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1 Introduction

1.1 Linear functions of parameters, contrasts

A linear function of a p–dimensional parameter vector β has the form

C = Kβ
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where K is a q × p matrix. The corresponding linear estimate is Ĉ = Kβ̂. A linear hypothesis has the
form H0 : Kβ = m for some q dimensional vector m.

1.2 Least-squares means (LS–means)

A special type of linear estimates is the so called least–squares means (or LS–means). Other names for
these estimates include population means and marginal means. Consider an imaginary field experiment
analyzed with model of the form

> lm( y ~ treat + block + year)

where treat is a treatment factor, block is a blocking factor and year is the year (a factor) where the ex-
periment is repeated over several years. This model specifies the conditional mean E(Y |treat, block, year).
One may be interested in predictions of the form E(Y |treat). This quantity can not formally be found
from the model. However, it is tempting to average the fitted values of E(Y |treat, block, year) across
the levels of block and year and think of this average as E(Y |treat). This average is precisely what is
called the LS–means. If the experiment is balanced then this average is identical to the average of the
observations when stratified according to treat.

An alternative is to think of block and year as random effects, for example:

> library(lme4)
> lmer( y ~ treat + (1|block) + (1|year))

In this case one would directly obtain E(Y |treat) from the model. However, there are at least two
reasons why one may be hesitant to consider such a random effects model.

• Suppose there are three blocks and the experiment is repeated over three consecutive years. This
means that the random effects are likely to be estimated with a large uncertainty (the estimates
will have only two degrees of freedom).

• Furthermore, treating block and year as random effects means they should in principle come from
a large population of possible blocks and years. This may or may not be reasonable for the blocks,
but it is certainly a dubious assumption for the years.

Below we describe LSmeans as implemented in the doBy package. Notice that the lsmeans pack-
age Lenth (2013) also provides computations of LS–means, see http://cran.r-project.org/web/

packages/lsmeans/.

2 LS–means for linear models

2.1 LS–means – a first example

Consider these simulated data

> simdat

treat year y
1 t1 1 0.5
2 t1 1 1.0
3 t1 1 1.5
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4 t2 1 3.0
5 t1 2 3.0
6 t2 2 4.5
7 t2 2 5.0
8 t2 2 5.5

shown in the figure below.

> library(ggplot2)
> qplot(treat, y, data=simdat, color=year, size=I(3))
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The LS–means under an additive model for the factor treat is

> msim <- lm(y ~ treat + year, data=simdat)
> LSmeans( msim, effect="treat")

estimate se df t.stat p.value treat
1 2 0.2415 5 8.281 4.192e-04 t1
2 4 0.2415 5 16.562 1.465e-05 t2

whereas the population means are

> summaryBy(y~treat, data=simdat)

treat y.mean
1 t1 1.5
2 t2 4.5

Had data been balanced (same number of observations for each combination of treat and year) the
results would have been the same. An argument in favor of the LS–means is that these figures better
represent what one would expect on in an “average year”.

2.2 Example: Warpbreaks

> summary( warpbreaks )

breaks wool tension
Min. :10.0 A:27 L:18
1st Qu.:18.2 B:27 M:18
Median :26.0 H:18
Mean :28.1
3rd Qu.:34.0
Max. :70.0
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> head( warpbreaks, 4 )

breaks wool tension
1 26 A L
2 30 A L
3 54 A L
4 25 A L

> ftable(xtabs( ~ wool + tension, data=warpbreaks))

tension L M H
wool
A 9 9 9
B 9 9 9
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warpbreaks data

> (warp.lm <- lm(breaks ~ wool + tension, data=warpbreaks))

Call:
lm(formula = breaks ~ wool + tension, data = warpbreaks)

Coefficients:
(Intercept) woolB tensionM tensionH

39.28 -5.78 -10.00 -14.72

The fitted values are:

> uni <- unique(warpbreaks[,2:3])
> prd <- cbind(breaks=predict(warp.lm, newdata=uni), uni); prd

breaks wool tension
1 39.28 A L
10 29.28 A M
19 24.56 A H
28 33.50 B L
37 23.50 B M
46 18.78 B H
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2.3 The LS–means

We may be interested in making predictions of the number of breaks for each level of tension for any
type or an average type of wool. The idea behind LS–means is to average the predictions above over
the two wool types. These quantities are the LSmeans for the effect tension.

This is done with:

> LSmeans(warp.lm, effect="tension")

estimate se df t.stat p.value tension
1 36.39 2.738 50 13.289 4.948e-18 L
2 26.39 2.738 50 9.637 5.489e-13 M
3 21.67 2.738 50 7.913 2.269e-10 H

The term LSmeans comes from that these quantities are the same as the least squares main effects of
tension when data is balanced:

> doBy::summaryBy(breaks ~ tension, data=warpbreaks)

tension breaks.mean
1 L 36.39
2 M 26.39
3 H 21.67

When data is not balanced these quantities are in general not the same.

2.4 LS–means for models with interactions

Consider a model with interaction:

> warp.lm2 <- update(warp.lm, .~.+wool:tension)
> coef( summary( warp.lm2 ))

Estimate Std. Error t value Pr(>|t|)
(Intercept) 44.56 3.647 12.218 2.426e-16
woolB -16.33 5.157 -3.167 2.677e-03
tensionM -20.56 5.157 -3.986 2.281e-04
tensionH -20.00 5.157 -3.878 3.199e-04
woolB:tensionM 21.11 7.294 2.895 5.698e-03
woolB:tensionH 10.56 7.294 1.447 1.543e-01

In this case the contrast matrix becomes:

> K2 <- LSmatrix(warp.lm2, effect="tension"); K2

(Intercept) woolB tensionM tensionH woolB:tensionM woolB:tensionH
[1,] 1 0.5 0 0 0.0 0.0
[2,] 1 0.5 1 0 0.5 0.0
[3,] 1 0.5 0 1 0.0 0.5

> linest(warp.lm2, K=K2)

estimate se df t.stat p.value tension
1 36.39 2.579 48 14.112 1.055e-18 L
2 26.39 2.579 48 10.234 1.183e-13 M
3 21.67 2.579 48 8.402 5.468e-11 H
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3 Using the at= argument

> library(ggplot2)
> ChickWeight$Diet <- factor(ChickWeight$Diet)
> qplot(Time, weight, data=ChickWeight, colour=Chick, facets=~Diet,

geom=c("point","line"))
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Consider random regression model:

> library(lme4)
> rr <- lmer(weight~Time*Diet + (0+Time|Chick), data=ChickWeight)
> coef(summary(rr))

Estimate Std. Error t value
(Intercept) 33.218 1.7697 18.7701
Time 6.339 0.6103 10.3855
Diet2 -4.585 3.0047 -1.5258
Diet3 -14.968 3.0047 -4.9815
Diet4 -1.454 3.0177 -0.4818
Time:Diet2 2.271 1.0367 2.1902
Time:Diet3 5.084 1.0367 4.9043
Time:Diet4 3.217 1.0377 3.1004

The contrast matrix for Diet becomes:

> LSmatrix(rr, effect="Diet")

(Intercept) Time Diet2 Diet3 Diet4 Time:Diet2 Time:Diet3 Time:Diet4
[1,] 1 10.72 0 0 0 0.00 0.00 0.00
[2,] 1 10.72 1 0 0 10.72 0.00 0.00
[3,] 1 10.72 0 1 0 0.00 10.72 0.00
[4,] 1 10.72 0 0 1 0.00 0.00 10.72

The value of Time is by default taken to be the average of that variable. Hence the LSmeans is the
predicted weight for each diet at that specific point of time. We can consider other points of time with

> K1 <- LSmatrix(rr, effect="Diet", at=list(Time=1)); K1

(Intercept) Time Diet2 Diet3 Diet4 Time:Diet2 Time:Diet3 Time:Diet4
[1,] 1 1 0 0 0 0 0 0
[2,] 1 1 1 0 0 1 0 0
[3,] 1 1 0 1 0 0 1 0
[4,] 1 1 0 0 1 0 0 1
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The LSmeans for the intercepts is the predictions at Time=0. The LSmeans for the slopes becomes

> K0 <- LSmatrix(rr, effect="Diet", at=list(Time=0))
> K1-K0

(Intercept) Time Diet2 Diet3 Diet4 Time:Diet2 Time:Diet3 Time:Diet4
[1,] 0 1 0 0 0 0 0 0
[2,] 0 1 0 0 0 1 0 0
[3,] 0 1 0 0 0 0 1 0
[4,] 0 1 0 0 0 0 0 1

> LSmeans(rr, K=K1-K0)

estimate se df t.stat p.value Diet Time
1 6.339 0.6105 49.86 10.38 4.632e-14 1 1
2 8.609 0.8380 48.28 10.27 9.705e-14 2 1
3 11.423 0.8380 48.28 13.63 3.588e-18 3 1
4 9.556 0.8392 48.56 11.39 2.584e-15 4 1

We can cook up our own function for comparing trends:

> LSmeans_trend <- function(object, effect, trend){

K<-LSmatrix(object, effect=effect, at=as.list(setNames(1, trend))) -
LSmatrix(object, effect=effect, at=as.list(setNames(0, trend)))

LSmeans(object, K=K)
}

> LSmeans_trend(rr, effect="Diet", trend="Time")

estimate se df t.stat p.value Diet Time
1 6.339 0.6105 49.86 10.38 4.632e-14 1 1
2 8.609 0.8380 48.28 10.27 9.705e-14 2 1
3 11.423 0.8380 48.28 13.63 3.588e-18 3 1
4 9.556 0.8392 48.56 11.39 2.584e-15 4 1

4 Using (transformed) covariates

Consider the following subset of the CO2 dataset:

> data(CO2)
> CO2 <- transform(CO2, Treat=Treatment, Treatment=NULL)
> levels(CO2$Treat) <- c("nchil","chil")
> levels(CO2$Type) <- c("Que","Mis")
> ftable(xtabs( ~ Plant + Type + Treat, data=CO2), col.vars=2:3)

Type Que Mis
Treat nchil chil nchil chil

Plant
Qn1 7 0 0 0
Qn2 7 0 0 0
Qn3 7 0 0 0
Qc1 0 7 0 0
Qc3 0 7 0 0
Qc2 0 7 0 0
Mn3 0 0 7 0
Mn2 0 0 7 0
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Mn1 0 0 7 0
Mc2 0 0 0 7
Mc3 0 0 0 7
Mc1 0 0 0 7

> qplot(x=log(conc), y=uptake, data=CO2, color=Treat, facets=~Type, size=I(3))
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Below, the covariate conc is fixed at the average value:

> co2.lm1 <- lm(uptake ~ conc + Type + Treat, data=CO2)
> LSmeans(co2.lm1, effect="Treat")

estimate se df t.stat p.value Treat conc
1 30.64 0.9556 80 32.07 2.010e-47 nchil 435
2 23.78 0.9556 80 24.89 2.037e-39 chil 435

If we use log(conc) instead we will get an error when calculating LS–means:

> co2.lm <- lm(uptake ~ log(conc) + Type + Treat, data=CO2)
> LSmeans(co2.lm, effect="Treat")

In this case one can do

> co2.lm2 <- lm(uptake ~ log.conc + Type + Treat,
data=transform(CO2, log.conc=log(conc)))

> LSmeans(co2.lm2, effect="Treat")

estimate se df t.stat p.value Treat log.conc
1 30.64 0.7611 80 40.26 7.169e-55 nchil 5.819
2 23.78 0.7611 80 31.25 1.366e-46 chil 5.819

This also highlights what is computed: The average of the log of conc; not the log of the average of
conc.

In a similar spirit consider

> co2.lm3 <- lm(uptake ~ conc + I(conc^2) + Type + Treat, data=CO2)
> LSmeans(co2.lm3, effect="Treat")

estimate se df t.stat p.value Treat conc I(conc^2)
1 34.54 0.9816 79 35.19 4.926e-50 nchil 435 275754
2 27.68 0.9816 79 28.20 5.382e-43 chil 435 275754

Above I(conc^2) is the average of the squared values of conc; not the square of the average of conc,
cfr. the following.
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> co2.lm4 <- lm(uptake ~ conc + conc2 + Type + Treat, data=
transform(CO2, conc2=conc^2))

> LSmeans(co2.lm4, effect="Treat")

estimate se df t.stat p.value Treat conc conc2
1 30.64 0.7765 79 39.46 9.318e-54 nchil 435 275754
2 23.78 0.7765 79 30.63 1.356e-45 chil 435 275754

If we want to evaluate the LS–means at conc=10 then we can do:

> LSmeans(co2.lm4, effect="Treat", at=list(conc=10, conc2=100))

estimate se df t.stat p.value Treat conc conc2
1 14.735 1.701 79 8.662 4.456e-13 nchil 10 100
2 7.876 1.701 79 4.630 1.417e-05 chil 10 100

5 Alternative models

5.1 Generalized linear models

We can calculate LS–means for e.g. a Poisson or a gamma model. Default is that the calculation is
calculated on the scale of the linear predictor. However, if we think of LS–means as a prediction on the
linear scale one may argue that it can also make sense to transform this prediction to the response scale:

> warp.poi <- glm(breaks ~ wool + tension, family=poisson, data=warpbreaks)
> LSmeans(warp.poi, effect="tension", type="link")

estimate se z.stat p.value tension
1 3.589 0.03916 91.64 0 L
2 3.268 0.04596 71.10 0 M
3 3.070 0.05071 60.55 0 H

> LSmeans(warp.poi, effect="tension", type="response")

estimate se z.stat p.value tension
1 36.20 1.418 91.64 0 L
2 26.25 1.206 71.10 0 M
3 21.55 1.093 60.55 0 H

> warp.qpoi <- glm(breaks ~ wool + tension, family=quasipoisson, data=warpbreaks)
> LSmeans(warp.qpoi, effect="tension", type="link")

estimate se z.stat p.value tension
1 3.589 0.08085 44.39 0.000e+00 L
2 3.268 0.09488 34.44 6.093e-260 M
3 3.070 0.10467 29.33 3.883e-189 H

> LSmeans(warp.qpoi, effect="tension", type="response")

estimate se z.stat p.value tension
1 36.20 2.926 44.39 0.000e+00 L
2 26.25 2.490 34.44 6.093e-260 M
3 21.55 2.256 29.33 3.883e-189 H

For comparison with the linear model, we use identity link
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> warp.gam <- glm(breaks ~ wool + tension, family=Gamma(link=identity),
data=warpbreaks)

> LSmeans(warp.gam, effect="tension", type="link")

estimate se df t.stat p.value tension
1 35.66 3.222 50 11.07 4.766e-15 L
2 27.12 2.448 50 11.08 4.543e-15 M
3 21.53 1.944 50 11.08 4.629e-15 H

Notice that the linear estimates are practically the same as for the linear model, but the standard errors
are smaller and hence the confidence intervals are narrower.

An alternative is to fit a quasi Poisson “model”

> warp.poi3 <- glm(breaks ~ wool + tension, family=quasipoisson(link=identity),
data=warpbreaks)

> LSmeans(warp.poi3, effect="tension")

estimate se z.stat p.value tension
1 36.00 2.950 12.204 2.965e-34 L
2 26.83 2.544 10.546 5.316e-26 M
3 21.62 2.281 9.475 2.657e-21 H

5.2 Linear mixed effects model

For the sake of illustration we treat wool as a random effect:

> library(lme4)
> warp.mm <- lmer(breaks ~ tension + (1|wool), data=warpbreaks)
> LSmeans(warp.mm, effect="tension")

estimate se df t.stat p.value tension
1 36.39 3.653 2.538 9.961 0.004230 L
2 26.39 3.653 2.538 7.224 0.009354 M
3 21.67 3.653 2.538 5.931 0.015093 H

Notice here that the estimates themselves are very similar to those above but the standard errors are
much larger. This comes from that there that wool is treated as a random effect.

> VarCorr(warp.mm)

Groups Name Std.Dev.
wool (Intercept) 3.42
Residual 11.62

Notice that the degrees of freedom by default are adjusted using a Kenward–Roger approximation
(provided that pbkrtest is installed). Unadjusted degrees of freedom are obtained with

> LSmeans(warp.mm, effect="tension", adjust.df=FALSE)

estimate se df t.stat p.value tension
1 36.39 3.653 49 9.961 2.288e-13 L
2 26.39 3.653 49 7.224 2.986e-09 M
3 21.67 3.653 49 5.931 2.986e-07 H
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5.3 Generalized estimating equations

Lastly, for gee-type “models” we get

> library(geepack)
> warp.gee <- geeglm(breaks ~ tension, id=wool, family=poisson, data=warpbreaks)
> LSmeans(warp.gee, effect="tension")

estimate se z.stat p.value tension
1 3.594 0.15869 22.65 1.427e-113 L
2 3.273 0.06401 51.13 0.000e+00 M
3 3.076 0.09428 32.62 1.903e-233 H

> LSmeans(warp.gee, effect="tension", type="response")

estimate se z.stat p.value tension
1 36.39 5.775 22.65 1.427e-113 L
2 26.39 1.689 51.13 0.000e+00 M
3 21.67 2.043 32.62 1.903e-233 H

6 Miscellaneous

6.1 Under the hood

Under the hood, LSmeans() generates a contrast matrix

> K <- LSmatrix(warp.lm, effect="tension"); K

(Intercept) woolB tensionM tensionH
[1,] 1 0.5 0 0
[2,] 1 0.5 1 0
[3,] 1 0.5 0 1

and passes this matrix onto linest():

> linest( warp.lm, K=K )

estimate se df t.stat p.value tension
1 36.39 2.738 50 13.289 4.948e-18 L
2 26.39 2.738 50 9.637 5.489e-13 M
3 21.67 2.738 50 7.913 2.269e-10 H

6.2 Example: Non–estimable contrasts

Consider this highly unbalanced simulated dataset:

> head(dat.nst)

AA BB CC y
1 1 1 1 0.5982
2 2 1 1 -1.4677
3 1 2 2 -0.8903
4 2 2 2 -0.4914
5 1 3 2 -0.7414
6 2 3 2 -1.6966
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> ftable(xtabs( ~ AA + BB + CC, data=dat.nst))

CC 1 2 3 4
AA BB
1 1 3 0 0 0

2 0 1 1 1
3 0 1 1 1

2 1 3 0 0 0
2 0 1 1 1
3 0 1 1 1

We have

> mod.nst <- lm(y ~ AA + BB : CC, data=dat.nst)
> coef( mod.nst )

(Intercept) AA2 BB1:CC1 BB2:CC1 BB3:CC1 BB1:CC2
0.6031 -0.6840 -0.4370 NA NA NA

BB2:CC2 BB3:CC2 BB1:CC3 BB2:CC3 BB3:CC3 BB1:CC4
-0.9520 -1.4801 NA -0.5477 -0.8012 NA
BB2:CC4 BB3:CC4
-1.0344 NA

In this case some of the LSmeans values are not estimable (see Section 6.3 for details):

> LSmeans(mod.nst, effect=c("BB", "CC"))

estimate se df t.stat p.value BB CC
1 -0.1759 0.3854 10 -0.4565 0.65779 1 1
2 NA NA NA NA NA 2 1
3 NA NA NA NA NA 3 1
4 NA NA NA NA NA 1 2
5 -0.6909 0.6675 10 -1.0350 0.32504 2 2
6 -1.2190 0.6675 10 -1.8263 0.09777 3 2
7 NA NA NA NA NA 1 3
8 -0.2866 0.6675 10 -0.4294 0.67674 2 3
9 -0.5401 0.6675 10 -0.8091 0.43728 3 3
10 NA NA NA NA NA 1 4
11 -0.7733 0.6675 10 -1.1585 0.27358 2 4
12 0.2611 0.6675 10 0.3912 0.70387 3 4

6.3 Handling non–estimability

The model matrix for the model in Section 6.2 does not have full column rank and therefore not all
values are calculated by LSmeans().

> X <- model.matrix( mod.nst ); as(X,"Matrix")

18 x 14 sparse Matrix of class "dgCMatrix"

1 1 . 1 . . . . . . . . . . .
2 1 1 1 . . . . . . . . . . .
3 1 . . . . . 1 . . . . . . .
4 1 1 . . . . 1 . . . . . . .
5 1 . . . . . . 1 . . . . . .
6 1 1 . . . . . 1 . . . . . .
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7 1 . 1 . . . . . . . . . . .
8 1 1 1 . . . . . . . . . . .
9 1 . . . . . . . . 1 . . . .
10 1 1 . . . . . . . 1 . . . .
11 1 . . . . . . . . . 1 . . .
12 1 1 . . . . . . . . 1 . . .
13 1 . 1 . . . . . . . . . . .
14 1 1 1 . . . . . . . . . . .
15 1 . . . . . . . . . . . 1 .
16 1 1 . . . . . . . . . . 1 .
17 1 . . . . . . . . . . . . 1
18 1 1 . . . . . . . . . . . 1

We consider a linear normal model, i.e. an n dimensional random vector y = (yi) for which E(y) = µ =
Xβ and Cov(y) = σ2I where X does not have full column rank We are interested in linear functions of
β, say

c = k>β =
∑
j

kjβj.

> K <- LSmatrix(mod.nst, effect="BB", at=list(CC=2));K

(Intercept) AA2 BB1:CC1 BB2:CC1 BB3:CC1 BB1:CC2 BB2:CC2 BB3:CC2 BB1:CC3
[1,] 1 0.5 0 0 0 1 0 0 0
[2,] 1 0.5 0 0 0 0 1 0 0
[3,] 1 0.5 0 0 0 0 0 1 0

BB2:CC3 BB3:CC3 BB1:CC4 BB2:CC4 BB3:CC4
[1,] 0 0 0 0 0
[2,] 0 0 0 0 0
[3,] 0 0 0 0 0

> LSmeans(mod.nst, K=K)

estimate se df t.stat p.value BB CC
1 NA NA NA NA NA 1 2
2 -0.6909 0.6675 10 -1.035 0.32504 2 2
3 -1.2190 0.6675 10 -1.826 0.09777 3 2

A least squares estimate of β is
β̂ = GX>y

where G is a generalized inverse of X>X. Since the generalized inverse is not unique then neither is the
estimate β̂. One least squares estimate of β is

> XtXinv <- MASS::ginv(t(X)%*%X)
> bhat <- as.numeric(XtXinv %*% t(X) %*% dat.nst$y)
> zapsmall(bhat)

[1] -0.1288 -0.6840 0.2949 0.0000 0.0000 0.0000 -0.2200 -0.7482 0.0000
[10] 0.1842 -0.0692 0.0000 -0.3024 0.7319

Hence ĉ = k>β̂ is in general not unique.

> K %*% bhat

[,1]
[1,] -0.4708
[2,] -0.6909
[3,] -1.2190
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However, for some values of k, the estimate ĉ is unique (i.e. it does not depend on the choice of generalized
inverse). Such linear functions are said to be estimable and can be described as follows:

All we specify with µ = Xβ is that µ is a vector in the linear subspace L = C(X) where C(X) denotes
the column space of X. We can only learn about β through Xβ so the only thing we can say something
about is linear combinations ρ>Xβ. Hence we can only say something about k>β if there exists ρ such
that k>β = ρ>Xβ, i.e., if k = X>ρ, that is, if k is in the column space C(X>) of X>. That is, if k is
perpendicular to all vectors in the null space N(X) of X. To check this, we find a basis B for N(X).
This can be done in many ways, for example via a singular value decomposition of X, i.e.

X = UDV >

A basis for N(X) is given by those columns of V that corresponds to zeros on the diagonal of D.

> S<-svd(X)
> names(S)

[1] "d" "u" "v"

> B<-S$v[, S$d<1e-10, drop=FALSE ]; zapsmall(B) ## Basis for N(X)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.3392 -0.0006 0.0997 -0.0043 -0.0023 0
[2,] 0.0000 0.0000 0.0000 0.0000 0.0000 0
[3,] -0.3392 0.0006 -0.0997 0.0043 0.0023 0
[4,] -0.2727 -0.2494 0.9244 -0.0032 -0.0942 0
[5,] -0.0727 0.9176 0.2509 -0.1669 0.2487 0
[6,] -0.0019 -0.0951 0.0517 0.6615 0.7421 0
[7,] -0.3392 0.0006 -0.0997 0.0043 0.0023 0
[8,] -0.3392 0.0006 -0.0997 0.0043 0.0023 0
[9,] 0.0001 0.2944 0.0193 0.7310 -0.6152 0

[10,] -0.3392 0.0006 -0.0997 0.0043 0.0023 0
[11,] -0.3392 0.0006 -0.0997 0.0043 0.0023 0
[12,] 0.0000 0.0000 0.0000 0.0000 0.0000 -1
[13,] -0.3392 0.0006 -0.0997 0.0043 0.0023 0
[14,] -0.3392 0.0006 -0.0997 0.0043 0.0023 0

> zapsmall( rowSums(K%*%B) )

[1] 1.79 0.00 0.00

6.4 Pairwise comparisons

We will just mention that for certain other linear estimates, the matrix K can be generated automatically
using glht() from the multcomp package. For example, pairwise comparisons of all levels of tension
can be obtained with

> library("multcomp")
> g1 <- glht(warp.lm, mcp(tension="Tukey"))
> summary( g1 )

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts
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Fit: lm(formula = breaks ~ wool + tension, data = warpbreaks)

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)

M - L == 0 -10.00 3.87 -2.58 0.0336 *
H - L == 0 -14.72 3.87 -3.80 0.0011 **
H - M == 0 -4.72 3.87 -1.22 0.4474
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Adjusted p values reported -- single-step method)

The K matrix generated in this case is:

> K1 <- g1$linfct; K1

(Intercept) woolB tensionM tensionH
M - L 0 0 1 0
H - L 0 0 0 1
H - M 0 0 -1 1
attr(,"type")
[1] "Tukey"
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