
An R Package flare for High Dimensional Linear

Regression and Precision Matrix Estimation

Xingguo Li∗† Tuo Zhao∗‡ Xiaoming Yuan§ Han Liu¶

Abstract

This paper describes an R package named flare, which implements a family of new high

dimensional regression methods (LAD Lasso, SQRT Lasso, `q Lasso, and Dantzig selector) and

their extensions to sparse precision matrix estimation (TIGER and CLIME). These methods

exploit different nonsmooth loss functions to gain modeling flexibility, estimation robustness,

and tuning insensitiveness. The developed solver is based on the alternating direction method

of multipliers (ADMM), which is further accelerated by the multistage screening approach. The

package flare is coded in double precision C, and called from R by a user-friendly interface.

The memory usage is optimized by using the sparse matrix output. The experiments show that

flare is efficient and can scale up to large problems.

1 Introduction

As a popular sparse linear regression method for high dimensional data analysis, Lasso has been

extensively studied by machine learning and statistics communities (Tibshirani, 1996; Chen et al.,

1998). It adopts the quadratic loss and `1 norm regularization functions to select and estimate

nonzero parameters simultaneously. Software packages such as glmnet have been developed to

efficiently solve large problems (Friedman et al., 2010). Lasso further yields a wide range of research

interests, and motivates many variants by exploiting nonsmooth loss functions to gain modeling

flexibility, estimation robustness, and tuning insensitiveness. These nonsmooth loss functions,

however, pose a great challenge to computation. To the best of our knowledge, no efficient solver

has been developed so far for these Lasso variants.

In this report, we describe a newly developed R package named flare (Family of Lasso Regression).

The flare package implements a family of linear regression methods including

∗Xingguo Li and Tuo Zhao contributed equally to this work;
†Department of Electrical and Computer Engineering, University of Minnesota Twin Cities;
‡Department of Computer Science, Johns Hopkins University;
§Department of Mathematics, Hong Kong Baptist University;
¶Department of Operations Research and Financial Engineering, Princeton University.

1

1 LAD Lasso, which is robust to heavy tail random noise and outliers (Wang, 2013).

2 SQRT Lasso, which is tuning insensitive (the optimal regularization parameter selection does

not depend on any unknown parameter, Belloni et al. (2011)).

3 `q Lasso, which shares the advantage of LAD Lasso and SQRT Lasso.

4 Dantzig selector, which can tolerate missing values in the design matrix and response vector

(Candes and Tao, 2007).

By adopting the column by column regression scheme, we further extend these regression methods

to sparse precision matrix estimation, including

5 TIGER, which is tuning insensitive (Liu and Wang, 2012).

6 CLIME, which can tolerate missing values in the data matrix (Cai et al., 2011).

The developed solver is based on the alternating direction method of multipliers (ADMM), which

is further accelerated by a multistage screening approach (Gabay and Mercier, 1976; Boyd et al.,

2011). The global convergence result of ADMM has been established in He and Yuan (2012a,b).

The numerical simulations show that the flare package is efficient and can scale up to large

problems.

2 Notation

We first introduce some notations. Given a d-dimensional vector v = (v1, . . . , vd)
T ∈ Rd, we define

vector norms:

||v||qq =
∑
j

|vj |q, ||v||∞ = max
j
|vi|.

where 1 ≤ q ≤ 2. Given a matrix A = [Ajk] ∈ Rd×d, we use ||A||2 to denote the largest sin-

gular value of A. We also define the winterization, univariate soft thresholding, and group soft

thresholding operators as follows,

Winterization: Wλ(v) = [sign(vj) ·min{|vj |, λ}]dj=1 ,

Univariate Soft Thresholding: Sλ(v) = [sign(vj) ·max{|vj | − λ, 0}]dj=1 ,

Group Soft Thresholding: Gλ(v) =

[
vj
||v||2

·max{||vj ||2 − λ, 0}
]d
j=1

.

2

3 Algorithm

We are interested in solving convex programs in the following generic form,

β̂ = argmin
β, α

Lλ(α) + ‖β‖1 subject to r −Aβ = α. (1)

where λ > 0 is the regularization parameter. The possible choices of Lλ(α), A, and r for different

regression methods are listed in Table 1. As can be seen, LAD Lasso and SQRT Lasso are special

cases of `q Lasso for q = 1 and q = 2 respectively. All methods above can be efficiently solved by

the iterative scheme as follows,

αt+1 = argmin
α

1

2

∥∥ut + r −Aβt −α
∥∥2
2

+
1

ρ
Lλ(α), (2)

βt+1 = argmin
β

1

2

∥∥ut −αt+1 + r −Aβ
∥∥2
2

+
1

ρ
‖β‖1, (3)

ut+1 = ut + (r −αt+1 −Aβt+1), (4)

where u is the rescaled Lagrange multiplier, and ρ > 0 is the penalty parameter. Note that the

Lagrange multiplier u is rescaled for computational convenience, and it does not affect the global

convergence of the ADMM method. See more details in Boyd et al. (2011). For LAD Lasso, SQRT

Lasso, and Dantzig selector, we can obtained a closed form solution to(2) by

LAD Lasso: αt+1 = S 1
nρλ

(ut + r −Aβt), (5)

SQRT Lasso: αt+1 = G 1√
nρλ

(ut + r −Aβt), (6)

Dantzig selector: αt+1 =Wλ(ut + r −Aβt). (7)

For `q Lasso with 1 < q < 2, we can solve (2) by the bisection based root finding algorithm (Liu and

Ye, 2010). (3) is a standard `1 penalized least square problem. Our solver adopts the linearization

at β = βt as follows and solves (3) approximately by

βt+1 = argmin
β

1

2

∥∥β − βt + AT (Aβt − ut +αt+1 − r)/γ
∥∥2
2

+
1

γρ
‖β‖1, (8)

where γ = ||A||22. We can obtain a closed form solution to (8) by soft thresholding,

βt+1 = S 1
γρ

(
βt −AT (Aβt − ut +αt+1 − r)/γ

)
. (9)

Besides the pathwise optimization scheme and the active set trick, we also adopt the multistage

screening approach to speedup the computation. In particular, we first select k nested subsets

of coordinates A1 ⊆ A2 ⊆ ... ⊆ Ak = Rd by the marginal correlation between the covariates

and responses. Then the algorithm iterates over these nested subsets of coordinates to obtain the

solution. The multistage screening approach can greatly boost the empirical performance, especially

for Dantzig selector.

3

Table 1: All regression methods provided in the flare package. X ∈ Rn×d denotes the design

matrix, and y ∈ Rn denotes the response vector. “L.P.” denotes the general linear programming

solver, and “S.O.C.P” denotes the second-order cone programming solver.

Method Loss function A r Existing solver

LAD Lasso Lλ(α) =
1

nλ
‖α‖1 X y L.P.

SQRT Lasso Lλ(α) =
1√
nλ
‖α‖2 X y S.O.C.P.

`q Lasso Lλ(α) =
1

q
√
nλ
‖α‖q X y None

Dantzig selector Lλ(α) =

{
∞ if ‖α‖∞ > λ

0 otherwise
1
nXTX 1

nXTy L.P.

4 Examples

We illustrate the user interface by two examples. The first one is the eye disease dataset in our

package.

> # Load the dataset

> library(flare); data(eyedata)

> # SQRT Lasso

> out1 = slim(x,y,method="lq",nlambda=40,lambda.min.value=sqrt(log(200)/120))

> # Dantzig Selector

> out2 = slim(x,y,method="dantzig",nlambda=40,lambda.min.ratio=0.35)

> # Plot solution paths

> plot(out1); plot(out2)

The program automatically generates a sequence of 40 regularization parameters and estimates the

corresponding solution paths of SQRT Lasso and the Dantzig selector. For the Dantzig selector, the

optimal regularization parameter is usually selected based on some model selection procedures, such

as cross validation. Note that the theoretically consistent regularization parameter of SQRT Lasso

is C
√

log d/n, where C is some constant. Thus we manually choose its minimum regularization

parameter to be
√

log(d)/n =
√

log(200)/120. We see that the minimum regularization parameter

yields 19 nonzero coefficients out of 200. We further plot two solution paths in Figure 1.

Our second example is the simulated dataset using the data generator in our package.

4

0.3 0.4 0.5 0.6 0.7

-0
.0
5

0.
00

0.
05

0.
10

0.
15

Regularization Path

Regularization Parameter

C
oe
ffi
ci
en
t

(a) SQRT Lasso

0.3 0.4 0.5 0.6 0.7

-0
.0
5

0.
00

0.
05

0.
10

Regularization Path

Regularization Parameter

C
oe
ffi
ci
en
t

(b) Dantzig selector

Figure 1: Solution paths obtained by the package flare. The minimum regularization parameter

of SQRT Lasso is selected as
√

log(d)/n manually, which yields 19 nonzero regression coefficients

out of 200.

> # Generate data with hub structure

> L = sugm.generator(n=400,d=200,graph="hub",g=10)

> out1 = sugm(L$data,method="clime",nlambda=10,lambda.min.ratio=0.4)

> # Model selection using cross validation.

> out1.opt = sugm.select(out1,criterion="cv")

> out2 = sugm(L$data,lambda = sqrt(log(200)/400))

> # Visualize obtained grpahs

> plot(L); plot(out1.opt); plot(out2)

For CLIME, the program automatically generates a sequence of 10 regularization parameters,

estimates the corresponding graph path, and chooses the optimal regularization parameter by

cross validation. Note that TIGER is also tuning insensitive. Therefore we manually choose the

regularization to be
√

log(d)/n =
√

log(400)/200 (This is also a theoretically consistent choice).

We then compare the obtained graphs with the true graph using the visualization function in our

package, and the resulting figures are presented in Figure 2. We see that TIGER achieves good

graph recovery performance without any model selection procedure.

5

(a) Truth (b) CLIME (c) TIGER

Figure 2: Graphs estimated by the package flare. The CLIME graph is selected by cross validation,

and the TIGER graph is manually selected by setting the regularization parameter as
√

log(d)/n.

5 Numerical Simulation

All experiments are carried out on a PC with Intel Core i5 3.3GHz processor, and the convergence

threshold of flare is chosen to be 10−5. Timings (in seconds) are averaged over 100 replications

using a sequence of 20 regularization parameters, and the range of regularization parameters is

chosen so that each method produces approximately the same number of nonzero estimates.

We first evaluate the timing performance of flare for sparse linear regression. We set n = 100

and vary d from 375 to 3000 as is shown in Table 2. We independently generate each row of the

design matrix from a d-dimensional normal distribution N(0,Σ), where Σjk = 0.5|j−k|. Then we

generate the response vector using yi = 3Xi1+2Xi2+1.5Xi4+εi, where εi is independently generated

from N(0, 1). From Table 2, we see that all methods achieve very good timing performance. Dantzig

selector and `q Lasso are slower due to more difficult computational formulations. For comparison

purpose, we also present the timing performance of the glmnet package for solving SQRT Lasso

in Table 2. Since glmnet cannot be directly applied to SQRT Lasso, the implementation is based

on the alternating minimization algorithm proposed in Sun and Zhang (2012). In particular, this

algorithm obtains the minimizer by solving a sequence of Lasso problems (using glmnet). As can

be seen, it also achieves good timing performance, but still slower than the flare package.

We then evaluate the timing performance of flare for sparse precision matrix estimation. We

set n = 100 and vary d from 100 to 400 as is shown in Table 2. We independently generate the

data from a d-dimensional normal distribution N(0,Σ), where Σjk = 0.5|j−k|. The corresponding

precision matrix Ω = Σ−1 has Ωjj = 1.3333, Ωjk = −0.6667 for all j, k = 1, ..., d and |j − k| = 1,

and all other entries are 0. As can be seen from Table 2, TIGER and CLIME both achieve good

timing performance, and CLIME is slower than TIGER due to a more difficult computational

formulation.

6

Table 2: Average timing performance (in seconds) with standard errors in the parentheses on sparse

linear regression and sparse precision matrix estimation.

Sparse Linear Regression

Method d = 375 d = 750 d = 1500 d = 3000

LAD Lasso 1.1713(0.2915) 1.1046(0.3640) 1.8103(0.2919) 3.1378(0.7753)

`1.5 Lasso 12.995(0.5535) 14.071(0.5966) 14.382(0.7390) 16.936(0.5696)

Dantzig selector 0.3245(0.1871) 1.5360(1.8566) 4.4669(5.9929) 17.034(23.202)

SQRT Lasso (flare) 0.4888(0.0264) 0.7330(0.1234) 0.9485(0.2167) 1.2761(0.1510)

SQRT Lasso (glmnet) 0.6417(0.0341) 0.8794(0.0159) 1.1406(0.0440) 2.1675(0.0937)

Sparse Precision Matrix Estimation

Method d = 100 d = 200 d = 300 d=400

TIGER 1.0637(0.0361) 4.6251(0.0807) 7.1860(0.0795) 11.085(0.1715)

CLIME 2.5761(0.3807) 20.137(3.2258) 42.882(18.188) 112.50(11.561)

6 Discussion and Conclusions

Though the glmnet package cannot handle nonsmooth loss functions, it is much faster than flare

for solving Lasso as illustrated in Table 3. The simulation setting is the same as the sparse linear

regression setting in §5. Moreover, the glmnet package can also be applied to solve `1 regularized

generalized linear model estimation problems, which flare cannot. Overall speaking, the flare

package serves as an efficient complement to the glmnet packages for high dimensional data analysis.

We will continue to maintain and support this package.

Table 3: Quantitive comparison between the flare and glmnet packages for solving Lasso.

Method d = 375 d = 750 d = 1500 d = 3000

Lasso (flare) 0.0920(0.0013) 0.1222(0.0009) 0.2328(0.0037) 0.6510(0.0051)

Lasso (glmnet) 0.0024(0.0001) 0.0038(0.0001) 0.0065(0.0005) 0.0466(0.0262)

Acknowledgement Tuo Zhao and Han Liu are supported by NSF Grants III-1116730 and

NSF III-1332109, NIH R01MH102339, NIH R01GM083084, and NIH R01HG06841, and FDA

HHSF223201000072C. Lie Wang is supported by NSF Grant DMS-1005539. Xiaoming Yuan is

supported by the General Research Fund form Hong Kong Research Grants Council: 203311 and

203712.

7

References

Belloni, A., Chernozhukov, V. and Wang, L. (2011). Square-root lasso: pivotal recovery of

sparse signals via conic programming. Biometrika 98 791–806.

Boyd, S., Parikh, N., Chu, E., Peleato, B. and Eckstein, J. (2011). Distributed optimization

and statistical learning via the alternating direction method of multipliers. Foundations and

Trends R© in Machine Learning 3 1–122.

Cai, T., Liu, W. and Luo, X. (2011). A constrained `1 minimization approach to sparse precision

matrix estimation. Journal of the American Statistical Association 106 594–607.

Candes, E. and Tao, T. (2007). The dantzig selector: Statistical estimation when p is much

larger than n. The Annals of Statistics 35 2313–2351.

Chen, S. S., Donoho, D. L. and Saunders, M. A. (1998). Atomic decomposition by basis

pursuit. SIAM journal on scientific computing 20 33–61.

Friedman, J., Hastie, T. and Tibshirani, R. (2010). Regularization paths for generalized linear

models via coordinate descent. Journal of statistical software 33 1.

Gabay, D. and Mercier, B. (1976). A dual algorithm for the solution of nonlinear variational

problems via finite element approximation. Computers & Mathematics with Applications 2 17–40.

He, B. and Yuan, X. (2012a). On non-ergodic convergence rate of douglas-rachford alternating

direction method of multipliers. Tech. rep., Nanjing University.

He, B. and Yuan, X. (2012b). On the o(1/n) convergence rate of the douglas-rachford alternating

direction method. SIAM Journal on Numerical Analysis 50 700–709.

Liu, H. and Wang, L. (2012). Tiger: A tuning-insensitive approach for optimally estimating

gaussian graphical models. Tech. rep., Princeton University.

Liu, J. and Ye, J. (2010). Efficient l1/lq norm regularization. Tech. rep., Arizona State University.

Sun, T. and Zhang, C.-H. (2012). Scaled sparse linear regression. Biometrika 99 879–898.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society, Series B 58 267–288.

Wang, L. (2013). L1 penalized lad estimator for high dimensional linear regression. Journal of

Multivariate Analysis .

8

