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Warning: The findings and conclusions in this article have not been formally disseminated
and should not be construed to represent any determination or policy of University, Agency,
and National Laboratory.

This document is written to explain the main functions of cubfits (Chen et al. 2014b), version
0.1-2. Every effort will be made to ensure future versions are consistent with these instructions,
but features in later versions may not be explained in this document.

1. Introduction

Coding sequences or open reading frames (ORFs) are regions of genome encoding proteins
required to properly function any living biological organism. In order to adopt to environment,
growth in limited resource, or maintain population size, the protein production needs to
be reflect quickly under those condition. The efficiency of protein translation is essentially
critical for some tiny organism, such as yeast. For example, we may model the translation
rates, from a codon sequence to a protein, with several factors and in several ways. Once
the codon information encoded behind a genome is estimated/approximated appropriately,
then the model can be used to predict gene expression levels or protein production rates.
Therefore, it is interesting to know what factors may affect production rates, how strong they
are, or whether genomes evolve accordingly.

In a simplified example, Cysteine (Cys/C) is one of 20 amino acids and can be encoded
by two synonymous codons, TGT and TGC. Suppose Cysteine are observed in two coding
sequences and used to encode two proteins. Suppose further one has lower expression level,
but the other one has higher expression level. Assume TGT and TGC both have no effect to
expression level, then the chance of observing TGT and TGC is roughly 50% and 50% among
both coding sequences. Suppose the chance of observing TGC is much higher than observing
TGT in the protein has higher expression level, then we may guess that TGT is more efficient
than TGC for that protein translation.

cubfits (Chen et al. 2014b) models the biased patterns of codon usage among other informa-
tion and fits model parameters. The implemented models are introduced in (Gilchrist 2007;
Shah and Gilchrist 2011; Wallace et al. 2013) that combines several modeling techniques of
Population Genetics and Statistics to predict protein production rates.

Package requirements and installation of cubfits are described next. Section 2 gives short
examples for main functions. Section 3 provides parallel implementations that simply speedup
computations, and discusses technical issues. In Section 4, useful work flows built in cubfits are
introduced. Section 5 introduces implemented methods of data input/output and conversion
between different data structures with examples. Finally, Section 7 introduces some useful
functions.

1.1. Requirements

cubfits is a package of R (R Core Team 2013) built and test on R 3.0.0, but may be compat-
ible back to 2.15.0 or early. It requires methods package which is default in R, and suggests
seqinr (Charif and Lobry 2007) and VGAM (Yee 2013) packages that both are available and
can be installed from CRAN or it’s mirror sites. The seqinr takes care input and output of
DNA sequence data in FASTA format, and the VGAM takes care several core functions of
model fitting used by cubfits. The cubfits also uses several high performance computing tech-

1



niques to speed up computation including parallel (R Core Team 2012) and pbdMPI (Chen
et al. 2012b). Further, the cubfits provides some diagnoses for multiple chains of MCMC
results and restart MCMC chains utilizing packages such as doSNOW (Revolution Analytics
and Weston 2014) and coda (Plummer et al. 2006), and their dependent packages. Other
utilities in cubfits also include EMCluster (Chen et al. 2012a) for a mixture distribution in
one dimension.

The cubfits uses a core function vglm() of VGAM for model fitting, and (optionally) paral-
lelizes via mclapply() of parallel package and task.pull() or pbdLapply() of pbdMPI package.
The parallelization is designed across the 20 amino acids. Note that mclapply() is only sup-
ported on Unix-like systems and on shared memory machines, while tak.pull() and pbdLapply()
are supported on most systems (Linux/Unix/MacOS/Windows) and on both of shared mem-
ory machines and distributed clusters provided a MPI (Gropp et al. 1994) library is installed.
See Chen et al. (2014a) for more details of installation of a MPI library and pbdMPI.

1.2. Installation and Test

The cubfits can be either installed within an R session as

R Script� �
> install.packages("seqinr")

> install.packages("VGAM")

> install.packages("doSNOW")

> install.packages("coda")

> install.packages("EMCluster")

> install.packages("cubfits")� �
or installed from a command line as

Shell Command� �
$ R CMD INSTALL seqinr_3.7-0.tar.gz

$ R CMD INSTALL VGAM_0.3-9.tar.gz

$ R CMD INSTALL doSNOW_1.0.12. tar.gz

$ R CMD INSTALL coda_0.16 -1. tar.gz

$ R CMD INSTALL EMCluster_0.2-4.tar.gz

$ R CMD INSTALL cubfits_0.1-0. tar.gz� �
provided other requirements or dependent packages are installed correctly. Note that parallel
and pbdMPI are optional.

A simple test can be used to see if the cubfits installed correctly as

R Script� �
> demo(plotbin , ' cubfits ' )� �
within an R session, and this demo provides a plot as in Figure 1.

2. Main Functions

The cubfits package is composed of three main functions:
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Figure 1: A simple demo plot. Figures show the empirical binning results by expression
levels where dots are mean proportions of synonymous codons of 100 sequences in every
5% expression windows, and horizontal lines are 90% empirical intervals. The curves are
theoretical prediction of synonymous codon usages (Shah and Gilchrist 2011). See Section 7
for details. For amino acid A, the selection effect dominates the mutation effect for some
codons at expression level larger than −1.5. For C, it is mainly mutation effect. For D, the
selection effect can be observed at expression level larger than −0.75.

1. cubfits() fits models for sequences with observed φ (expression level) values and mea-
surement errors,

2. cubappr() approximates models for sequences without any observed φ values, and

3. cubpred() fits models for sequences with observed φ values and measurement errors,
and then predicts φ values for sequences without observations.

See package’s help pages for details of other input options.1

2.1. Demonstrations

The cubfits package provides quick examples for its three main functions:

R Script� �
> demo(roc.train , ' cubfits ' ) # for cubfits ()

> demo(roc.appr , ' cubfits ' ) # for cubappr ()

> demo(roc.pred , ' cubfits ' ) # for cubpred ()� �
These cubfits demos perform short MCMC runs and analyze toy datasets (ex.train and
ex.test) for the Ribosome Overhead Cost (ROC) (Shah and Gilchrist 2011) which is shown

1 ?cubfits::cubfits, ?cubfits::cubappr, and ?cubfits::cubpred.
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in Figure 1. The toy datasets have only 100 short sequences, and only 3 amino acids are
considered.

For a standard data analysis, the process essentially consists of:

1. reading sequences and expressions files,

2. converting to appropriate data structures,

3. running a main function (MCMC),

4. summarizing MCMC outputs, and

5. plotting predictions.

The cubfits package also provides an example using simulated data:

R Script� �
> demo(simu.roc , ' cubfits ' ) # cubfits () is called.� �
Note that this demo will generate a fake sequence file (toy_roc.fasta) in FASTA format
in the working directory, and (for testing) read it back. Also, it converts the data into the
correct format needed by cubfits(), and finally runs MCMC and generates a plot.

2.2. Modeling ROC

cubfits (Chen et al. 2014b) utilizes a Bayesian hierarchical model for codon useage bias
(CUB) (Gilchrist 2007; Shah and Gilchrist 2011; Wallace et al. 2013; Gilchrist et al. 2014).
The CUB model for ROC is

~yga ∼ Multinom(nga, ~pa), (1)

~pa = mlogit−1(log(~µa) + ~∆taφg), (2)

log(φg,obs) ∼ N(log(φg) + log(Kbias), σ
2
obs), (3)

φg ∼ logN(−σ2φ/2, σφ), (4)

~µa, ~∆ta, σφ,Kbias ∝ 1, and (5)

f(σ2obs) ∝ 1/σ2obs. (6)

Given gene g and amino acid a, ~yga is synonymous codon counts following a multinomial dis-
tribution with parameters nga for total codons and ~pa for probability of synonymous codons.

The mlogit−1 is an inversed multivariate logit function of ~µa mutation rate and ~∆ta elon-
gation time. φg is protein production rate and φg,obs is observed expression. Kbias and σ2obs
are measurement bias and error, respectively. σ2φ is dispersion of log(φg). We assume inde-
pendence of amino acids and independence of genes, and both contribute information to the
CUB model.

The package implements MCMC algorithms of CUB model in three main functions. cubfits()
estimate model parameters for sequence with φg,obs and implements Equations (1) to (4).
cubappr() predicts expression for sequences without φg,obs that skips Equation (3). cubpred()
estimates parameters for sequences with φg,obs and predicts expression for sequences without
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φg,obs. All functions can take options set by global objects such as MCMC conditions and
auxiliary control variables, especially the prior and hyper-parameters as Equations (5) and (6)

Figure 2 displays dependence of the model. The extended Bayesian hierarchical model with
measurement errors for predicting protein synthesis rates “with” or “without” gene expression
(φ) is abstracted in the dependence graph:

� data hierarchy is in blue boxes,

� observed sequences are in a green solid circle,

� gene expressions (may be ignored) are in a green dashed circle,

� unknown parameters to be estimated are in red dashed circles,

� prior parameters (may be restricted) are in the black circle, and

� parallelization within MCMC is in red dashed lines.

Figure 2: Dependence plot of ROC model (after (Wallace et al. 2013)).

2.3. Generic Functions

Note that the three main functions are wrappers of other generic functions that perform pa-
rameter initializations, propose new parameters, compute MCMC acceptance/rejection ratio,
and more. The function init.function() initializes generic functions that will be called by
the three main functions. Although init.function() is called within each of three main
functions to setup the generic functions, it also needs to be called before using other utility
functions, such as fitMultinom(), see Section 7 for examples.
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Accompanying control variables such as .CF.CT and .CF.OP, the init.function() will dis-
patch the corresponding generic functions into a default environment .cubfitsEnv, allowing
other main functions may call those generic functions dynamically.

Note that generic functions in R typically only depend on input object types. However, the
design in cubfits has several advantages:

� functions are clearer by making good use of data structures and simplifying options,

� extensions are easier to create; simply add more generic functions rather than changing
main functions, and

� performance is more efficient by avoiding extra conditional checks such as if(...){...}
else{...} in every iteration.

Also, the design can avoid tedious CRAN checks since there are some restrictions in accessing
.GlobalEnv. For example, .cubfitsEnv$my.fitMultinomAll() is called in several internal
functions to fit multinomial logistic regression in every MCMC iterations. In particular, it
has four generic functions:

1. my.fitMultinomAll.lapply() ueses lapply() in the serial version,

2. my.fitMultinomAll.mclapply() uses parallel::mclapply() in shared memory ma-
chines,

3. my.fitMultinomAll.task.pull() uses pbdMPI::task.pull() in distributed clusters,
and

4. my.fitMultinomAll.pbdLapply() uses pbdMPI::pbdLapply() in distributed clusters,
but is only efficient for homogeneous tasks.

Through init.function(), there is no need to check which generic function should be called
within the MCMC step, and there is no need to worry about serial or parallel details when
designing a MCMC algorithm.

3. Parallel Speedup

The main bottleneck of cubfits is in calls to fitMultinom*() or my.fitMultinom*(). The
reasons are that

� models assume conditional independence of amino acids, and

� it is tedious to extract parallelism within the VGAM::vglm() function.2

Fortunately, by carefully utilizing summarized data structures, one can avoid some burdens
and boost the MCMC computation significantly. For example, sorting by ORF’s names before

2 As long as the number of sequences is not too large and summary statistics are used, there is no need
to consider this approach. Although this can lead to huge improvement in speed, it may require the need to
rewrite all of vglm() and reorganize data structures, which is highly non-trivial.
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MCMC may avoid subsetting a data.frame in some cases, and further computation can be
easily moved to C.

Further, cubfits offers three ways of parallelizing computations to speedup computations,
including parallel::mclapply(), pbdMPI::task.pull(), and pbdMPI::pbdLapply(). Note
that only pbdMPI functions have received the most thorough testing in cubfits. We now
briefly describe these three approaches.

3.1. mclapply()

The function mclapply() is a function in the parallel package and is particularly useful for
multi-core/shared memory machines; however, as it relies on the system’s fork utility, it is
only available for Unix-like systems such as Linux and Mac OS. On Windows systems, this
function is identical to lapply(). As the name implies, mclapply() is a parallel version of
R’s own lapply(), and as such it is usually trivial to migrate to mclapply() from code using
lapply().

With this approach in cubfits, we split the work into jobs (tasks) at the level of 20 amino
acids, because of the conditional independence assumption. However, the computation is not
evenly distributed across amino acids, as some have more synonymous codons than others; e.g.
Leucine (Leu/L) has 6 synonymous codons. In other words, the 20 jobs are not homogeneous
(and as an aside, Leucine generally needs the most computing in those fitMultinom*() calls).
Therefore, we use the mclapply() option mc.preschedule = FALSE, and limit the number of
cores to 4 or 5. In doing so, we are able to somewhat overcome this computational imbalance.

The warning section of the mclapply() help page notes that it is strongly discouraged
to use these functions in GUI or embedded environments. For small tests, i.e. those with
fewer sequences and shorter MCMC iterations, the mclapply() approach works well and with
reasonable efficiency in cubfits. However, we did observe some occasional crashes when using
this approach for longer runs of MCMC, such as in a work flow.

3.2. task.pull()

The pbdMPI package is designed in single program multiple data (SPMD) framework, and
is a simpler approach to parallelize codes than the perhaps more familiar manager/worker
paradigm. Although only batch computing (i.e., no interactivity) is allowed in pbdMPI, one
of the benefits is that it is not strictly limited to shared memory machines, and can be applied
on most systems with an MPI library installed. See Chen et al. (2014a) for details on installing
an MPI library and pbdMPI.

The task pull is a simple parallelism strategy and is very similar to mc.preschedule =

FALSE in mclapply(); in particular, this approach gains performance economically for non-
homogeneous jobs. task.pull() in pbdMPI is a convenient implementation that can boost
the performance of fitMultinom*() functions, and has similar syntax as mclapply().

3.3. pbdLapply()

For some cases, task pull is neither economical nor efficient. For example, in cubfits, one needs
to initialize the expected expression level of each sequence via a call to estimatePhiAll*().
Generally, this performs the same computation on all sequences. Therefore, a task pull on
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5,000 sequences may not be a good idea, since the extra 5,000 calls for requesting unfinished
sequences are unavoidable in this approach.

The function pbdLapply() is similar to set mc.preschedule = TRUE in mclapply(). The
5,000 sequences are equally divided by the number of cores available for processing and pro-
cessed by each core simultaneously. As such, there is no call for requesting sequences. A good
choice of the number of cores to use is generally related to the number of sequences. However,
this needs to be tuned with a few empirical runs for optimal performance.

3.4. Performance

The three methods of parallelizing cubfits calls, (mclapply(), task.pull(), and pbdLapply()),
have all been tested on a Yeast genome which has about 5346 genes and corresponding gene
expression. The average run times of 200 iterations of cubfits() are recorded in different
numbers of cores. The speedup via parallelization is defined as the run time of one core of
mclapply() divided by the run time of the parallel version.

Warning: the next test was done with vglm() fits for each MCMC iteration.

Figure 3 shows that for this test, task.pull() is the best approach, although it needs an
additional core for task management. There is no obvious best choice for number of cores, but
after about seven cores, task.pull() is beginning to level out. The performance degradation
of pbdLapply() at 8 cores is due to the unbalanced pre-assignment of amino acids; e.g. Leu
and Arg, both computationally expensive amino acids, may be assigned to the same core.
The performance of mclapply() is surprisingly poor by comparison, which may be due to
memory copying between th eforking mechanism and mc.preschedule = FALSE.

4. Work Flows

Warning: All work flows are intended to be run in batch mode and on Unix-like systems for
optimum performance.

The cubfits package is built with some useful work flows, including

1. simu for simulation studies,

2. wphi for sequences with expression levels (φ) and measurement errors,

3. wophi for sequences without expression levels, and

4. wphi_wophi for model validation.

We share these work flows as templates which may be useful for further research. A quick
way to obtain a default work flow is by calling cubfits::cp.workflow(), which contains the
three aforementioned work flows. Note however that these are only tested privately under a
Linux environment, and are merely served as templates. None of them are checked by CRAN.

Figure 4 depicts the analysis process and how cubfits functions play behind work flows.

� input: FASTA file and gene expression for “with” φ work flow (wphi),

� execute: major functions cubfits() and cubappr() in parallel,
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� output: save .rda files for post processing,

� post process: subset MCMC iterations and precompute statistics,

� diagnosis: generate plots,

� summary: obtain parameters for “with” φ work flow, and

� feedback: utilize “with” φ results to initial “without” φ work flow (wophi).

The work flows are stored in the package directory cubfits/inst/workflow/ and installed
in ${R_HOME}/library/cubfits/workflow/. Therefore, executing the following script can
regenerate those work flows in three directories ./01-simu/, ./02-wphi/, 03-wophi and
./04-wphi_wophi/.

Shell Command� �
$ mkdir 01-simu

$ cd 01-simu/

$ Rscript -e "cubfits ::cp.workflow ( ' simu ') "

$ cd ../

$ mkdir 02-wphi

$ cd 02-wphi/

$ Rscript -e "cubfits ::cp.workflow ( ' wphi ') "

$ cd ../

$ mkdir 03-wophi

9



Figure 4: wphi work flow is mainly based on cubfits() and it’s outputs can be initial values
for wophi work flow mainly based on cubappr(). Note that wphi needs both sequence and
expression data, while wophi only needs sequence. The dashed black line indicate wphi_wophi
work flow combining both wphi and wophi.

$ cd 03-wophi/

$ Rscript -e "cubfits ::cp.workflow ( ' wophi ') "

$ cd ../

$ cd 04-wphi_wophi/

$ Rscript -e "cubfits ::cp.workflow ( ' wphi_wophi ') "

$ cd ../� �
Note that a work flow is mainly coded in shell script and sequentially executes analyses via
several shell commands and R scripts. The analysis R scripts are managed and stored in
cubfits/inst/workflow/ and installed in ${R_HOME}/library/cubfits/workflow/. Those
are served as templates and can be altered by users (copy scripts to local directory and modify
as needed.)

After regenerating those work flows, three shell scripts and one R script are created within
each directory. These scripts consist of:

� run_0.sh creates the needed subdirectories,

� run_1.sh is the main script of analysis,3

� run_2.sh is for post processing,

� run_2_ps.sh is for post scaling, and

� 00-set_env.r is the configuration R script for cubfits.

For simu work flow, one can sequentially execute those shell scripts (run_*.sh) without
further changes, and may learn to adjust scripts for further studies. For wphi and wophi

3 This may require up to 30 cores and may take a few hours to finish depending on the number of sequences.
Please do some testing and adjust this file and 00-set_env.r accordingly before a hero run.
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work flows, one needs to provide genome sequences (e.g. ./02-wphi/param/genome.fasta)
and expression data (e.g. ./02-wphi/param/genome.phi.tsv).

Examples of post processing from the simu work flow (as in (run_2.sh) are given in Figure 5.
The plots are from files ./01-simu/all.out/plot/prxy_roc_ad_fits_pm_5k-10k.pdf and
./01-simu/all.out/plot/prxy_roc_ad_appr_pm_5k-10k.pdf.
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Figure 5: The left plot is predicted expression (MCMC posterior mean of expected expression)
from model fits against observed expression (with measurement errors). In the right plot, the
predicted expression is approximated from a simulation (no model fits.)

5. Utilities

The cubfits package provides simplified data input and output utilities that can quickly import
sequence and expression values, turn them into R data structures, and dump analysis results
in a standard format. As long as data are in this common format, the following functions
simplify analysis work flows as in Section 4. Further, the R data structures used in cubfits
can be converted to different formats after reading in from disk and/or before writing out to
disk.

5.1. Data I/O Functions

� read.seq() reads sequence data in FASTA format, and

� write.seq() writes sequence data in FASTA format.

Both functions are simplified wrapper functions of package seqinr. The writing function is
mainly intended for simulation studies, as described in the section above.

� read.phi() reads in expression values in tsv/csv format, and
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� write.phi() writes out expression values in tsv/csv format.

The default data structure for these is an R data.frame. The writing function is mainly for
simulation studies.

Warning: ideally, the input objects φ and ORF sequences should be

1. matched with each other correspondingly by name, and

2. sorted by name.

If not, %in%, subsetting, and sort() functions can post process input data before converting
to main data structures. We next introduce main data structures followed by conversion
functions provided in cubfits.

5.2. Main Data Structures

The main data structures used in cubfits are:

� reu13.df (used by REU13 students) contains codon positions and expression levels,

� y (used by REU12 students and Wallace et al. (2013)) contains synonymous codon
counts for each sequence,

� n (used by REU12 students and Wallace et al. (2013)) contains total codon count for
each sequence,

� reu13.list is a list version of reu13.df (adopted by WCC),

� y.list is a list version of y (adopted by WCC), and

� n.list is a list version of n (adopted by WCC).

These are typically fixed after data input steps and mainly used in the three main functions
without further changes. Note that the objects with these data structures are normally
sorted by ORF id’s or names. The list versions are also useful for some models and speedup
model fitting. Some conversion functions between data structures are provided in cubfits, see
Section 5.3 for details.

Also, there are other data structures for parameters, but those are sometimes model depen-
dent. For example, data structure b may contain model parameters in different dimension.
The parameters of each amino acid are (log(µ),∆t) for ROC model, (log(µ), ω) for NSEf
model, and (log(µ),∆t, ω) for ROC+NSEf model. See help pages (?cubfits::AllDataFormats)
for details.

The following is an example of reu13.df data structure containing three amino acids A, C,
and D. Each amino acid is in data.frame with four required columns ORF (sequence id),
phi (expression level), Pos (codon position), and Codon, and one optional column Codon.id

(created by rearrange.reu13.df() within gen.reu13.df() call.)

Example of reu13.df� �
> str(ex.train$reu13.df)
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List of 3

$ A: ' data.frame ' : 2682 obs. of 5 variables:

..$ ORF : chr [1:2682] "YBL023C" "YBL023C" "YBL023C" "YBL023C"

...

..$ phi : num [1:2682] 0.0186 0.0186 0.0186 0.0186 0.0186 ...

..$ Pos : num [1:2682] 109 353 123 294 1133 ...

..$ Codon : chr [1:2682] "GCA" "GCA" "GCA" "GCA" ...

..$ Codon.id: int [1:2682] 0 0 0 0 0 0 0 0 0 0 ...

$ C: ' data.frame ' : 662 obs. of 5 variables:

..$ ORF : chr [1:662] "YBL023C" "YBL023C" "YBL023C" "YBL023C"

...

..$ phi : num [1:662] 0.0186 0.0186 0.0186 0.0186 0.0186 ...

..$ Pos : num [1:662] 387 862 813 248 226 40 82 477 922 87 ...

..$ Codon : chr [1:662] "TGC" "TGC" "TGC" "TGT" ...

..$ Codon.id: int [1:662] 0 0 0 1 1 1 1 1 1 1 ...

$ D: ' data.frame ' : 3164 obs. of 5 variables:

..$ ORF : chr [1:3164] "YBL023C" "YBL023C" "YBL023C" "YBL023C"

...

..$ phi : num [1:3164] 0.0186 0.0186 0.0186 0.0186 0.0186 ...

..$ Pos : num [1:3164] 209 199 255 89 273 141 263 158 112 306

...

..$ Codon : chr [1:3164] "GAC" "GAC" "GAC" "GAC" ...

..$ Codon.id: int [1:3164] 0 0 0 0 0 0 0 0 0 0 ...� �
The following is an example of corresponding y which has only synonymous codon counts for
each amino acids and sequences.

Example of y� �
> str(ex.train$y)

List of 3

$ A: int [1:100 , 1:4] 16 4 5 17 5 7 4 0 20 13 ...

..- attr(*, "dimnames")=List of 2

.. ..$ : chr [1:100] "YBL023C" "YBL074C" "YBR060C" "YBR068C" ...

.. ..$ : chr [1:4] "GCA" "GCC" "GCG" "GCT"

$ C: int [1:100 , 1:2] 3 0 1 5 4 2 4 2 0 11 ...

..- attr(*, "dimnames")=List of 2

.. ..$ : chr [1:100] "YBL023C" "YBL074C" "YBR060C" "YBR068C" ...

.. ..$ : chr [1:2] "TGC" "TGT"

$ D: int [1:100 , 1:2] 15 10 10 11 6 12 8 2 17 27 ...

..- attr(*, "dimnames")=List of 2

.. ..$ : chr [1:100] "YBL023C" "YBL074C" "YBR060C" "YBR068C" ...

.. ..$ : chr [1:2] "GAC" "GAT"� �
The following is an example of corresponding n which has only total codon counts for each
amino acids and sequences.

Example of n� �
> str(ex.test$n)

List of 3

$ A: Named int [1:100] 60 22 19 16 22 28 9 22 35 8 ...

..- attr(*, "names")= chr [1:100] "YAL017W" "YBL033C" "YBL102W"

"YBR010W" ...
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$ C: Named int [1:100] 12 7 5 0 1 7 5 4 4 4 ...

..- attr(*, "names")= chr [1:100] "YAL017W" "YBL033C" "YBL102W"

"YBR010W" ...

$ D: Named int [1:100] 96 26 6 4 24 21 5 28 28 3 ...

..- attr(*, "names")= chr [1:100] "YAL017W" "YBL033C" "YBL102W"

"YBR010W" ...� �
5.3. Conversion of Data Structures

In order to improve performance, simply parallelizing the code is not enough. In R, a good
data structure can have massive impact on performance. In practice, it is best that not
to change/modify/subset existing data structures within computations/iterations. It can
be worth generating extra data structures which are efficient for some specific functions or
particular computation, even if the information is at times redundant.

However, managing different data structures could be a nightmare in maintaining consis-
tency across function calls. cubfits provides several utilities to generate (gen*()) or convert
(convert*()) extended data structures, such as reu13.list, n.list, and y.list. See help
pages (?cubfits::DataGenerating and ?cubfits::DataConverting) for details.

Finally, cubfits provides a simple demo

R Script� �
> demo(basic , ' cubfits ' )� �
and shows how those generating and converting functions work. Note that this demo reads
two example files from cubfits and turns them into main data structures which can be
called by the three main functions introduced in Section 2. The files are seq_200.fasta

containing 200 sequences and phi_200.tsv containing the corresponding expression lev-
els. Both files are stored in the package directory cubfits/inst/ex_data/ and installed
in ${R_HOME}/library/cubfits/ex_data/.

6. FAQs

1. Q: Should the amino acids and ORFs be sorted for cubfits?
A: Yes. For performance issue, amino acids are coded with one character code, and
ORFs and their expression data (if any) should be named. Both should be sorted by
their names.

2. Q: What is the main difference of cubfits(), cubappr(), and cubpred()?
A: cubfits() is the usual MCMC method to estimate parameters where some people
call backward simulation. On the other hand, cubappr() is pure simulation without
observations from equilibrium states (if they have been reached.) cubpred() is more like
machine learning techniques, such as cross-validation methods, use part of observations
to estimate parameters, and predict the other parts of data.

3. Q: Should phi.Obs be scaled?
A: For cubappr(), it must be scaled to mean 1 since the function uses as phi.Obs as
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initial values of φg. For cubfits() and cubpred(), it is not necessary. The bias terms
should be also estimated if phi.Obs were not scaled to mean 1. Post scaling of each
MCMC iteration should be performed on parameters and prediction of φg to make them
comparable with cubappr() results. However, this may induce bias as well.

4. Q: What is a better way to specify arguments of the major functions, cubfits(),
cubappr(), or cubpred, through arguments or configurations?
A: In general, cubfits strongly suggests configurations instead of arguments except for
initial values of parameters. Default arguments of the major functions are limited and do
not cover many useful or tedious options. As the development of options is stable, their
should be removed from arguments and only changeable from configurations. Currently,
the main objects for configurations are .CF.CT and .CF.CONF.

5. Q: What are configurations to enforce estimating bias of φg, Kbias?
A: The only options currently cubfits have are in next.

Configuration� �
.CF.CT$type.p <- "lognormal_bias"

.CF.CT$scale.phi.Obs <- FALSE

.CF.CONF$estimate.bias.Phi <- TRUE� �
6. Q: What is the default environment of cubfits?

A: .cubfitsEnv will dynamicly store generic functions, while all data are still located
in .GlobalEnv. See Section 7 for examples.

7. Q: What are the ways to access cubfits functions?
A: There are at least three levels of functions developed in cubfits:

� cubfits::function_name() or simply function_name() (if cubfits is loaded) can
access exported major functions of cubfits,

� cubfits:::function_name() can access unexported internal functions and ob-
jects of cubfits (even cubfits is not loaded), and

� .cubfitsEnv$function_name() can access generic functions dispatched in the en-
vironment .cubfitsEnv if init_function() has been called. (ls(.cubfitsEnv)
can see what have been dispatched.)

8. Q: What is the way to debug cubfits functions?
A: Debugger of negative R may not work well in some cases, so we suggest:

� cat() or print() and source() can be useful for non-generic functions, and

� browser() would be better for generic functions in .cubfitsEnv.

Note that if you source() a new code into R, you may still have to overwrite functions
in .cubfitEnv since MCMC iterations heavily access functions from there instead of
.GlobalEnv.

9. Q: How does cubfits specify the reference codon for a amino acid?
A: cubfits follows VGAM’s arrangement to assign reference codon, default is the last
one by names. For example, the amino acide “Ala/A” has four synonymous codons,
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“GCA”, “GCC”, “GCG”, and “GCT” where “GCT” will be the reference or base line of
model.

10. Q: How does cubfits arrange parameters (log(~µ), ~∆t) for codons and amino acids?
A: For ROC model, parameters (b.Mat in bVec format) are ordered by names of amino
acid first, followed by µ for all non-reference codons, then ∆t for all non-ference codons.
All non-reference codons are ordered by their name as well. For example, the amino
acide“Ala/A”will have a parameter vector ordered as log(µGCA), log(µGCC), log(µGCG),
∆tGCA,∆tGCC ,∆tGCG. See help("bVec") for more details.

7. Miscellaneous

7.1. Multinomial Logistic Regression

fitMultinom() is a utility function which can fit an ROC model with φ values, assuming no
measurement errors as in Shah and Gilchrist (2011). A typical usage is:

R Script� �
> demo(fitMultinom , ' cubfit ' )� �
or

R Script� �
library(cubfits , quietly = TRUE)

# fit Shah & Gilchrist (2011)

init.function(model = "roc")

fitlist <- fitMultinom(ex.train$reu13.df, ex.train$phi.Obs ,

ex.train$y, ex.train$n)

ret.fit <- prop.model.roc(fitlist , phi.Obs.lim =

range(ex.train$phi.Obs))

aa.names <- names(ex.train$reu13.df)

# plot.

par(mfrow = c(1, 3))

for(i.aa in 1: length(aa.names)){

plotmodel(ret.model = ret.fit[[i.aa]], main = aa.names[i.aa])

}� �
where fitlist is an object of b data structure containing all estimations of (log(µ),∆t) for
each synonymous codon and amino acid. This is a quick fit assuming no measurement error
on expression levels. This demo returns plots in Figure 6

Important: Note that init.function(model = "roc") initializes generic functions for
the ROC model and fitMultinom() can access corresponding generic functions from the
.cubfitsEnv environment. The generic function then performs multinomial logistic regres-
sion on the input summarized statistics, and VGAM::vglm() can fit and return parameter
estimations. Therefore, there is only need to initialize once before MCMC iterations, such as
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Figure 6: A simple prediction plot, similar to Figure 1 except empirical binning.

the three main function in Section 2. For performance issues, all calls within MCMC itera-
tions should access generic functions, such as via .cubfitEnv$fitMultinom() regardless of
the model. Do NOT access fitMultinom() within any MCMC iteration.

7.2. Asymmetric Laplace Distribution

As with the regular R functions for different distributions (dnorm(), pnorm(), etc.), cub-
fits provides analogous functions for asymmetric Laplace distribution (ASL) such as rasl(),
dasl(), pasl(), and qasl(). See (Kotz et al. 2001) for more details about the ASL distri-
bution. Finding a MLE numerically is possible for ASL random samples and is implemented
in the asl.optim().

For example, Yassour dataset (Yassour et al. 2009) has 6303 gene expression measurements
and four replicates. I took the geometric averaged mean of the replicates for each gene and
fitted the ASL model to the means of 6303 genes as suggested by Wallace et al. (2013). The
data distribution and the ASL fits are shown in Figures 7a which can be done as the next.

R Script� �
> demo(yassour.asl , ' cubfits ' )� �
Further, I also used normal mixture models to fit the same data using the EM algorithm
implemented in the EMCluster (Chen et al. 2012a) package. Figure 7b shows the fits for
K = 1, 2, . . . , 6 components of normal mixture models, which can be done via a call to

R Script� �
> demo(yassour.mixture , ' cubfits ' )� �
Table 1 provides some details for model comparison. Note that K = 6 has a smaller log
likelihood than K = 5. This means that the EM algorithm converges to local optimum and
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may indicate an overestimated number of components. K = 4 is the best choice among all
models by the smallest BIC.
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(a) ASL model
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(b) Mixture normal model

Figure 7: Different distribution fits to Yassour dataset.

Model p logL AIC BIC

ASL 3 −10739.84 21485.68 21505.93
Normal / K = 1 2 −11033.55 22071.10 22084.60

K = 2 5 −10820.47 21650.93 21684.68
K = 3 8 −10687.06 21390.12 21444.11
K = 4 11 −10655.55 21333.10 21407.34
K = 5 14 −10649.69 21327.38 21421.87
K = 6 17 −10653.19 21340.38 21455.11

Table 1: K is the number of components for the mixture normal model and K = 1 is
equivalent to normal model. p is the number of parameters for the fitted model, logL is the
log likelihood, AIC = −2 logL + 2p, and BIC = −2 logL + p log(n) where n = 6303 is the
number of samples.
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