
Functional PCA in R

A software primer using fdapace

Hadjipantelis, Dai, Ji, Müller & Wang - UC Davis, USA

March 11, 2016

1 Overview

The basic work-flow behind the PACE approach for sparse 1 functional data is as follows (see eg. [8, 6] for
more information):

1. Calculate the smoothed mean µ̂ (using local linear smoothing) aggregating all the available readings
together.

2. Calculate for each curve seperately its own raw covariance and then aggregate all these raw covariances
to generate the sample raw covariance.

3. Use the off-diagonal elements of the sample raw covariance to estimate the smooth covariance.

4. Perform eigenanalysis on the smoothed covariance to obtain the estimated eigenfunctions φ̂ and eigen-
values λ̂, then project that smoothed covariance on a positive semi-definite surface [4].

5. Use Conditional Expectation (PACE step) to estimate the corresponding scores ξ̂.

For densely observed functional data simplified procedures are available to obtain the eigencomponents and
associated functional principal components scores (see eg. [2] for more information). In particular in this
case we:

1. Calculate the cross-sectional mean µ̂.

2. Calculate the cross-sectional covariance surface (which is guaranteed to be positive semi-definite).

3. Perform eigenanalysis on the covariance to estimate the eigenfunctions φ̂ and eigenvalues λ̂.

4. Use numerical integration to estimate the corresponding scores ξ̂.

In the case of sparse FPCA the most computational intensive part is the smoothing of the sample’s raw
covariance function. For this, we employ a local weighted bilinear smoother.

A sibling MATLAB package for fdapace can be found in http://www.stat.ucdavis.edu/PACE.

2 FPCA in R using fdapace

The simplest scenario is that one has two lists yList and tList where yList is a list of vectors, each
containing the observed values Yij for the ith subject and tList is a list of vectors containing corresponding
time points. In this case one uses:

1 FPCAobj <- FPCA(y=yList , t= tList)

The generated FPCAobj will contain all the basic information regarding the desired FPCA.

1As a working assumption a dataset is treated as sparse if it has on average less than 20, potentially irregularly sampled,
measurements per subject. A user can manually change the automatically determined dataType if that is necessary.

1

2.1 Generating a toy dense functional dataset from scratch

1 # Set the number of subjects (N) and the

2 # number of measurements per subjects (M)

3 N <- 200;

4 M <- 100;

5 set.seed (123)

6
7 # Define the continuum

8 s <- seq(0,10, length.out = M)

9
10 # Define the mean and 2 eigencomponents

11 meanFunct <- function(s) s + 10*exp(-(s-5)^2)

12 eigFunct1 <- function(s) +cos(2*s*pi/10) / sqrt (5)

13 eigFunct2 <- function(s) -sin(2*s*pi/10) / sqrt (5)

14
15 # Create FPC scores

16 Ksi <- matrix(rnorm(N*2), ncol =2);

17 Ksi <- apply(Ksi , 2, scale)

18 Ksi <- Ksi %*% diag(c(5,2))

19
20 # Create Y_true

21 yTrue <- Ksi %*% t(matrix(c(eigFunct1(s),eigFunct2(s)), ncol =2)) + t(matrix(rep(meanFunct(s),N),

nrow=M))

2.2 Running FPCA on a dense dataset

1 L3 <- MakeFPCAinputs(IDs = rep(1:N, each=M),tVec=rep(s,N), t(yTrue))

2 FPCAdense <- FPCA(y = L3$Ly, t = L3$Lt)

3
4 # Make a basic diagnostics plot

5 plot(FPCAdense)

6
7 # Find the standard deviation associated with each component

8 sqrt(FPCAdense$lambda)

2.3 Running FPCA on a sparse and noisy dataset

1 # Create sparse sample

2 # Each subject has one to five readings (median:

3)

3 set.seed (123)

4 ySparse <- Sparsify(yTrue , s, sparsity = c(1:5))

5
6 # Give your sample a bit of noise

7 ySparse$yNoisy <- lapply(ySparse$yList , function

(x) x + 0.5*rnorm(length(x)))

8
9
10 # Do FPCA on this sparse sample

11 FPCAsparse <- FPCA(ySparse$yNoisy , t = ySparse$

tList , optns = list(diagnosticsPlot = TRUE))

12
13 # Notice that sparse FPCA will smooth the data

internally (Yao et al., 2005)

14 # Smoothing is the main computational cost

behind sparse FPCA

● ● ●●● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●
● ● ● ● ●● ● ● ● ● ● ● ●

●● ● ● ● ● ● ●● ● ● ● ● ● ● ●
●● ● ● ● ● ●

● ● ● ● ●● ● ● ●●
● ● ● ● ● ● ●● ●● ●● ● ● ● ●● ● ● ●●

● ●● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●● ● ●

● ● ● ● ●● ● ● ●● ●●● ●● ● ● ● ● ● ●
● ● ● ●● ● ● ● ●

● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ●
● ●● ●● ●● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ●● ●● ● ● ●●● ● ● ● ● ● ●
● ● ● ● ● ● ● ●● ● ● ● ● ●
● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●●

● ● ● ● ● ● ● ● ● ●
● ● ● ●

● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●● ● ●● ●● ● ● ●● ● ● ● ●
● ●● ● ● ● ●●● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●
● ●●● ● ● ● ●● ● ● ●

● ● ● ● ● ●● ● ● ●● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ●

● ● ●● ● ● ● ● ● ● ●● ● ● ● ● ●
● ●● ● ●● ● ● ●● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●● ●

● ● ●● ● ● ● ● ● ● ●● ●● ● ● ● ●● ● ●
● ● ●●● ● ● ● ●● ● ● ●● ●● ●●● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ●

● ● ● ●● ● ●● ● ● ● ● ●● ● ●
● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●

● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ●●
● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●

● ● ● ● ●● ● ●●
● ● ● ● ●● ● ● ● ● ● ●

●●●●●●● ● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ●● ● ● ●
● ● ● ● ● ● ●●●● ● ●●

● ● ● ● ● ● ●
● ● ● ● ● ● ●● ●

● ●● ●● ● ● ● ● ● ● ● ●●
● ● ● ● ● ● ● ● ● ● ●● ●● ● ●

● ● ● ●● ● ● ●● ● ●
● ●● ●● ● ● ● ● ● ● ● ● ● ●● ●●

●● ● ● ●
● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●● ●● ● ● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ●●

● ● ● ●● ● ● ● ●
● ●● ● ● ● ●● ●● ● ● ●● ● ● ● ● ● ●●●●●
● ● ● ●● ● ● ● ● ●
● ●● ● ● ● ● ● ● ● ● ●● ●● ●● ●● ●

● ● ●●● ● ●● ● ●●
● ● ● ● ● ●● ● ● ● ●● ● ● ●

● ● ● ● ● ● ●● ●
● ● ● ●●● ● ● ●● ● ● ● ● ● ●●● ●●

● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ●● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●
● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ●●

● ● ● ●
●● ●● ●● ● ● ● ● ● ● ●●●

● ● ● ●● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ●●● ● ● ●● ● ●
● ● ● ● ● ●● ● ● ● ● ● ●● ● ●●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●●● ● ●● ● ● ● ● ● ●● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●● ●
●● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●● ● ● ● ●
●● ● ● ●● ● ●● ●●● ●●● ● ●● ●● ● ●● ● ● ●●●● ● ●● ● ●

● ● ● ●●● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ●

● ●●●● ● ● ● ●● ●● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●● ● ● ● ●● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ●● ● ●● ● ● ● ● ●● ●● ●● ● ●

● ● ●
● ● ● ●● ● ●● ● ●

● ● ● ●● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ● ●●

● ● ● ● ● ● ● ● ● ● ● ●●●
● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●● ●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ●
● ● ● ● ● ● ●

● ●● ●● ● ● ● ● ●● ● ● ●●● ● ● ●●
● ●● ● ●● ● ● ● ● ●●● ● ● ● ● ● ● ●

● ●●● ● ● ● ● ● ● ● ● ● ●●● ● ● ● ● ● ● ● ● ●●● ●
● ● ● ● ● ● ●●● ● ● ● ●

● ● ●● ●●● ● ●● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ●

0 2 4 6 8 10

0
2

4
6

8
10

Design Plot

Observed time grid

O
bs

er
ve

d
tim

e
gr

id

●

●

●

●

Count

1
2
3
4+

0 2 4 6 8 10

0
5

10
15

Mean Function

s

Scree−plot

Number of components

F
ra

ct
io

n
of

 V
ar

ia
nc

e
E

xp
la

in
ed

0
20

40
60

80
10

0

●

● ● ● ●

● Cummul. FVE

0 2 4 6 8 10

−
0.

6
−

0.
2

0.
2

0.
4

First 3 Eigenfunctions

s

2

3 Further functionality

FPCA calculates the bandwidth utilized by each smoother using generalised cross-validation or k-fold cross-
validation automatically. Dense data are not smoothed by default. The argument methodMuCovEst can
be switched between smooth and cross-sectional if one wants to utilize different estimation techniques
when work with dense data. The bandwidth used for estimating the smoothed mean and the smoothed
covariance are available under ...$bwMu and ...$bwCov respectively. Users can nevertheless provide their
own bandwidth estimates:

1 FPCAsparseMuBW5 <- FPCA(ySparse$yNoisy , t = ySparse$tList , optns= list(userBwMu = 5))

Visualising the fitted trajectories is a good way to see if the new bandwidth made any sense:

1 CreatePathPlot(FPCAsparse , subset = 1:3, main = "GCV bandwidth", pch = 16)

2 CreatePathPlot(FPCAsparseMuBW5 , subset = 1:3, main = "User -defined bandwidth", pch = 16)

●

●

2 4 6 8

0
5

10
15

GCV bandwidth

s

●

●
●

●
●

●

●

●

●

●

2 4 6 8

0
5

10
15

User−defined bandwidth

s

●

●
●

●
●

●

●

●

FPCA uses a Gaussian kernel when smoothing sparse functional data; other kernel types (eg. Epanech-
nikov/epan) are also available (see ?FPCA). The kernel used for smoothing the mean and covariance surface
is the same. It can be found under ...$optns$kernel of the returned object. For instance, one can switch
the default Gaussian kernel (gauss) for a rectangular kernel (rect) as follows:

1 FPCAsparseRect <- FPCA(ySparse$yNoisy , ySparse$tList , optns = list(kernel = ’rect’)) # Use

rectangular kernel

FPCA returns automatically the smallest number of components required to explain 99.99% of a sample’s
variance. Using the function selectK one can determine the number of relevant components according to
AIC, BIC or a different Fraction-of-Variance-Explained threshold. For example:

1 SelectK(FPCAsparse , criterion = ’FVE’, FVEthreshold = 0.95) # k = 2

2 SelectK(FPCAsparse , criterion = ’AIC’) # k = 2

When working with functional data (usually not very sparse) the estimation of derivatives is often of interest.
Using fitted.FPCA one can directly obtain numerical derivatives by defining the appropriate order p; fdapace
provides for the first two derivatives (p = 1 or 2). Because the numerically differentiated data are smoothed
the user can define smoothing specific arguments (see ?fitted.FPCA for more information); the derivation
is done by using the derivative of the linear fit. Similarly using the function FPCAder, one can augment an
FPCA object with functional derivatives of a sample’s mean function and eigenfunctions.

1 fittedCurvesP0 <- fitted(FPCAsparse) # equivalent: fitted(FPCAsparse , derOptns=list(p = 0));

2 # Get first order derivatives of fitted curves , smooth using Epanechnikov kernel

3 fittedCurcesP1 <- fitted(FPCAsparse , derOptns=list(p = 1, kernelType = ’epan’))

3

4 A real-world example

We use the medfly25 dataset that this available with fdapace to showcase FPCA and its related functionality.
medfly25 is a dataset containing the eggs laid from 789 medflies (Mediterranean fruit flies, Ceratitis capitata)
during the first 25 days of their lives. It is a subset of the dataset used by Carey at al. (1998) [1]; only flies
having lived at least 25 days are shown. The data are rather noisy, dense and with a characteristic flat start.
For that reason in contrast with above we will use a smoothing estimating procedure despite having dense
data.

1 load(’data/medfly25.RData’)

2 # Turn the original data into a list of paired

amplitude and timing lists

3 Flies <- MakeFPCAInputs(tVec = medfly25$Days ,

yVec = medfly25$nEggs , IDs = medfly25$ID)

4 fpcaObjFlies <- FPCA(y = Flies$Ly, t = Flies$Lt,

list(diagnosticsPlot = TRUE , methodMuCovEst

= ’smooth ’, userBwCov = 2))

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●

5 10 15 20 25

5
10

15
20

25

Design Plot

Observed time grid

O
bs

er
ve

d
tim

e
gr

id

●

●

●

●

Count

1
2
3
4+

5 10 15 20 25

0
5

10
20

30

Mean Function

s

Scree−plot

Number of components

F
ra

ct
io

n
of

 V
ar

ia
nc

e
E

xp
la

in
ed

0
20

40
60

80
10

0

●

●
● ● ● ● ● ● ● ● ●

● Cummul. FVE

5 10 15 20 25

−
0.

4
−

0.
2

0.
0

0.
2

First 3 Eigenfunctions

s

Based on the scree-plot we see that the first three components appear to encapsulate most of the relevant
variation. The number of eigencomponents to reach a 99.99% FVE is 11 but just 3 eigencomponents are
enough to reach a 95.0%. We can easily inspect the following visually, using the CreatePathPlot command.

1 CreatePathPlot(fpcaObjFlies , subset = c(3,5,135), main = ’k = 11’, pch = 4); grid()

2 CreatePathPlot(fpcaObjFlies , subset = c(3,5,135), k = 3, main = ’k = 3’, pch = 4) ; grid()

5 10 15 20 25

0
20

40
60

80
10

0

Reconstructed path with k = 11

Days

of

 e
gg

s
la

id

5 10 15 20 25

0
20

40
60

80
10

0

Reconstructed path with k = 3

Days

of

 e
gg

s
la

id

One can perform outlier detection [3] as well as visualize data using a functional box-plot. To achieve
these tasks one can use the functions CreateOutliersPlot and CreateFuncBoxPlot. Different ranking
methodologies (KDE, bagplot [7, 5] or point-wise) are available and can potentially identify different aspects
of a sample. For example here it is notable that the kernel density estimator KDE variant identifies two main

4

clusters within the main body of sample. By construction the bagplot method would use a single bag and
this feature would be lost. Both functions return a (temporarily) invisible copy of a list containing the labels
associated with each of sample curve. CreateOutliersPlot returns a (temporarily) invisible copy of a list
containing the labels associated with each of sample curve.

1 CreateOutliersPlot(fpcaObjFlies , optns = list(k = 3, variant = ’KDE’))

2 CreateFuncBoxPlot(fpcaObjFlies , xlab = ’Days’, ylab = ’# of eggs laid’, optns = list(k =3, variant=

’bagplot ’))

FPC1 scores 74%

F
P

C
2

sc
or

es
 1

8%

 50%

 50%

 95%

 99%

−200 −100 0 100 200

−
10

0
−

50
0

50
10

0

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●
●

● ●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

< 50%
50%−95%
95%−99%
> 99%

5 10 15 20 25

0
20

40
60

80
10

0

Days

of

 e
gg

s
la

id

Functional data lend themselves naturally to questions about their rate of change; their derivatives. As
mentioned previously using fdapace one can generate estimates of the sample’s derivatives (fitted.FPCA)
or the derivatives of the principal modes of variation (FPCAder). In all cases, one defines a derOptns list of
options to control the derivation parameters. Getting derivatives is obtained by using a local linear smoother
as above.

1 CreatePathPlot(fpcaObjFlies , subset = c(3,5,135), k = 3, main = ’k = 3’, showObs = FALSE) ; grid()

2 CreatePathPlot(fpcaObjFlies , subset = c(3,5,135), k = 3, main = ’k = 3’, showObs = FALSE ,

3 derOptns = list(p = 1, bw = 1.01 , kernelType = ’epan’)) ; grid()

5 10 15 20 25

0
20

40
60

80

Reconstructed curve (k = 3)

Days

of

 e
gg

s
la

id

5 10 15 20 25

−
5

0
5

10
15

Reconstructed derivative (k = 3)

Days

d#
 o

f e
gg

s
la

id
/d

t

We note that if finite support kernel types are used (eg. rect or epan), bandwidths smaller than the
distance between two adjacent points over which the data are registered onto will lead to (expected) NaN

estimates. In case of dense data, the grid used is (by default) equal to the grid the data were originally
registered on; in the case of sparse data, the grid used (by default) spans the range of the sample’s supports

5

and uses 51 points. A user can change the number of points using the argument nRegGrid. One can
investigate the effect a particular kernel type (kernelType) or bandwidth size (bw) has on the generated
derivatives by using the function CreateDiagnosticsPlot but this time providing a relevant derOptns list.
This will generate estimates about the mean function µ(t) as well as the first two principal modes of variation
φ1(t) and φ2(t) for different multiples of bw.

1 fpcaObjFlies79 <- FPCA(y = Flies$Ly, t = Flies$Lt, list(diagnosticsPlot = TRUE , nRegGrid = 79,

methodMuCovEst = ’smooth ’, userBwCov = 2)) # Use 79 equidistant points for the support

2 CreateDiagnosticsPlot(fpcaObjFlies79 , derOptns = list(p = 1, bw = 2.0 , kernelType = ’rect’))

5 10 15 20 25

0
2

4
6

8

Derivatives of order 1 of µ

s

dµ
/d

s

bw: 1
bw: 1.5
bw: 2
bw: 2.5
bw: 3

5 10 15 20 25

−
0.

02
0.

00
0.

02
0.

04
0.

06

Derivatives of order 1 of φ1

s

dφ
1/

ds

bw: 1
bw: 1.5
bw: 2
bw: 2.5
bw: 3

5 10 15 20 25

−
0.

10
−

0.
05

0.
00

0.
05

Derivatives of order 1 of φ2

s

dφ
2/

ds

bw: 1
bw: 1.5
bw: 2
bw: 2.5
bw: 3

References

[1] JR Carey, P Liedo, H-G Müller, J-L Wang, and J-M Chiou. Relationship of age patterns of fecundity to
mortality, longevity, and lifetime reproduction in a large cohort of mediterranean fruit fly females. The
Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 53(4):B245–B251, 1998.

[2] PE Castro, WH Lawton, and EA Sylvestre. Principal modes of variation for processes with continuous
sample curves. Technometrics, 28(4):329–337, 1986.

[3] M Febrero, P Galeano, and W González-Manteiga. A functional analysis of nox levels: location and scale
estimation and outlier detection. Computational Statistics, 22(3):411–427, 2007.

[4] P Hall, H-G Müller, and F Yao. Modelling sparse generalized longitudinal observations with latent
gaussian processes. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(4):703–
723, 2008.

[5] RJ Hyndman and HL Shang. Rainbow plots, bagplots, and boxplots for functional data. Journal of
Computational and Graphical Statistics, 19(1), 2010.

[6] B Liu and H-G Müller. Estimating derivatives for samples of sparsely observed functions, with application
to online auction dynamics. Journal of the American Statistical Association, 104(486):704–717, 2009.

[7] PJ Rousseeuw, I Ruts, and JW Tukey. The bagplot: a bivariate boxplot. The American Statistician,
53(4):382–387, 1999.

[8] F Yao, H-G Müller, and J-L Wang. Functional data analysis for sparse longitudinal data. Journal of the
American Statistical Association, 100(470):577–590, 2005.

6

