(24 male and 24 femals students) and the amount of alcohol consumed (none, 2 pints, 4 pints).
At the end of the evening the researcher took a photograph of the person the participant was
chatting up. The attractiveness of the person on the photo was then evaluated by independent
judges on a scale from 0-100 (response variable). Figure 3 shows the interaction plots using
the median as location measure. It looks like there is some interaction going on between
gender and the amount of alcohol in terms of attractiveness rating. The following code
chunk computes three robust two-way ANOVA versions as well as a standard ANOVA for
comparison.

t2way(attractiveness ~ gender*alcohol, data = goggles)

## Call:
## t2way(formula = attractiveness ~ gender * alcohol, data = goggles)
##

## value p.value
## gender 1.6667 0.209
## alcohol 48.2845 0.001

## gender:alcohol 26.2572 0.001

med2way(attractiveness ~ gender*alcohol, data = goggles)
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## Call:

## med2way(formula = attractiveness ~ gender * alcohol, data = goggles)
#i#

## value p.value

## gender 6.8444 0.0089

## alcohol 4.8207 0.0081

## gender:alcohol 12.9593 0.0015

pbad2way(attractiveness ~ gender*alcohol, data = goggles, est = "onestep")
## Call:

## pbad2way(formula = attractiveness ~ gender * alcohol, data = goggles,
## est = "onestep")

##

## p-value

## gender 0.177

## alcohol 0.000

## gender:alcohol  0.000

summary (aov(attractiveness ~ genderxalcohol, data = goggles))

## Df Sum Sq Mean Sq F value Pr(>F)

## gender 1 169 168.7 2.032 0.161

## alcohol 2 3332 1666.1 20.065 7.65e-07 ***

## gender:alcohol 2 1978 989.1 11.911 7.99e-05 *x*x

## Residuals 42 3488 83.0

## ——-

## Signif. codes: O '*x**' 0.001 '*xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

In each case we get a significant interaction. Going back to the interaction plots in Figure 3
we see that the attractiveness of the date drops significantly for the males if they had four
pints. If we are interested in post hoc comparisons, WRS2 provides functions for the trimmed
mean version (mcp2atm) and the M-estimator version (mcp2a). Here we give the results for
the trimmed mean version:

mcp2atm(attractiveness ~ gender*alcohol, data = goggles)

## Call:

## mcp2atm(formula = attractiveness ~ gender * alcohol, data = goggles)
##

Hit psihat ci.lower ci.upper p-value
## genderl 10.00000 -6.00223 26.00223 0.20922
## alcoholl -3.33333 -20.49551 13.82885 0.61070
## alcohol2 35.83333 19.32755 52.33911 0.00003
## alcohol3 39.16667 22.46796 55.86537 0.00001

## genderl:alcoholl -3.33333 -20.49551 13.82885 0.61070
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Figure 4: Interaction plot involving the trimmed means of the time ratio response for males
and females separately.

## genderl:alcohol2 -29.16667 -45.67245 -12.66089 0.00025
## genderl:alcohol3 -25.83333 -42.53204 -9.13463 0.00080

The most interesting post hoc result is the gender1:alcohol3 contrast which explains the
striking 4 pint attractiveness drop for the males.

Now we move on to higher-order designs. WRS2 provides the function t3way for robust
three-way ANOVA based on trimmed means. The dataset we use is from Seligman, Nolen-
Hoeksema, Thornton, and Thornton (1990). At a swimming team practice, 58 participants
were asked to swim their best event as far as possible, but in each case the time that was
reported was falsified to indicate poorer than expected performance (i.e., each swimmer was
disappointed). 30 min later, they did the same performance. The authors predicted that on
the second trial more pessimistic swimmers would do worse than on their first trial, whereas
optimistic swimmers would do better. The response is ratio = Timel/Time2. A ratio larger
than 1 means that a swimmer performed better in trial 2. Figure 4 shows two separate
interaction plots for male and female swimmers, involving the 20% trimmed means.

Now we compute a three-way robust ANOVA on the trimmed means. For comparison, we
also fit a standard three-way ANOVA (since the design is unbalanced we print out the Type
IT sum-of-squares).

t3way(Ratio ~ Optim*Sex*Event, data = swimming)
## Call:

## t3way(formula = Ratio ~ Optim * Sex * Event, data = swimming)
##
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#H# value p.value

## Optim 7.1799150 0.016

## Sex 2.2297985 0.160

## Event 0.3599633  0.845

## Optim:Sex 6.3298070 0.023

## Optim:Event 1.1363057 0.595

## Sex:Event 3.91056283 0.192

## Optim:Sex:Event 1.2273516 0.572

fitaov_op <- aov(Ratio ~ Optim*Sex*Event, data = swimming)
Anova(fitaov_op, type = "II")

## Anova Table (Type II tests)

##

## Response: Ratio

#i#t Sum Sq Df F value Pr(>F)
## Optim 0.022923 1 6.4564 0.01449 *
## Sex 0.010084 1 2.8401 0.09871 .
## Event 0.008682 2 1.2226 0.30384
## Optim:Sex 0.018563 1 5.2283 0.02687 *
## Optim:Event 0.005076 2 0.7148 0.49464
## Sex:Event 0.010267 2 1.4459 0.24603
## Optim:Sex:Event 0.001716 2 0.2416 0.78636
## Residuals 0.163323 46

## ———

## Signif. codes: O '*x**' 0.001 '*x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

The crucial effect is the Optim:Sex two-way interaction. Figure 5 shows the two-way interac-
tion plot, ignoring the swimming style effect. These plots suggests that, if the swimming style
is ignored, for the females it does not matter whether someone is an optimist or a pessimist.
For the males, there is a significant difference in the time ratio for optimists and pessimists.

3.4. Repeated Measurement Designs

The simplest repeated measurement design is a paired samples ¢-test scenario. Yuen’s trimmed
mean t-test in Equation (3) can be generalized to

T, - Xo — X2 (4)
Vdi + da — 2dy2
Expressions for the standard deviations can be found in Wilcox (2012, p. 196). The cor-
responding R function is called yuend. The dataset we use for illustration is in the MASS
package and presents data pairs involving weights of girls before and after treatment for
anorexia. We use a subset of 17 girls subject to family treatment.

Figure 6 presents the individual trajectories. We see that for four girls the treatment did
not seem to be effective, for the remaining ones we have an increase in weight. The paired

11
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Figure 5: Interaction plot involving the trimmed means of the time ratio response for gender
and optimists/pessimists (swimming style ignored).

samples test on the trimmed mean differences gives a significant treatment effect which tells
us that, overall, the treatment was effective.

anorexiaFT <- subset(anorexia, subset = Treat == "FT")
yuend (anorexiaFT$Prewt, anorexiaFT$Postwt)

## Call:

## yuend(x = anorexiaFT$Prewt, y = anorexiaFT$Postwt)
##

## Test statistic: -3.829 (df = 10), p-value = 0.00332
#i#

## Trimmed mean difference: -8.56364
## 95 percent confidence interval:
## -13.5469 -3.5804

Let us extend this setting to more than two dependent categories. The WRS2 package provides
a robust implementation of a heteroscedastic repeated measurement ANOVA based on the
trimmed means. The main function is rmanova with corresponding post hoc tests in rmmcp.
The bootstrap version of rmanova is rmanovab with bootstrap post hocs in pairdepb.

Each function for robust repeated measurement ANOVA takes three arguments; the data
need to be in long format: a vector with the responses (argument: y), a factor for the groups
(e.g,. time points; argument: groups), and a factor for the blocks (typically a subject ID;
argument: blocks). The data we use to illustrate the functions is a hypothetical wine tasting
dataset. There are three types of wine (A, B and C). 22 people tasted each of the three wines
(in a blind fold fashion), five times each. The response reflects the average ratings for each



Patrick Mair, Rand Wilcox

Weight Trajectories
O L]
o p—
0 _|
[}
g 3
5
g 87
o ]
o]
n _| °
N~

Prior Post

Figure 6: Individual weight trajectories of anorexic girls before and after treatment.

wine. Thus, each of the three wines gets one score from each rater. In total, we have 66
scores. The trajectories are given in Figure 7.

A robust dependent samples ANOVA on the trimmed means can be fitted as follows:
rmanova(y = Taste, groups = Wine, block = Taster)

## Call:

## rmanova(y = Taste, groups = Wine, blocks = Taster)
##

## Test statistic: 3.2614

## Degrees of Freedom 1: 1.61

## Degrees of Freedom 2: 20.92

## p-value: 0.06761

rmmcp(y = Taste, groups = Wine, block = Taster)

## Call:

## rmmcp(y = Taste, groups = Wine, blocks = Taster)

##

H# psihat ci.lower ci.upper p.value p.crit sig

## Wine A vs. Wine B 0.02143 -0.02164 0.06449 0.19500 0.0500 FALSE
## Wine A vs. Wine C 0.11429 0.02148 0.20710 0.00492 0.0169 TRUE
## Wine B vs. Wine C 0.08214 0.00891 0.15538 0.00878 0.0250 TRUE
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Figure 7: 22 taster trajectories for three different wines.

We see that we have a somewhat contradictory result: the global test tells us that there are
no significant differences between the wines, whereas the post hoc tests suggest significant
differences for the Wine C contrasts. Such results sometimes occur in small sample ANOVA
applications when the global test statistic is close to the critical value.

3.5. Mixed Designs

This subsection deals with mixed ANOVA designs, that is, we have within-subjects effects
(e.g., due to repeated measurements) and between-subjects effects (group comparisons). For
the parameteric case, the standard aov function in R is able to handle such scenarios, even
though in a very limited way. The ezANOVA function in the ez package (Lawrence 2013)
allows for an easy specification of such models and also provides some permutation options
via ezPerm. Since such designs belong to the mixed-effects model family, standard packages
like Ime4 (Bates, Maechler, Bolker, and Walker 2015) or nlme (Pinheiro, Bates, DebRoy,
Sarkar, and R Core Team 2015) can be applied which provide a great deal of modeling
flexibility.

The main function in WRS2 for computing a between-within subjects ANOVA on the trimmed
means is bwtrim. For general M-estimators, the package offers the bootstrap based functions
sppba, sppbb, and sppbi for the between-subjects effect, the within-subjects effect, and the
interaction effect, respectively. Each of these functions requires the full model specification
through the formula interface as well as an id argument that accounts for the within-subject
structure.
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Figure 8: 20% trimmed means of the number of hangover symptoms across three time points.

The example we use is from Wilcox (2012, p. 411). In a study on the effect of consuming
alcohol, the number hangover symptoms were measured for two independent groups, with
each subject consuming alcohol and being measured on three different occasions. One group
consisted of sons of alcoholics and the other was a control group. A representation of the
dataset is given in Figure 8.

First, we fit the between-within subjects ANOVA on the 20% trimmed means:
bwtrim(symptoms ~ group*time, id = id, data = hangover)
## Call:

## bwtrim(formula = symptoms ~ group * time, id = id, data = hangover)
#i#

## value p.value
## group 6.6087 0.0218
## time 4.4931 0.0290

## group:time 0.5663 0.5790

We get significant group and time effects. Second, we fit a standard between-within subjects
ANOVA through bwtrim by setting the trimming level to 0. For comparison we fit the same
model through ezANOVA and see that both functions lead to the same results.

15
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bwtrim(symptoms ~ group*time, id = id, data = hangover, tr = 0)
## Call:
## bwtrim(formula = symptoms ~ group * time, id = id, data = hangover,

## tr = 0)

#i#

## value p.value
## group 3.2770 0.0783
## time 0.8809 0.4250

## group:time 1.0508 0.3624

fitF <- ezANOVA(hangover, symptoms, between = group, within = time, wid = id)
fitF$ANOVA

## Effect DFn DFd F p p<.05 ges
## 2 group 1 38 3.2770015 0.07817048 0.056208518
## 3 time 2 76 0.8957333 0.41257420 0.007240111
## 4 group:time 2 76 0.9737002 0.38234407 0.007865351

Finally, we base our comparisons on Huber’s M-estimator for which we have to apply three
separate functions, one for each effect.

sppba(symptoms ~ group*time, id, data = hangover)

## Call:

## sppba(formula = symptoms ~ group * time, id = id, data = hangover)
#i#

## Test statistic: 4.714

## p-value: 0.024

sppbb(symptoms ~ group*time, id, data = hangover)

## Call:

## sppbb(formula = symptoms ~ group * time, id = id, data = hangover)
#i#

## Test statistic: -1.8387 -0.6875 -0.1176

## p-value: 0.118

sppbi (symptoms ~ group*time, id, data = hangover)

## Call:

## sppbi(formula = symptoms ~ group * time, id = id, data = hangover)
##

## Test statistic: -0.9375 0.4157 -0.5

## p-value: 0.838
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These tests give us a significant group effect whereas the time and interaction effects are not
significant.

4. Robust Nonparametric ANCOVA

4.1. Running Interval Smoothers

Before we talk about robust ANCOVA, we need to do some elaborations on smoothers. In
general, a smoother is a function that approximates the data points while leaving out noise in
the data. Smoothing functions typically have a smoothing parameter by which the user can
steer the degree of smoothing. If the parameter is too small, the smoothing function might
overfit the data. If the parameter is too large, we might disregard important patterns. The
general strategy is to find the smallest parameter so that the plot looks reasonably smooth.

A popular regression smoother is LOWESS (locally weighted scatterplot smoothing) regres-
sion which belongs to the family of nonparametric regression models and can be fitted using
the lowess function. The smoothers presneted here involve robust location measures from
Section 2 and are called running interval smoothers.

Let us start with the trimmed mean. We have pairs of observations (z;, y;). The strategy
behind an interval smoother is to compute the y-trimmed mean using all of the y; values for
which the corresponding x;’s are close to a value of interest x (Wilcox 2012, p. 562). Let MAD
be the median absolute deviation, i.e., MAD = median|z; — Z|. Let MADN = MAD/z 75,
where zg 75 represents the quantile of the standard normal distribution. The point x is said
to be close to z; if

|z; — x| < f x MADN.

Here, f as a constant which will turn out to be the smoothing parameter. As f increases, the
neighborhood of x gets larger. Let

N(z;) ={j : |xj — x| < f x MADN}

such that N(z;) indexes all the x; values that are close to x;. Let GAZ be a robust location
parameter of interest. A running interval smoother computes n ; parameters based on the
corresponding y-value for which z; is close to x;, that is, the smoother defines an interval and
runs across all the x-values. Within a regression context, these estimates represent the fitted

values. Eventually, we can plot the (x;,6;) tuples into the (x;,y;) scatterplot which gives us
the nonparametric regression fit. The smoothness of this function depends on f.

The WRS2 package provides smoothers for trimmed means (runmean), general M-estimators
(rungen), and bagging versions of general M-estimators (runmbo), recommended for small
datasets. Let us look at a data example, involving various f values and various robust
location measures 6;. We use a simple dataset from Wright and London (2009) where we are
interested whether the length and heat of a chile are related. The length was measured in
centimeters, the heat on a scale from 0 (“for sissys”) to 11 (“nuclear”).

The left panel in Figure 9 displays smoothers involving different robust location measures.
The right panel shows a trimmed mean interval smoothing with varying smoothing parameter
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Figure 9: Left panel: smoothers with various robust location measures. Right panel: trimmed
mean smoother with varying smoothing parameter f.

f. We see that, at least in this dataset, there are no striking differences between the smoothers
with varying location measure. The choice of the smoothing parameter f affects the function
heavily, however.

4.2. Robust ANCOVA

ANCOVA involves a factorial design and metric covariates that were not part of the exper-
imental manipulation. Basic ANCOVA assumes homogeneity of regression slopes across the
groups when regressing the dependent variable on the covariate. A further assumption is
homoscedasticity of the error terms across groups. The robust ANCOVA function in WRS2
does not assume homoscedasticity nor homogeneity of regression slopes. In fact, it does not
make any parametric assumption on the regressions at all and uses running interval smoothing
(trimmed means) for each subgroup. Both nonparametric curves can be tested for subgroup
differences at various points of interest along the z-continuum. This makes it very similar to
what functional data analysis (FDA; see Ramsay and Silverman 2005) is doing. The main
difference is that FDA uses smoothing splines whereas robust ANCOVA, as presented here,
running interval smoothers.

The function ancova performs robust ANCOVA. In its current implementation it is limited to
one factor with two categories and one covariate only. A bootstrap version of it is implemented
as well (ancboot). Both functions perform the running interval smoothing on the trimmed
means. Yuen tests for trimmed mean differences are performed at specified design points. It
the design point argument (pts) is not specified, the routine picks five points automatically
(for details see Wilcox 2012, p. 611). It is suggested that group sizes around the design point
subject to Yuen’s test should be at least 12. Regarding the multiple testing problem, the
confidence intervals are adjusted to control the probability of at least one Type I error, the
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p-values are not.

The dataset we use to demonstrate robust ANCOVA is from Gelman and Hill (2007). It is
based on data involving an educational TV show for children called “The Electric Company”.
In each of four grades, the classes were randomized into treated groups and control groups.
The kids in the treatment group were exposed to the TV show, those in the control group
not. At the beginning and at the end of the school year, students in all the classes were given
a reading test. The average test scores per class (pretest and posttest) were recorded. In
this analysis we use the pretest score are covariate and are interested in possible differences
between treatment and control group with respect to the postest scores. We are interested in
comparisons at six particular design points. We set the smoothing parameters to a consider-
ably small value.

fitanc <- ancova(Posttest ~ Pretest + Group, frl = 0.3, fr2 = 0.3,
data = electric, pts = comppts)
fitanc

## Call:
## ancova(formula = Posttest ~ Pretest + Group, data = electric,

#i#t fr1 = 0.3, fr2 = 0.3, pts = comppts)

#it

## n: control n: treatment trimmed mean diff se lower CI
## Pretest = 18 21 20 -11.1128 4.2694 -23.3621
## Pretest = 70 20 21 -3.2186 1.9607 -8.8236
## Pretest = 80 24 23 -2.8146 1.7505 -7.7819
## Pretest = 90 24 22 -5.0670 1.3127 -8.7722
## Pretest = 100 28 30 -1.8444 0.9937 -4.6214
## Pretest = 110 24 22 -1.2491 0.8167 -3.5572
## upper CI statistic p-value

## Pretest = 18 1.1364 2.6029 0.0163

## Pretest = 70 2.3864 1.6416 0.1143

## Pretest = 80 2.1528 1.6079 0.1203

## Pretest = 90 -1.3617 3.8599 0.0006

## Pretest = 100 0.9325 1.8561 0.0729

## Pretest = 110 1.0590 1.5294 0.1380

Figure 10 shows the results of the robust ANCOVA fit. The vertical gray lines mark the
design points. By taking into account the multiple testing nature of the problem, the only
significant group difference we get for a pretest value of x = 90. For illustration, this plot
also includes the linear regression fits for both subgroups (this is what a standard ANCOVA

would do).

5. Discussion

Future updates will include the following robust methods: mediator and moderator models,
MANOVA, and intraclass correlation. In addition, functions for computing effect sizes will
be available.

19
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Figure 10: Robust ANCOVA fit on TV show data across treatment and control group. The
nonparametric regression lines for both subgroups are shown as well as the OLS fit (dashed
lines). The vertical lines show the design points our comparisons are based on.
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