
Downscaling species occupancy:

an introduction and tutorial

Charles J. Marsh

March 10, 2016

Contents

1 Introduction to downscaling 2

2 Using the downscale package 4

3 Package tutorial 6
3.1 A quick example . 6
3.2 Preparing atlas data for downscaling . 8
3.3 Downscaling the atlas data - more detailed examples 11
3.4 Ensemble modelling . 14
3.5 Creating atlas data from point records . 20

4 Bibliography 29

1

1 Introduction to downscaling

In order to assess and manage the status of a species we need to know the abundance of indi-
viduals in the population(s) and their changes over time. For the vast majority of species this
information is unobtainable, however one important proxy of true abundance and extinction
risk is the area occupied by the species. For example, the area of occupancy (AOO) is a little-
used measure of conservation status in the IUCN red list (IUCN 2014). Although easier to
estimate than true abundance, the difficulty in estimating AOO lies in the extensive sampling
required across the full range of the species at a grain size sufficiently fine to give meaningful
estimates. For the majority of species this is still impractical or unfeasible at these grain sizes
leaving a large number of unsampled cells and therefore false absences. However, as we esti-
mate occupancy at increasing grain sizes we increase our confidence in our presence-absence
predictions. Such coarse-grain atlas data, generally generated from opportunistic recording
over extended periods of time, are much more widely available. However, at such coarse grain
sizes we also lose resolution in our status estimates as occupancies at large grain sizes are less
closely correlated with true abundance (Hartley and Kunin 2003).

A solution is to employ the occupancy-area relationship (OAR); the increase in the area occu-
pied by a species as grain size increases (Kunin 1998). If the relationship can be described at
these coarser grain sizes where confidence is high, then we can extrapolate to predict occupancy
at the fine grain sizes more closely related to the true abundance and conservation status.

Many models have been proposed to describe this geometric relationship, and it appears that
no one model consistently provides the best predictions (Azaele et al. 2012, Barwell et al.
2014). This package provides functions for ten commonly applied model: Nachman, power law,
logistic, poisson, negative binomial, generalised negative binomial, improved negative binomial,
finite negative binomial, Thomas and Hui models. The Hui model (Hui et al. 2006, 2009) is
unique in that it only requires data from a single spatial scale but does require the spatial
relationships (i.e. cell coordinates) of all cells. The other nine models require the occupancies
at multiple grain sizes. The package then attempts to optimise the model parameters to fit
the occupancy data in log-log space. Once each model is parameterised the relationships are
extrapolated to estimate occupancy at finer grain sizes.

Figure 1: “Upraining” of atlas data at a 10km cell width to 20km, 40km and 80 km.
As the grain size is increased occupancy also increases.

As well as the fitting, prediction and plotting of the downscaling models, the package also
contains functions for preparing coarse-scale data (“upgraining”; fig. 1). The tutorial vignette

2

“Upgraining atlas data for downscaling: threshold selection using upgrain.threshold” pro-
vides an overview of the different methods for achieving this.

vignette("Upgraining", package = "downscale")

For downscaling it is important to check the data for the scale of saturation and endemism. The
scale of saturation is the grain size where all cells are occupied (fig. 2a) i.e. the proportion of
occupancy = 1. The scale of endemism is the grain size where all presences occur in a single cell
(2b). All data above these grain sizes should be discarded as they provide no further information
for modelling the occupancy-area curve. The downscale functions will automatically set these
occupancies to NA for modelling purposes, but this may lead to insufficient scales (less than
three) remaining for modelling.

Figure 2: Occupancy-area relationships (OAR) for two species showing a) the scale
of saturation (the grain size at which all cells are occupied) and b) the scale of
endemism (the scale at which only one cell is occupied).

3

2 Using the downscale package

The general flow of the downscale package is presented in fig. 3. The package is based around
seven user functions: upgrain.threshold, upgrain, downscale, predict, hui.downscale,
plot, and ensemble.downscale. Ten downscaling models are available (Nachman, power law,
logistic, poisson, negative binomial, generalised negative binomial, improved negative binomial,
finite negative binomial, Thomas and Hui models). Details of all models can be found in the
help files, and in the supplementary information of Barwell et al. 2014.

The user may input three types of data:

1) A data frame with columns for grain sizes (cell area) and occupancies in that order;

2) A data frame of cell coordinates and presence-absence data (presence = 1; absence = 0).
Column names must be “lon”, “lat”, and “presence” in that order;

3) A raster layer of presence-absence data (presence = 1; absence = 0; no data = NA).

Figure 3: Structure of the downscale package showing the flow between the seven
functions (yellow) and the three output object classes (orange). Black arrows
represent the input of raw data of three types: a raster layer of presence-absence
data, a data frame of cell coordinates and presence-absence for each cell, and a data
frame of occupancies at coarse-grain sizes. Yellow arrows are where the output of
one function may be used as the input for the next function

4

To carry out downscaling with the Hui model (Hui et al. 2006, 2009) or upgraining of atlas
data (and exploration of upgraining thresholds) then the input data must be of type 2 or 3.
The table below shows the functions to use to achieve desired objectives with regards to input
data. In all cases upgrain.threshold can be used to explore thresholds for upgrain.

Input data type Objective Function flow

Data frame of cell areas Downscale downscale ⇒
and occcupancies (excluding Hui model) predict ⇒

plot

Data frame of cell coordinates Downscale upgrain ⇒
and presence-absence data (excluding Hui model) downscale ⇒

predict ⇒
plot

Raster layer of presence- Downscale upgrain ⇒
absence data (excluding Hui model) downscale ⇒

predict ⇒
plot

Data frame of cell coordinates Downscale (upgrain ⇒)
and presence-absence data (including Hui model) hui.downscale ⇒

plot

Raster layer of presence- Downscale (upgrain ⇒)
absence data (including Hui model) hui.downscale ⇒

plot

Data frame of cell areas Ensemble modelling ensemble.downscale

and occcupancies (excluding Hui model)

Data frame of cell coordinates Ensemble modelling upgrain ⇒
and presence-absence data (with or without Hui model) ensemble.downscale

Raster layer of presence- Ensemble modelling upgrain ⇒
absence data (with or without Hui model) ensemble.downscale

5

3 Package tutorial

First, we must download the downscale package from CRAN if not already done so.

install.packages("downscale")

Then load in the library

library("downscale")

3.1 A quick example

We will start with the simplest example of using the downscaling package, where we already
have occupancy data across a number of grain sizes. We first create some imaginary data; a
data frame where the first column are the cell areas (grain size) and the proportion of occupancy
as the second column:

occupancy <- data.frame(Cell.area = c(100, 400, 1600, 6400),

Occupancy = c(0.23, 0.56, 0.87, 1))

Now we use downscale to estimate the model parameters for the logistic model to the data.
Note: for this type of data input we must also specify the extent (the total area over which
occupancy has been measured) which is necessary for converting the modelled proportion of
occupancies to area of occupancy (AOO) later on. In this imaginary data we will set extent to
be 320000 km2:

fit logistic model to observed data using downscale

logis.mod <- downscale(occupancies = occupancy,

model = "Logis",

extent = 320000)

this creates an object of class 'downscale'
logis.mod

$model

[1] "Logis"

$pars

C z

0.002014927 1.083725424

$observed

Cell.area Occupancy

1 100 0.23

2 400 0.56

3 1600 0.87

4 6400 1.00

$extent

[1] 320000

attr(,"class")

[1] "downscale"

6

The downscale function has estimated best-fit parameters of 0.00201 for C and 1.0837 for z for
the logistic model. We then take these parameters from the 'downscale' object to extrapolate
the fitted logistic function to predict occupancies at finer grain sizes. We will first create a
vector of grain sizes (cell area) to predict. If we include the original cell sizes used for modelling
we can also observe the model fit.

new grain sizes to predict

areas.pred <- c(1, 2, 5, 25, 100, 400, 1600, 6400)

predict for the new grain sizes using the downscale object

logis.pred <- predict(logis.mod,

new.areas = areas.pred,

plot = FALSE)

this creates an object of class ‘predict.downscale’

occupancy is given as a proportion (Occupancy) and area of occupancy (AOO)

logis.pred$predicted

Cell.area Occupancy AOO

1 1 0.002010876 643.4802

2 2 0.004252482 1360.7942

3 5 0.011396541 3646.8932

4 25 0.061873397 19799.4871

5 100 0.228564935 73140.7793

6 400 0.570999511 182719.8435

7 1600 0.856717834 274149.7068

8 6400 0.964106833 308514.1867

now we can plot the predictions with log-log axes.

Black points are the observed values, red points are the predicted values

plot(logis.pred)

7

3.2 Preparing atlas data for downscaling

For the majority of cases we will have atlas data at a single scale. For downscaling we will
need to therefore upgrain the atlas data. Read in the atlas data for a hypothetical UK species
provided in the package. In this case the format is a data frame of sample cell coordinates and
presence-absence data but it could also be a raster layer:

if it is not already loaded, load in the package

library(downscale)

data.file <- system.file("extdata", "atlas_data.txt", package = "downscale")

atlas.data <- read.table(data.file, header = TRUE)

The data frame must have the column names “lon”, “lat” and “presence”:

head(atlas.data)

lon lat presence

1 8170 10 0

2 8130 20 0

3 8140 20 0

4 8160 20 0

5 8170 20 0

6 8140 30 0

The first step is to upgrain the atlas data to calculate occupancy at larger grain sizes than the
atlas data – this provides the occupancy data points to fit the different downscaling models
to. If we simply increase the cell sizes of the atlas data then the extent also increases. As
downscaling models requires the proportion of occupancy at each grain, if the proportions are
calculated from a different total area in each case we may run in to problems. Therefore it is
important that we fix the extent of all grain sizes to the extent of the largest grain size, but
this means compromising between assigning unsampled cells as absences or excluding sampled
cells. We therefore carry this out by applying a threshold to the proportion of a coarse-scale cell
that has been sampled at the fine-scale. For example, if a 40km width cell was only sampled
by a single 10km atlas absence cell within it, we may want to discard it as a) it is likely that
at least one of the unsampled cells may actually be a presence (coarse-scale false absence), and
b) all the unsampled atlas cells would be assigned as absences even though they have not been
sampled (atlas-scale false absence). However, discarding the cell will also lead to some loss of
information.

The choice of threshold can have important consequences on the model predictions and so it
is highly recommended to read the vignette “Upgraining atlas data for downscaling: threshold
selection using upgrain.threshold” and the function helpfile (?upgrain.threshold) for more
detail on creating your multi-scale standardised atlas data:

vignette("Upgraining", package = "downscale")

The upgrain.threshold allows the user to explore these trade-offs through several plots, and
provides four recommendations for possible threshold selections: including all the sampled cells
(All_Sampled); including only cells at the largest grain size that were completely sampled at
the atlas scale (Sampled_Only); a species-specific threshold that retains all species occurrences
(All_Occurrences); and an atlas-specific threshold that maintains the same extent as the
original atlas data (Gain_Equals_Loss).

explore thresholds using upgrain.threshold

thresh <- upgrain.threshold(atlas.data = atlas.data,

cell.width = 10,

scales = 3)

8

This gives two sets of plots. First is a set of four plots that explore the trade-offs between dis-
carding sampled cells and making assumptions about unsampled cells, which are automatically
assigned as absences.

The second set of plots (hit return or click on the plot window to view the second window)
are the standardised atlas data generated after applying the four different threshold criteria
("All_Sampled", "All_Occurrences", "Gain_Equals_Loss" and "Sampled_Only").

9

We can see the threshold values for the four threshold criteria

thresh$Thresholds

All_Sampled All_Occurrences Gain_Equals_Loss Sampled_Only

1 0 0.04 0.51 1

Once the user has decided on a threshold value (any value between 0 and 1 can be selected) or
one of the threshold criteria, the upgrain function will prepare the atlas data for downscaling.
For now we’ll use one of the pre-defined options "All_Occurrences" which ensures that all
occurrence records are retained. This creates an object of class 'upgrain' which can then then
be used directly as an input for downscale, along with plots of the original and standardised
atlas data at each scale. We will save the 'upgrain' object here for subsequent analyses in the
next section.

upgrain data (using All Occurrences threshold)

occupancy <- upgrain(atlas.data,

cell.width = 10,

scales = 3,

method = "All_Occurrences",

plot = TRUE)

10

3.3 Downscaling the atlas data - more detailed examples

As we can pass our 'upgrain' object directly in to the downscale function we no longer require
to specify the extent. Let’s try the improved negative binomial model (INB) first:

Improved Negative Binomial model

(inb <- downscale(occupancies = occupancy,

model = "INB"))

$model

[1] "INB"

$pars

C r b

1.42670491 0.04906771 1.82970792

$observed

Cell.area Occupancy

1 100 0.2713542

2 400 0.4122807

3 1600 0.5219298

4 6400 0.7017544

$extent

[1] 364800

attr(,"class")

[1] "downscale"

The downscaling functions use an optimisation procedure to fit the models to the upgrained
occupancy data. Suitable starting values for model parameters are automatically inputted,
however if the models aren’t converging then it is possible to specify user-specific parameters.
The table below shows the default starting parameters implemented.

Model Parameter 1 Parameter 2 Parameter 3
Nachman "C" = 0.01 "z" = 0.01
PL "C" = 0.01 "z" = 0.01
Logis "C" = 0.01 "z" = 0.01
Poisson "lambda" = 1e-8
NB "C" = 0.01 "k" = 0.01
GNB "C" = 0.00001 "z" = 1 "k" = 0.01
INB "C" = 1 "r" = 0.01 "b" = 0.1
FNB "W" = 10 "k" = 10
Thomas "rho" = 1e-8 "mu" = 10 "sigma" = 1

If using your own parameters, they must be in the form of a list with the same parameter
names (take particular note of capitals) as the original starting parameters:

Specifying the starting parameters

params.new <- list("C" = 0.1, "r" = 0.00001, "b" = 0.1)

inb.new <- downscale(occupancies = occupancy,

model = "INB",

starting_params = params.new)

11

We can visually compare the two to see which has a better fit by extrapolating the modelled
curves to finer grain sizes using predict as before (plotting can be called directly from predict

or through plot). The first plot is the prediction using the original parametersm and the second
plot using the new parameters (a much worse fit in this case):

plot the predictions of two FNB models using predict.downscale

inb.pred <- predict(inb,

new.areas = c(1, 2, 5, 25, 100, 400, 1600, 6400),

plot = TRUE)

inb.pred.new <- predict(inb.new,

new.areas = c(1, 2, 5, 25, 100, 400, 1600, 6400),

plot = TRUE)

1 5 50 500 5000

0.
05

0.
10

0.
20

0.
50

1.
00

INB model

Log cell area

Lo
g

oc
cu

pa
nc

y

The Thomas model involves an integration process that can be time-consuming to run. For
this reason the user may alter the tolerance during integration – the finer the tolerance the
more accurate the prediction but the longer the computation time. It can therefore be a good
idea to initially try a larger tolerance value than the default (1e−6) in order to ascertain if the
starting parameters are likely to be correct. You can then always use the parameter estimates
as the starting parameters when using a smaller tolerance value.

Thomas model

thomas <- downscale(occupancies = occupancy,

model = "Thomas",

tolerance = 1e-3)

the tolerance can also be set for the predict function

thomas.pred <- predict(thomas,

new.areas = c(1, 2, 5, 25, 100, 400, 1600, 6400),

tolerance = 1e-6)

When plotting the results we can also change the look of the graphics

plot(thomas.pred,

col.pred = "green", # change the colour of the prediction

pch = 16, # change point character

lwd.obs = 3) # change line width of the observed data

12

The Hui model is slightly different from the other downscaling models in that it does not need
occupancy from multiple scales. Instead, it only takes the coordinates of presence-absence data
at the atlas scale and uses this to calculate occupancy at finer grain sizes. For this reason it is
implemented using a seperate function, hui.downscale, which in effect runs downscale and
predict.downscale in a single step.

The input data must either be a presence-absence raster layer of the atlas data, or a data
frame of cell coordinates and presence-absence data. Additionally the function requires the
cell widths of the input data, and if using a data frame as the input data, the total extent, and
the grain sizes (cell area) for which we wish to predict occupancy. These must be smaller than
the cell area of the input data. Like the Thomas model, the tolerance can be specified if the
results appear inaccurate (set tolerance to a smaller number) or takes extensive programming
time (set tolerance to a larger number).

Hui model using a data frame as input

hui <- hui.downscale(atlas.data,

cell.width = 10,

extent = 320000,

new.areas = c(1, 2, 5, 15, 50))

the output is a normal ‘predict.downscale’ object

plot(hui)

Or we can use the 'upgrain' object as input

hui <- hui.downscale(occupancy,

cell.width = 10,

new.areas = c(1, 2, 5, 15, 50),

plot = TRUE)

It is critical to note here that the proportion of occupancies are very different between the two
plots. This is because the extents are different between the original atlas data 320000 km2 and

13

the standardised atlas data 364800 km2. If comparing predictions using multiple models it is
crucial to use the same standardised data in all cases, or else only compare the converted area
of occupancies (AOO) and not the proportion of occupancies.

3.4 Ensemble modelling

No single model appears to provide the most accurate fine-scale occupancy predictions in all
cases, and it is difficult to predict which model will in a given situation. The ensemble function
will model and predict occupancy for multiple models simultaneously, and also applies a simple
model averaged prediction (the means of the log occupancies). Some or all of the models can
be selected. Again, lets start where our data is a data frame of occupancies at each grain size:

hypothetical occupancy data

occupancy <- data.frame(Cell.area = c(100, 400, 1600, 6400),

Occupancy = c(0.23, 0.56, 0.87, 1))

grain sizes (cell areas) to predict

areas.pred <- c(1, 2, 5, 25, 100, 400, 1600, 6400)

The ensemble.downscale function does the modelling and predicting in a single step so we
need a few more arguments than when just using downscale: the cell areas of the fine grain
sizes we wish to predict, the total extent and the models we wish to apply. Also note, with
this type of input data we can not apply the Hui model.

ensemble <- ensemble.downscale(occupancy,

new.areas = areas.pred,

extent = 320000,

models = c("Nachman",

"PL",

"Logis",

"GNB",

"FNB"),

plot = TRUE)

14

Nachman model is running... complete

PL model is running... complete

Logis model is running... complete

GNB model is running... complete

FNB model is running... complete

the model averaged predictions are in grey and the model predictions in red

to print the predicted proportion of occupancies for each model

ensemble$Occupancy

Cell.area Nachman PL Logis GNB FNB Means

1 1 0.00708498 0.0558199 0.00201088 0.00405949 0.00284089 0.00620137

2 2 0.01217964 0.0711372 0.00425248 0.00764569 0.00566805 0.01098108

3 5 0.02485181 0.0980179 0.01139654 0.01758727 0.01406806 0.02330096

4 25 0.08522024 0.1721162 0.06187339 0.07373553 0.06710741 0.08520463

5 100 0.23247468 0.2795353 0.22856494 0.23018897 0.22857598 0.23910431

6 400 0.54430571 0.4539953 0.57099951 0.55812208 0.56665466 0.53692736

7 1600 0.90314840 0.7373372 0.85671783 0.87738733 0.87016143 0.84685851

8 6400 0.99902662 1.1975149 0.96410683 0.98448699 0.97632517 1.02083964

15

and print the predicted area of occupancies (AOO) for each model

ensemble$AOO

Cell.area Nachman PL Logis GNB FNB Means

1 1 2267.193 17862.39 643.4802 1299.035 909.0862 1984.439

2 2 3897.484 22763.91 1360.7942 2446.623 1813.7772 3513.945

3 5 7952.579 31365.75 3646.8932 5627.925 4501.7776 7456.307

4 25 27270.478 55077.20 19799.4871 23595.370 21474.3707 27265.480

5 100 74391.897 89451.29 73140.7793 73660.469 73144.3146 76513.378

6 400 174177.827 145278.51 182719.8435 178599.064 181329.4907 171816.756

7 1600 289007.489 235947.91 274149.7068 280763.946 278451.6571 270994.723

8 6400 319688.520 383204.78 308514.1867 315035.837 312424.0534 326668.684

Alternatively, the input data may be an object of class ‘upgrain’, which also allows us to run
the Hui model as long as we specify the cell width:

read in atlas data

data.file <- system.file("extdata", "atlas_data.txt", package = "downscale")

atlas.data <- read.table(data.file, header = TRUE)

upgrain data (using All Occurrences threshold)

occupancy <- upgrain(atlas.data,

cell.width = 10,

scales = 3,

method = "All_Occurrences",

plot = FALSE)

ensemble modelling

ensemble <- ensemble.downscale(occupancy,

new.areas = areas.pred,

cell.width = 10,

models = c("Nachman",

"PL",

"Logis",

"GNB",

"FNB",

"Hui"),

plot = TRUE)

Nachman model is running... complete

PL model is running... complete

Logis model is running... complete

GNB model is running... complete

FNB model is running... complete

Hui model is running... complete

16

If we want to run all ten models we can specify models = "all". Once again, we can set the
tolerance values for the modelling (tolerance_mod) and prediction (tolerance_pred) of the
Thomas model and the Hui model (tolerance_hui) to improve processing times or accuracy.

ensemble <- ensemble.downscale(occupancy,

new.areas = areas.pred,

cell.width = 10,

models = "all",

tolerance_mod = 1e-3,

plot = TRUE)

Nachman model is running... complete

PL model is running... complete

Logis model is running... complete

Poisson model is running... complete

NB model is running... complete

GNB model is running... complete

INB model is running... complete

FNB model is running... complete

Thomas model is running... complete

Hui model is running... complete

17

We can also specify the starting parameters for specific models. For each model the starting
parameters should be in the form of a list as before, and each model list is an item in a combined
list:

Specifying starting parameters for Nachman and GNB models

new.params <- list(Nachman = list("C" = 0.1, "z" = 0.01),

GNB = list("C" = 0.1, "z" = 1, "k" = 0.01))

new.params

$Nachman

$Nachman$C

[1] 0.1

$Nachman$z

[1] 0.01

$GNB

GNBC

[1] 0.1

GNBz

[1] 1

GNBk

[1] 0.01

18

ensemble <- ensemble.downscale(occupancies = occupancy,

new.areas = c(1, 2, 5, 15, 50, 100, 400, 1600,

6400),

cell.width = 10,

models = "all",

tolerance_mod = 1e-3,

starting_params = new.params,

plot = TRUE)

Nachman model is running... complete

PL model is running... complete

Logis model is running... complete

Poisson model is running... complete

NB model is running... complete

GNB model is running... complete

INB model is running... complete

FNB model is running... complete

Thomas model is running... complete

Hui model is running... complete

19

3.5 Creating atlas data from point records

It may be that instead of having pre-existing atlas data, we may need to create our own
coarse-scale data from point records (for example herbarium records or GBIF data).

The grain size (cell width) needs to be carefully chosen so that we can best meet the assumption
that all cells have been sampled. The larger the grain size the greater our confidence in each
cell’s status, but the further we will have to downscale and the fewer coarse-grain data points
we will have for model fitting. If there are cells or regions where we do not expect this to be
the case it may be best to change these to NAs rather than assign them as absences.

The library rgbif will automatically harvest GBIF data for a desired species for a specified
region.

if you need to, install the packages

install.packages("rgbif")

load in the necessary libraries

library(rgbif)

library(downscale)

We’ll get the UK records for the chalkhill blue (Polyommatus coridon), a butterfly species
with a patchy breeding distribution largely in the south of the UK. We will confine ourselves
to records only from the UK (gbifopts = list(country = "GB")).

records <- occ_search(scientificName = "Polyommatus coridon",

country = "GB",

limit = 10000,

hasCoordinate = TRUE,

return = "data")

extract just the coordinates of the occurrences

records.coords <- SpatialPoints(data.frame(Lon = records$decimalLongitude,

Lat = records$decimalLatitude),

proj4string = CRS("+proj=longlat +datum=WGS84

+ellps=WGS84"))

The coordinates are in latitude/longitude based upon the WGS84 coordinate system. However,
a lot of the point records for UK butterflies are collected based upon the British National Grid
(”OSGB 36”), which can be seen in the grid-like pattern of some of the points so it makes sense
to reproject the points to this coordinate system. As an added advantage we can also specify
the units as km to make our upgraining easier.

reproject the coordinates to British National Grid

records.coords <- spTransform(records.coords,

CRS("+proj=lcc

+lat_1=49.8333339 +lat_2=51.16666733333333

+lat_0=90 +lon_0=4.367486666666666

+x_0=150000.01256 +y_0=5400088.4378

+ellps=intl +units=km +no_defs"))

We can have a quick look at the point records if we like.

plot(records.coords, axes = T)

20

Now we have to convert these points in to a coarse-scale raster. The simplest method is to
bound our raster by the limits of the location coordinates. Careful thought must also be put in
to the grain size. It must be large enough that we are confident it is an accurate representation
of presence-absence, but also small enough to allow upgraining to give at least three spatial
scales worth of occupancy data for fitting the downscaling models. In the UK butterflies are
generally sampled at a 10 km grid cell, so we’ll set a grain size of 20 km width (400 km2),
which gives us a little more certainty in our atlas data but will still comfortably allow us to
upgrain to give three scales (400, 1600, 6400 km2).

set grain size as 20 km

cell.width <- 20

extract extent of coordinates

coords.extent <- extent(records.coords)

create a blank raster to fit the coordinates (note the addition of half a

cell width on all sides)

gbif_raster <- raster(xmn = coords.extent@xmin - (cell.width / 2),

xmx = coords.extent@xmax + (cell.width / 2),

ymn = coords.extent@ymin - (cell.width / 2),

ymx = coords.extent@ymax + (cell.width / 2),

res = cell.width)

assign cells with presence records as 1

gbif_raster <- rasterize(records.coords, gbif_raster, field = 1)

21

convert cells with NA (no records) to 0

gbif_raster[is.na(gbif_raster)] <- 0

plot(gbif_raster, legend = FALSE)

As our area is rectangular we should not be too worried about setting our thresholds for
upgraining, and so we can choose the “All Sampled” option to maintain all data.

occupancy <- upgrain(gbif_raster,

scales = 2,

method = "All_Sampled")

We can see there has not been much increase in extent after upgraining:

The extent of the original atlas data

occupancy$occupancy.orig[1, 2]

[1] 163200

The extent of the standardised atlas data

occupancy$extent.stand

[1] 192000

22

Now we can run our ensemble downscaling models:

ensemble <- ensemble.downscale(occupancy,

models = "all",

new.areas = c(1, 10, 100, 400, 1600, 6400),

tolerance_mod = 1e-3)

Nachman model is running... complete

PL model is running... complete

Logis model is running... complete

Poisson model is running... complete

NB model is running... complete

GNB model is running... complete

INB model is running... complete

FNB model is running... complete

Thomas model is running... complete

Hui model is running... complete

Warning message:

In predict.downscale(object = mod, new.areas = new.areas, extent = extent, :

Predicted results may be innaccurate: one or more 0's predicted.

23

The INB model has not converged satisfactorily and thrown up a warning message (it has
predicted a 0 at the finest grain size which we know to be impossible). This highlights the
importance of visually inspecting the model fits. We can try tweaking it’s starting parameters
to see if we can get a better fit using the starting_params argument:

ensemble <- ensemble.downscale(occupancy,

models = "all",

new.areas = c(1, 10, 100, 400, 1600, 6400),

tolerance_mod = 1e-3,

starting_params = list(INB = list(C = 10,

r = 0.01,

b = 0.1)))

Nachman model is running... complete

PL model is running... complete

Logis model is running... complete

Poisson model is running... complete

NB model is running... complete

GNB model is running... complete

INB model is running... complete

FNB model is running... complete

Thomas model is running... complete

Hui model is running... complete

24

And the predicted mean area of occupancies for each grain size

ensemble$AOO[, c("Cell.area", "Means")]

Cell.area Means

1 1 617.8954

2 10 2966.7477

3 100 13958.6322

4 400 32781.6381

5 1600 68197.5079

6 6400 117253.2752

So far we have simply drawn a rectangle around our points, but perhaps we have a better idea
of the possible range limits of the species. In our case, it is probably sensible to set the extent
as mainland UK. A shapefile of the UK has been provided which we can load in.

uk <- system.file("extdata", "UK.shp", package = "downscale")

uk <- shapefile(uk)

reproject to be the same coordinate system as our GBIF data (in km)

uk <- spTransform(uk,

CRS("+proj=lcc +lat_1=49.8333339 +lat_2=51.16666733333333

+lat_0=90 +lon_0=4.367486666666666 +x_0=150000.01256

+y_0=5400088.4378 +ellps=intl +units=km +no_defs"))

plot our GBIF records on top of the UK polygon

plot(uk)

plot(records.coords, add = TRUE, col = "red)

25

Now, we make our raster of presence-absence the same way as before, except this time we set
the extent to be the same as that of the polygon. We then mask the raster file with the UK
polygon so that any cells outside this polygon are assigned as NA (unsampled cells):

create a blank raster with the same extent as the UK polygon

gbif_raster <- raster(ext = extent(uk),

res = cell.width)

assign cells with presence records as 1

gbif_raster <- rasterize(records.coords, gbif_raster, field = 1)

convert cells with NA (no records) to 0

gbif_raster[is.na(gbif_raster)] <- 0

mask the raster to the UK polygon, so cells outside the polygon are NA

gbif_raster <- mask(gbif_raster, uk)

plot the masked atlas raster and overlay with the UK polygon

plot(gbif_raster, legend = FALSE)

plot(uk, add = TRUE)

26

Now, we just upgrain and downscale as before:

occupancy <- upgrain(gbif_raster,

scales = 2,

method = "All_Sampled")

ensemble <- ensemble.downscale(occupancy,

27

models = "all",

new.areas = c(1, 10, 100, 400, 1600, 6400),

tolerance_mod = 1e-3,

starting_params = list(INB = list(C = 10,

r = 0.01,

b = 0.1)))

Nachman model is running... complete

PL model is running... complete

Logis model is running... complete

Poisson model is running... complete

NB model is running... complete

GNB model is running... complete

INB model is running... complete

FNB model is running... complete

Thomas model is running... complete

Hui model is running... complete

And the predicted mean area of occupancies for each grain size

ensemble$AOO[, c("Cell.area", "Means")]

Cell.area Means

1 1 665.2036

2 10 3353.7223

3 25 6408.7945

4 100 17003.7297

5 400 43131.0685

6 1600 98390.5784

7 6400 183332.8997

28

If we want to compare predicted occupancy between the two methods we must compare the
converted area of occupancies (AOO), not the proportion of occupancies as these are calculated
from different extents. In this case the estimates for grain sizes of 1 km and 10 km from the
bounded rectangle (AOO = 618 km2 and 2967 km2) are quite a bit larger than the estimates
using the full mainland UK (AOO = 556 km2 and 2635 km2), most likely as a lot of cells in
the atlas generated by the bounded rectangle would actually be sea. This highlights the care
that is needed in selecting the bounding extent, the method and number of scales to upgrain,
and the grain size we wish to predict occupancy for.

4 Bibliography

Azaele, S., S. J. Cornell, and W. E. Kunin. 2012. Downscaling species occupancy from coarse
spatial scales. Ecological Applications 22:1004–14.

Barwell, L. J., S. Azaele, W. E. Kunin, and N. J. B. Isaac. 2014. Can coarse-grain patterns in
insect atlas data predict local occupancy? Diversity and Distributions 20:895–907.

Hartley, S., and W. E. Kunin. 2003. Scale dependence of rarity, extincition risk, and conser-
vation priority. Conservation Biology 17:1–12.

Hui, C., M. A. McGeoch, B. Reyers, P. C. le Roux, M. Greve, and S. L. Chown. 2009. Extrap-
olating population size from the occupancy-abundance relationship and the scaling pattern of
occupancy. Ecological Applications 19:2038–2048.

Hui, C., M. A. McGeoch, and M. Warren. 2006. A spatially explicit approach to estimating
species occupancy and spatial correlation. Journal of Animal Ecology 75:140–147.

IUCN. 2014. Guidelines for using the IUCN Red List categories and criteria.

Kunin, W. E. 1998. Extrapolating species abundance across spatial scales. Science 281:
1513–1515.

29

	Introduction to downscaling
	Using the downscale package
	Package tutorial
	A quick example
	Preparing atlas data for downscaling
	Downscaling the atlas data - more detailed examples
	Ensemble modelling
	Creating atlas data from point records

	Bibliography

